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Abstract

We consider the minimization of an objective function given access to unbiased estimates
of its gradient through stochastic gradient descent (SGD) with constant step-size. While the
detailed analysis was only performed for quadratic functions, we provide an explicit asymptotic
expansion of the moments of the averaged SGD iterates that outlines the dependence on initial
conditions, the effect of noise and the step-size, as well as the lack of convergence in the
general (non-quadratic) case. For this analysis, we bring tools from Markov chain theory into
the analysis of stochastic gradient and create new ones (similar but different from stochastic
MCMC methods). We then show that Richardson-Romberg extrapolation may be used to get
closer to the global optimum and we show empirical improvements of the new extrapolation
scheme.

1 Introduction

We consider the minimization of an objective function given access to unbiased estimates of the
function gradients. This key methodological problem has raised interest in different communities:
in large-scale machine learning (Bottou and Bousquet, 2008; Shalev-Shwartz et al., 2009, 2007),
optimization (Nemirovski et al., 2009; Nesterov and Vial, 2008), and stochastic approximation
(Kushner and Yin, 2003; Polyak and Juditsky, 1992; Ruppert, 1988). The most widely used algo-
rithms are stochastic gradient descent (SGD), a.k.a. Robbins-Monro algorithm (Robbins and Monro,
1951), and some of its modifications based on averaging of the iterates (Polyak and Juditsky, 1992;
Rakhlin et al., 2011; Shamir and Zhang, 2013).

While the choice of the step-size may be done robustly in the deterministic case (see, e.g.,
Bertsekas, 1995), this remains a traditional theoretical and practical issue in the stochastic case.
Indeed, early work suggested to use step-size decaying with the number k of iterations as O(1/k)
(Robbins and Monro, 1951), but it appeared to be non-robust to ill-conditioning and slower de-
cays such as O(1/

√
k) together with averaging lead to both good practical and theoretical perfor-

mance (Bach, 2014).
We consider in this paper constant step-size SGD, which is often used in practice. Although

the algorithm is not converging in general to the global optimum of the objective function, con-
stant step-sizes come with benefits: (a) there is single parameter value to set as opposed to
the several choices of parameters to deal with decaying step-sizes, e.g., as 1/(�k + △)◦; the
initial conditions are forgotten exponentially fast for well-conditioned (e.g., strongly convex) prob-
lems (Nedić and Bertsekas, 2001; Needell et al., 2014), and the performance, although not optimal,
is sufficient in practice (in a machine learning set-up, being only 0.1% away from the optimal pre-
diction often does not matter).

The main goals of this paper are (a) to gain a complete understanding of the properties of
constant-step-size SGD in the strongly convex case, and (b) to propose provable improvements to
get closer to the optimum when precision matters or in high-dimensional settings. We consider the
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iterates of the SGD recursion on R
d defined starting from θ0 ∈ R

d, for k ≥ 0, and a step-size γ > 0
by

θ
(γ)
k+1 = θ

(γ)
k − γ

[

f ′(θ(γ)k ) + εk+1(θ
(γ)
k )
]

, (1)

where f is the objective function to minimize (in machine learning the generalization performance),

εk+1(θ
(γ)
k ) the zero-mean statistically independent noise (in machine learning, obtained from a

single i.i.d. observation of a data point). Following Bach and Moulines (2013), we leverage the

property that the sequence of iterates (θ
(γ)
k )k≥0 is an homogeneous Markov chain.

This interpretation allows us to capture the general behavior of the algorithm. In the strongly
convex case, this Markov chain converges exponentially fast to its unique stationary distribution
πγ (see Section 3.1) highlighting the facts that (a) initial conditions of the algorithms are forgotten
quickly and (b) the algorithm does not converge to a point but oscillates around the mean of πγ .
See an illustration in Figure 1 (left). It is known that the oscillations of the non-averaged iterates
have an average magnitude of γ1/2 (Pflug, 1986).

Consider the average process (θ̄
(γ)
k )k≥0 given for all k ≥ 0 by

θ̄
(γ)
k =

1

k + 1

k
∑

j=0

θ
(γ)
j . (2)

Then under appropriate conditions on the Markov chain (θ
(γ)
k )k≥0, a central limit theorem on

(θ̄
(γ)
k )k≥0 holds which implies that θ̄

(γ)
k converges at rate O(1/

√
k) to

θ̄γ =

∫

Rd

ϑ dπγ(ϑ) . (3)

The deviation between θ̄
(γ)
k and θ∗ the global optimum is thus composed of a stochastic part

θ̄
(γ)
k − θ̄γ and a deterministic part θ̄(γ) − θ∗.

For quadratic functions, it turns out that the deterministic part vanishes (Bach and Moulines,
2013), that is, θ̄(γ) = θ∗ and thus averaged SGD with a constant step-size does converge. However,
it is not true for general objective functions where we can only show that θ̄γ − θ∗ = O(γ), and this
deviation is the reason why constant step-size SGD is not convergent.

The first main contribution of the paper is to provide an explicit asymptotic expansion that
highlights all dependencies on initial conditions and noise variance, as achieved for least-squares
by Défossez and Bach (2015), with an explicit decomposition into “bias” and “variance” terms:
the bias term characterizes how fast initial conditions are forgotten and thus is increasing in a
well-chosen norm of θ0 − θ∗; while the variance term characterizes the effect of the noise in the
gradient, independently of the starting point, and increases with the covariance of the noise.

Moreover, akin to weak error results for ergodic diffusions, we achieve a non-asymptotic weak
error expansion in the step-size between πγ and the Dirac at θ∗. Namely, we prove that for all
functions g : R

d → R, regular enough,
∫

Rd g(θ)dπγ(θ) = g(θ∗) + γC + O(γ2) for some C ∈ R

independent of γ. Given this expansion, we can now use a very simple trick from numerical
analysis, namely Richardson-Romberg extrapolation (Stoer and Bulirsch, 2013): if we run two SGD

recursions (θ
(γ)
k )k≥0 and (θ

(2γ)
k )k≥0 with the two different step-sizes γ and 2γ, then both averaged

iterates (θ̄
(γ)
k )k≥0 and (θ̄

(2γ)
k )k≥0 will converge to θ̄γ and θ̄2γ respectively. Since θ̄γ = θ∗+∆γ+O(γ2)

and θ̄2γ = θ∗ + 2∆γ +O(γ2), for ∆ ∈ R
d independent of γ, the combined iterate 2θ̄

(γ)
k − θ̄

(2γ)
k will

converge to a point which is θ∗+O(γ2) and we have thus gained one order in the convergence rate.
See illustration in Figure 1(right).

In summary, we make the following contributions:

• We provide in Section 2 an asymptotic expansions of the mean of the averaged SGD iterate
that outlines the dependence on initial conditions, the effect of noise and the step-size.

• We show in Section 2 that Richardson-Romberg extrapolation may be used to get closer to
the global optimum.

• We bring and adapt in Section 3 tools from analysis of discretization of diffusion processes
into the one of SGD and create new ones. We believe that this analogy and the associated
ideas have their own interest.

• We show in Section 4 empirical improvements of the extrapolation schemes.
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Figure 1: (Left) Convergence of iterates θ
(γ)
k and averaged iterates θ̄

(γ)
k to the mean θ̄(γ) under

the stationary distribution πγ . (Right) Richardson-Romberg extrapolation, the disks are of radius
O(γ2).

2 Main results

In this section, we describe the assumptions underlying our analysis and give our main results.

2.1 Setting

Let f : R
d → R be an objective function, satisfying the following assumptions:

A1. The function f is strongly convex with convexity constant µ, i.e. f − µ
2 ‖ · ‖2 is convex.

A 2. The function f is four times continuously differentiable with uniformly second to fourth
bounded derivatives. Especially f is L-smooth: ∀θ ∈ R

d, the largest eigenvalue of f ′′(θ) is less than
L.

If there exists a positive definite matrix Σ ∈ R
d×d, such that the function f is a quadratic

function fΣ : θ 7→ ‖Σ1/2(θ − θ∗)‖2, then Assumptions A1, A2 are satisfied.
In the definition of SGD given by (1), (εk)k≥1 is a sequence of random functions from R

d to R
d

satisfying the following properties.

A3. There exists a filtration (Fk)k≥0 (i.e. for all k ∈ N, Fk ⊂ Fk+1) on some probability space
(Ω,F ,P) such that for any k ∈ N, for any θ ∈ R

d, εk+1(θ) is an Fk+1-measurable random variable
and E [εk+1(θ)|Fk] = 0. In addition, (εk)k∈N∗ are independent and identically distributed (i.i.d.)
random variables. Moreover, we assume that θ0 is F0 measurable.

A3 expresses that we observe a noisy gradient f ′
k+1(θ

(γ)
k ) = f ′(θ(γ)k )−εk+1(θ

(γ)
k ) which are unbi-

ased estimator of f ′. Note that the notation f ′
k does necessary presuppose the existence of functions

fk such that (fk)
′ = f ′

k. Note also that we do not assume that the random vectors (εk+1(θ
(γ)
k ))k∈N

are i.i.d., a stronger assumption generally referred to as the semi-stochastic setting. Moreover,
as θ0 is F0 measurable, for any k ∈ N, θk is Fk measurable.

We also consider the following conditions on the noise, for p ≥ 2:

A4 (p). ε1 is almost surely L-co-coercive (with the same constant as in A2): for any η, θ ∈ R
d :

L 〈ε1(θ) − ε1(η), θ − η〉 ≥ ‖ε1(θ)− ε1(η)‖2. Moreover, there exists τp ≥ 0, such that ε1(θ∗) admits
bounded moments up to the order p: E

1/p[‖ε1(θ∗)‖p] ≤ τp.

Almost sure L-co-coercivity (Zhu and Marcotte, 1996) is for example satisfied if there exist
random functions fk (such that f ′

k = (fk)
′) which are a.s. convex and L-smooth. Note that a.s. co-

coercive of the noise function ε1 implies under A1, A2 the a.s. co-coercivity of the function f ′
1.

Weaker assumptions could be made on the noise (see Appendix A.3 for a discussion).

Learning from i.i.d. observations. Our main motivation comes frommachine learning; namely,
we consider sets X ,Y, a convex loss function ℓ : X × Y × R

d → R. The objective function is the
generalization error fℓ(θ) = EX,Y [ℓ(X,Y, θ)]. For any k ≥ 1, we define εk(θ) = ℓ(xk, yk, θ)− fℓ(θ)
which corresponds to following the negative gradient of a single i.i.d. observation (xk, yk)k≥1; As-
sumption A3 is then satisfied with Fk := σ((xj , yj)1≤j≤k).
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Two classical situations are worth mentioning: in least-squares regression, X = R
d, Y = R,

and the loss function is ℓ(X,Y, θ) = (〈X, θ〉 − Y )2. Then fℓ is a quadratic function fΣ, with
Σ = E[XX⊤], thus satisfies Assumption A2. For any p ≥ 2, Assumption A4(p) is satisfied as soon
as the iterates are a.s. bounded, while A1 is satisfied if the second moment matrix is invertible or
additional regularization is added. In this setting, εk can be decomposed as εk = ̺k + ξk where ̺k
is the multiplicative part, ξk the additive part, given for θ ∈ R

d by ̺k(θ) = (xkx
⊤
k −Σ)(θ− θ∗) and

ξk = (x⊤k θ∗ − yk)xk . (4)

Note that for all k ≥ 1, ξk does not depend on θ. This two parts in the noise will appear
in Corollary 4. In logistic regression, where ℓ(X,Y, θ) = log(1 + exp(−Y 〈X, θ〉)). Assumptions A4
or A2 are similarly satisfied, while A1 needs an additional restriction to a compact set. Using
self-concordance assumptions (Bach, 2014) would allow a direct unconstrained application.

2.2 Related work

Constant step-size SGD. Several attempts have been made to improve convergence of SGD.
Bach and Moulines (2013) propose an online Newton algorithm which converges to the optimal
point with constant steps. While it behaves very well in practice, this algorithm has no convergence
guarantees.

The quadratic case was studied by Bach and Moulines (2013), for the (uniform) average iterate:
the variance term is upper bounded by σ2d/n and the squared bias term by ‖θ∗‖2/(γn). This
last term was improved to ‖Σ−1/2θ∗‖2/(γn)2 by Défossez and Bach (2015); Dieuleveut and Bach
(2016). See also (Lan, 2012). Analysis has been extended to “tail averaging” (Jain et al., 2016),
to improve the dependence on the initial conditions. Note that this procedure can be seen as
a Richardson-Romberg trick with respect to k. Other strategies were proposed to improve the
speed at which initial conditions were forgotten, for example using acceleration when the noise is
additive (Dieuleveut et al., 2016; Jain et al., 2017).

Link between discretization of ergodic diffusions and SGD. In the context of discretiza-
tion of ergodic diffusions, weak error estimates between the stationary distribution of the dis-
cretization and the invariant distribution of the associated diffusion have been first shown by
Talay and Tubaro (1990) and Mattingly et al. (2002) in the case of the Euler-Maruyama discretiza-
tion. Then Talay and Tubaro (1990) suggested the use of Richardson-Romberg interpolation to
improve the accuracy of estimates of integrals with respect to the invariant distribution of the diffu-
sion. Extension of these results have been obtained for other types of discretization by Abdulle et al.
(2014) and Chen et al. (2015). We show in Section 3.3 that a weak error expansion in the step size
γ also holds for SGD between πγ and δθ∗ . Interestingly similarly to the Euler-Maruyama discretiza-
tion, SGD has a weak error of order γ. Finally, Durmus et al. (2016) proposed and analyzed the
use of Richardson-Romberg extrapolation applied to the stochastic gradient Langevin dynamics
(SGLD) algorithm. This methods introduced by Welling and Teh (2011) combines SGD and the
Euler-Maruyama discretization of the Langevin diffusion associated to a target probability mea-
sure. Note that this method is however completely different from SGD, in part because Gaussian
noise of order γ1/2 (instead of γ) is injected in SGD which changes the overall dynamics.

2.3 Summary and discussion of main results

Under the stated assumptions, the Markov chain (θ
(γ)
k )k≥0 admits a unique invariant/stationary

distribution πγ which admits a moment of order 2, see Theorem 3 in Section 3. Recall that πγ is a

stationary distribution of this Markov chain if, when θ
(γ)
0 is distributed according to πγ , then θ

(γ)
1

is distributed according to πγ as well. In the next section, by two different methods (Theorem 2
and Theorem 5), we show that under suitable conditions on f and the noise (εk)k≥1 that there
exists C ≥ 0 such that for all γ ≥ 0, small enough

θ̄γ =

∫

Rd

ϑπγ(dϑ) = θ∗ + Cγ +O(γ2) .

Using Theorem 2, we get that for γ small enough and all k ≥ 1,

E(θ̄
(γ)
k − θ∗) =

A(θ0, γ)

k
+ Cγ +O(γ2) +O(e−kµγ) . (5)
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This expansion in the step size γ shows that a Richardson-Romberg extrapolation can be used to

have better estimates of θ∗. Consider the average iterates (θ̄
(k)
2γ )k≥0 and (θ̄

(γ)
k )k≥0 associated with

SGD with step size 2γ and γ respectively. Then (5) shows that (2θ̄
(γ)
k − θ̄

(2γ)
k )k≥0 satisfies

E(2θ̄
(γ)
k − θ̄

(2γ)
k − θ∗) =

A(θ0, γ)−A(θ0, 2γ)

k
+O(γ2) +O(e−kµγ) ,

and therefore is closer to the optimum θ∗. This very simple trick improves the convergence by
a factor of γ (at the expense of a slight increase of the variance). In practice, while the un-

averaged gradient iterate θ
(γ)
k saturates rapidly, θ̄

(γ)
k may already perform well enough to avoid

saturation on real data-sets (Bach and Moulines, 2013). The Richardson-Romberg extrapolated

iterate 2θ̄
(γ)
k −θ̄(2γ)k very rarely reaches saturation in practice. This appears in synthetic experiments

presented in Section 4. Moreover, this procedure only requires to compute two parallel SGD
recursions, either with the same inputs, or with different ones, and is naturally parallelizable.

In Section 3.2, we give a quantitative version of the central limit theorem for a fixed γ > 0 and

k goes to +∞ for (θ̄
(γ)
k )k≥0, i.e. under appropriate conditions, there exist B1(γ) and B2(γ) such

that

E

[

∥

∥

∥
θ̄
(γ)
k − θ̄γ

∥

∥

∥

2
]

= B1(γ)/k +B2(γ)/k
2 . (6)

Combining (5) and (6) characterizes the bias/variance trade-off of SGD used to estimate θ∗.

3 Detailed analysis

In this Section, we describe in detail our approach. A first step is to describe the existence

of a unique stationary distribution πγ for the Markov chain (θ
(γ)
k )k≥0 and the convergence of this

Markov chain to πγ . The convergence is quantified with the Wasserstein distance (see e.g., Chapter
6 in Villani, 2009).

Limit distribution. A fundamental tool in Markov chain theory is the Markov kernel, which is
the equivalent for continuous spaces of the transition matrix in finite state spaces. Let Rγ be the

Markov kernel on (Rd,B(Rd)) associated with the SGD iterates (θ
(γ)
k )k≥0, where B(Rd) is the Borel

σ-field of R
d. We refer to (Meyn and Tweedie, 2009) for an introduction to Markov chain theory.

For all initial distributions ν0 on B(Rd) and k ∈ N, ν0R
k
γ denotes the law of θ

(γ)
k starting at θ0

distributed according to ν0. For any measure π on B(Rd) and any measurable function h : R
d → R,

π(h) denotes
∫

h(θ)dπ(θ) when it exists. Finally, for all θ ∈ R
d and measurable function h : R

d → R,

k ≥ 1, set Rk
γ(θ, ·) = δθR

k
γ the distribution of θ

(γ)
k starting at θ and Rk

γh(θ) =
∫

Rd h(ϑ)
{

δθR
k
γ

}

(dϑ).

To show that (θ
(γ)
k )k≥0 admits a unique stationary distribution πγ and quantify the convergence

of (ν0R
k
γ)k≥0 to πγ , we introduce the Wasserstein distance. For all probability measures ν and λ on

B(Rd), such that
∫

Rd ‖θ‖2 dν(θ) < +∞ and
∫

Rd ‖θ‖2 dλ(θ) ≤ +∞, define the Wasserstein distance

of order 2 between λ and ν by W2(λ, ν) := infξ∈Π(λ,ν)

(

∫

‖x− y‖2ξ(dx, dy)
)1/2

, where Π(µ, ν) is

the set of probability measure ξ on B(Rd × R
d) satisfying for all A ∈ B(Rd), ξ(A × R

d) = ν(A),
ξ(Rd × A) = λ(A).

Proposition 1. Assume A1-A2-A3-A4(2), for any step size γ < L−1, the Markov chain (θ
(γ)
k )k≥0

defined by the recursion (1), admits a unique stationary distribution πγ such that
∫

Rd ‖ϑ‖2 dπγ(ϑ) <
+∞. In addition for all θ ∈ R

d, k ∈ N:

W 2
2 (R

k
γ(θ, ·), πγ) ≤ (1− 2µγ(1− γL))k

∫

Rd

‖θ − ϑ‖2 dπγ(ϑ) .

Proof. The proof is postponed to Appendix B.1.

To prove the existence of the limit, one shows that for any x, (Rk
γ(x, ·))k≥0 is a Cauchy sequence

in a particular Polish space. We can thus define a point-wise limit, and show that it is unique.
This uses the strong convexity, smoothness and the Lipschitzness of the noise.

As a consequence of Proposition 1, the expectation of θ̄
(γ)
k = 1

k+1

∑k
i=0 θ

(γ)
i converges

∫

Rd ϑdπγ(ϑ)

as k goes to infinity at a rate of order O(k−1), see Theorem 12 in Appendix C.
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3.1 Expansion of moments under πγ when γ is in a neighborhood of 0

In this paragraph, we analyze the properties of the chain starting at θ0 distributed according to πγ .
As a result, we prove that the mean of the stationary distribution θ̄γ =

∫

Rd ϑπγ (dϑ) is such that
θ̄γ = θ∗+O(γ). By simple developments of Equation (1) at the equilibrium, we propose expansions
of the first two moments of the chain. It extends (Pflug, 1986; Ljung et al., 1992) which showed
that (γ−1/2(πγ − δθ∗))γ>0 converges in distribution to a normal law as γ → 0.

Quadratic case. When fΣ is a quadratic function, i.e., f ′ is affine, since πγ is invariant for

(θ
(γ)
k )k≥0 then if θ

(γ)
0 is distributed according to πγ , since θ

(γ)
1 is distributed according to πγ as well

and θ
(γ)
1 = θ

(γ)
0 −γf ′(θ(γ)0 )+γε1(θ

(γ)
0 ) taking expectations on both sides, we get

∫

Rd f
′(ϑ)dπγ(ϑ) = 0

which, by linearity of f ′ imposes that f ′(θ̄γ) = 0 and thus that θ̄γ = θ∗. This implies that
the averaged iterate converges to θ∗, see e.g. Bach and Moulines (2013). Moreover, as shown
in Appendix B.3, we can also compute exactly the second moment as

∫

Rd(θ − θ∗)⊗2πγ(dθ) =

γ(Σ ⊗ I + I ⊗ Σ − γΣ ⊗ Σ)−1
∫

Rd ε1(θ)
⊗2πγ(dθ), where we denote, for any θ ∈ R

d, θ⊗2 := θθ⊤,
where for any matrices M,N ∈ R

d×d, M ⊗N is defined as the following operator from R
d×d into

R
d×d such that M ⊗N : P 7→MPN .

General case. While the quadratic case led to particularly simple exact expressions, in general,
we can only get a first order development of these expectations as γ → 0 (proofs are given in
Appendix B.3). Note that it improved on (Pflug, 1986), which shows a similar expansion but an
error of order of O(γ3/2).

Theorem 2 (Properties under stationarity, general case). Let γ < 1/L and assume A1-A2-A3-
A4(4). Then

θ̄γ − θ∗ = γf ′′(θ∗)
−1f ′′′(θ∗)

(

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

∫

Rd

ε(θ)⊗2πγ(dθ)
)

+O(γ2)

∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

∫

Rd

ε(θ)⊗2πγ(dθ) +O(γ2) ,

where πγ is the stationary distribution of the Markov chain (θ
(γ)
k )k≥0 defined by the recursion (1)

and θ̄γ is given by (3).

Proof. The proof is postponed to Appendix B.3.

This shows that γ 7→ θ̄γ is a differentiable function at γ = 0. The “drift” θ̄γ − θ∗ can be
understood as an additional error occurring because the function is non quadratic and the step
sizes are not decaying to zero. The mean under the limit distribution is at distance γ from θ∗
while the final iterate oscillates in a sphere of radius proportional to

√
γ, as

∫

Rd ‖θ − θ∗‖πγ(dθ) ≤√
γ tr1/2(

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1 ∫

Rd ε(θ)
⊗2πγ(dθ)), where for any matrix M ∈ Rd×d, tr(M) is

the trace of M , i.e., the sum of diagonal elements of the matrix M .

3.2 Expansion for a given γ > 0 when k tends to +∞
In this Section, we analyze the convergence of θ̄

(γ)
k to θ̄γ , when k → ∞, and the convergence

of E

[

∥

∥

∥
θ̄
(γ)
k − θ̄γ

∥

∥

∥

2
]

to 0. Under suitable conditions (Meyn and Tweedie, 1993; Jones, 2004), θ̄
(γ)
k

satisfies a central limit theorem:
√
k
(

θ̄
(γ)
k − θ̄γ

)

d→ N (0, σ2
ϕ), where σ2

ϕ ≥ 0 . However, this

result is purely asymptotic; we propose a new tighter development that describes how the initial
conditions are forgotten: we prove that the convergence behaves similarly to the convergence in
the quadratic case, where the expected squared distance decomposes as a sum of a bias term, that
scales as k−2, and a variance term, that scales as k−1, plus linearly decaying residual terms. We
also describe how the asymptotic bias and variance can be expressed easily as moments of solutions
to several Poisson equations.
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Poisson equation. For any Lipschitz function ϕ : R
d → R, the convergence speed of k−1

∑k−1
i=0 ϕ(θ

(γ)
i )

towards
∫

Rd ϕ(ϑ)dπγ(ϑ) can be decomposed as a sum of two main terms, that can be expressed
as moments of two Poisson solutions associated with ϕ which we now described. It shows in Ap-
pendix B.2 that the sequence of function {θ 7→∑k

i=1 R
i
γφ(θ) − πγ(φ)}k≥0 converges uniformly on

all compact sets of R
d. Define then ψγ =

∑+∞
i=0 {Ri

γφ− πγ(φ)}. Note that ψγ satisfies πγ(ψγ) = 0,
(I −Rγ)ψγ = ϕ and is Lipschitz, see Appendix B.2. ψγ will be referred to as the Poisson solution
associated with ϕ.

For the convergence of θ̄
(γ)
k to θ̄γ , we thus introduce ψγ , the Poisson solution associated to

ϕ : θ 7→ θ − θ∗, χ1
γ the Poisson solution associated to θ 7→ ψγ(θ)ψ

⊤
γ (θ), and finally χ2

γ the Poisson
solution associated to θ 7→ ((ψγ − ϕ)(θ))⊗2. We then have:

Theorem 3 (Convergence of the Markov chain). Let γ ∈ (0, 1/(2L)) and assume A1-A2-A3-
A4(4). Then for any starting point θ0 ∈ R

d, setting ρ := (1− γµ)1/2:

E

[

θ̄
(γ)
k − θ̄γ

]

= (1/k)ψγ(θ0) +O(ρk) ,

E

[

(

θ̄
(γ)
k − θ̄γ

)⊗2
]

= (1/k)

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)⊤

]

dπγ(θ)

+(1/k2)
[

ψγ(θ0)ψγ(θ0)
⊤ + χ1

γ(θ0)− χ2
γ(θ0)

]

+O(ρk) ,

where (θ̄
(γ)
k )k≥0 is given by (2) and πγ is its unique stationary distribution of the Markov chain

defined by the recursion (1).

Proof. This result is a consequence of Theorem 9, proved in Appendix B.4.2.

This bound for the second order moment decomposes as a sum of two terms: (i) a variance term,
that scales as 1/k, and does not depend on the initial distribution (but only on the asymptotic
distribution πγ), and (ii) a bias term, which scales as 1/k2, and depends on the initial distribution ν0.
The proof of this result relies on the following two identities, which illustrate that the associated

Poisson solutions are introduced, E

[

θ̄
(γ)
k

]

− θ∗ = 1
k

∑k−1
i=0 (R

i
γϕ)(θ0) = πγϕ+ 1

kψγ(θ0) +Rk
γψγ(θ0),

using Ri
γπγ(ϕ) = πγϕ, and

∑k−1
i=0 R

i
γ(ϕ−πγ(ϕ)) =

∑∞
i=0R

i
γ(ϕ−πγ(ϕ))−Rk

γ

∑∞
i=0 R

i
γ(ϕ−πγ(ϕ)) =

ψγ −Rk
γψγ . Finally, we have that Rk

γψγ(θ0) converges to 0 at linear speed, using Proposition 1.
This result gives an exact closed form for the asymptotic bias and variance, for a fixed γ, and as

k → ∞. Unfortunately, in the general case, it is neither possible to compute the Poisson solutions
exactly, nor is it possible to prove a first order development of the limits as γ → 0. Indeed, part
of the difficulty comes from the fact that as γ goes to zero, the Markov chain does not mix fast
enough.

When fΣ is a quadratic function, it is possible, for any γ > 0, to compute ψγ and χ1,2
γ

explicitly; we get the following decomposition of the error, which exactly recovers the result
of Défossez and Bach (2015).

Corollary 4. Assume that f is a quadratic function fΣ, A3 and A4(4). Consider the least mean

squares algorithm iterates (θ
(γ)
k )k≥0 starting from θ0 ∈ R

d with γL ≤ 1/2. Then

E

[

(θ̄
(γ)
k − θ∗)

⊗2
]

=
1

k2γ2
Σ−1Ω(θ0 − θ∗)

⊗2Σ−1 +
1

k
Σ−1

[

Eθ∼πγ

[

ε⊗2
1 (θ)

] ]

Σ−1

− 1

k2γ
Σ−1Ω

[

Σ⊗ I + I ⊗ Σ− γT
]−1[

Eξ⊗2
1

]

Σ−1 +O(ρk) ,

where ρ = (1−γµ)1/2, Ω := (Σ⊗I+I⊗Σ−γΣ⊗Σ)(Σ⊗I+I⊗Σ−γT )−1, T : A 7→ E
[

(x⊤Ax)xx⊤
]

and ξ1 is given by (4).

3.3 Continuous interpretation of SGD and weak error expansion

Under the stated assumptions on f and (εk)k∈N∗ , we have analyzed the convergence of the stochas-
tic gradient recursion (1). We here describe how this recursion can be seen as a noisy discretization
of the following gradient flow equation, with now t ∈ R:

θ̇t = −f ′(θt) . (7)

7



Note that since f ′(θ∗) = 0 by definition of θ∗ and A1, then θ∗ is an equilibrium point of (7),
i.e. θt = θ∗ for all t ≥ 0 if θ0 = θ∗. Under A2, (7) admits a unique solution on R+ for any starting
point θ ∈ R

d. Denote by (φt)t≥0 the flow of (7), defined for all θ ∈ R
d by (φt(θ))t≥0 as the solution

of (7) starting at θ.
Denote by (A, D(A)), the infinitesimal generator associated with the flow (φt)t≥0 defined by

D(A) =

{

h : R
d → R : for all θ ∈ R

d, lim
t→+∞

h(φt(θ))− h(θ)

t
exists

}

Ah(θ) = lim
t→+∞

t−1 {h(φt(θ))− h(θ)} for all h ∈ D(A) , θ ∈ R
d . (8)

Note that for all h ∈ C1(Rd), h ∈ D(A), Ah = −〈f ′, h′〉 .
Under A1 and A2, k ∈ N, k ≥ 1, for any function g : R

d → R (extension to a function
g : R

d → R
q can easily be done considering all assumptions and results coordinatewise), locally

Lipschitz, denote by hg the solution of the continuous Poisson equation defined for all θ ∈ R
d by

hg(θ) =
∫∞
0

(g(φs(θ)) − g(θ∗))ds. Note that hg is well-defined by Lemma 13-b) in Appendix D,

since g is assumed to be locally Lipschitz. Note that by (8), we have for all g : R
d → R, locally

Lipschitz,
Ahg(θ) = g(θ)− g(θ∗) . (9)

Under regularity assumptions on g (see Theorem 15), hg is continuously differentiable and therefore

satisfies −
〈

f ′, h′g
〉

= g − g(θ∗). The idea is then to make a Taylor expansion of hg(θ
(γ)
k+1) around

θ
(γ)
k to express k−1

∑k
i=1 g(θ

(γ)
i ) − g(θ∗) as convergent terms implying the derivatives of hg. For

g : R
d → R and k1, k2 ∈ N, k1 ≥ 1 consider the following assumptions.

A5 (k1, k2). There exist ag, bg ∈ R+ such that g ∈ Ck1(Rd) and for all x ∈ R
d and i ∈ {1, · · · , k1},

supx∈Rd

∥

∥Dig(θ)
∥

∥ ≤ ag

{

‖θ − θ∗‖k2 + bg

}

, where Dig is the differential of order i of g.

A 6. The functions (εk)k∈N∗ are i.i.d., and that the function C(θ) : θ 7→ E
[

ε1(θ)
⊗2
]

is three

time continuously differentiable and there exists Mε ≥ 0 such that for all θ ∈ R
d,
∥

∥DiC(θ)
∥

∥ ≤
Mε

{

1 + ‖θ − θ∗‖kε

}

for i ∈ {1, 2, 3}.

Theorem 5. Assume A1-A2-A3-A4(2(q+3))-A6, for q ∈ N. Let g : R
d → R satisfying A5(5, q).

Then there exists C2(q+3) only depending on q such that for all γ ∈
(

0, C2(q+3)

)

, k ∈ N
∗ and θ0 ∈ R

d

such that

E

[

k−1
k
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

=
E

[

hg(θ
(γ)
k+1)

]

− hg(θ0)

kγ

− (γ/2)h′′g(θ∗)E
[

{ε(θ∗)}⊗2
]

+
γ

k
A1(θ0) + γ2A2(θ0, k) , (10)

where θ
(γ)
k is the Markov chain starting from θ0 and defined by the recursion (1). In addition for

some constant C ≥ 0 independent of γ and n, we have

A1(θ0) ≤ C
{

1 + ‖θ0 − θ∗‖q+2
}

, A2(θ0, k) ≤ C
{

1 + ‖θ0 − θ∗‖q+3
/k
}

.

Proof. The proof is postponed to Appendix E.

First in the case where f ′ is linear, choosing for g the identity function, then hId =
∫ +∞
0 {φs −

θ∗}ds = Σ−1, and we get that the first term in (10) vanishes which is natural since in that case θ̄γ =
θ∗. Second by Lemma 14-c), we recover the first expansion of Theorem 2 for arbitrary objective
functions f . Finally note that for all q ∈ N, under appropriate conditions Theorem 5 implies that

there exists C1, C2(θ0) ≥ 0 such that E

[

k−1
∑k

i=1 ‖θ
(γ)
i − θ∗‖2q

]

= C1γ + C2(θ0)/n+O(γ2).

4 Experiments

We performed experiments on simulated data, for logistic regression, with n = 107 observations,
for d = 10 and 25. Results are presented in Figure 2. We consider SGD with constant step-sizes
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1/R2, 1/2R2 (and 1/4R2) with or without averaging, with R2 = L. Without averaging, the chain

saturates with an error proportional to γ (as ‖θ(γ)k − θ∗‖ = O(
√
γ)). Note that the ratio between

the convergence limits of the two sequences is roughly 2 in the un-averaged case, and 4 in the
averaged case, which confirms the predicted limits. We consider Richardson Romberg iterates,
which saturate at a much lower level, and performs much better than decaying step sizes (as
1/

√
n) on the first iterations, as it forgets the initial conditions faster. Finally, we run the online-

Newton (Bach and Moulines, 2013), which performs very well but has no convergence guarantee.
On the Right plot, we also propose an estimator that uses 3 different step sizes to perform a higher

order interpolation. More precisely, we compute θ̃3k := 8
3 θ̄

(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k . With such an

estimator, the first 2 terms in the expansion, scaling as γ and γ2, should vanish, which explains
that it does not saturate.

lo
g
1
0
[f
(θ
)
−
f
(θ

∗)
]

0 2 4 6

-5

-4

-3

-2

-1

1/R2

1/2R2

1/2R2
√

n
Richardson

Online-Newton lo
g
1
0
[f
(θ
)
−
f
(θ

∗)
]

0 2 4 6

-6

-5

-4

-3

-2

-1

1/R2

1/2R2

1/2R2
√

n
Richardson

Online-Newton lo
g
1
0
[f
(θ
)
−
f
(θ

∗)
]

0 2 4 6

-6

-5

-4

-3

-2

-1

1/R2

1/2R2

1/4R2

1/2R2
√

n
Richardson

Richardson 3γ

Online-Newton

log10(n) log10(n) log10(n)

Figure 2: Synthetic data, logarithmic scales. Upper-left: logistic regression, d = 12, with averaged
SGD with step-size 1/R2, 1/2R2, decaying step sizes as 1/2R2

√
n (averaged (plain) and non-

averaged (dashed)), Richardson Romberg extrapolated iterates, and online Newton iterates. Upper-
right: same in lower dimension (d = 4). Bottom: same but with three different step sizes and an

estimator built using the Richardson estimator θ̃3k = 8
3 θ̄

(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k , with 3 different

stepsizes 3γ, 2γ and γ = 1/4R2.

5 Conclusion

In this paper, we have used and developed Markov chain tools to analyze the behavior of constant
step-size SGD, with a complete analysis of its convergence, outlining the effect of initial conditions,
noise and step-sizes. For machine learning problems, this allows us to extend known results from
least-squares to all loss functions. This analysis leads naturally to using Romberg-Richardson
extrapolation, that provably improves the convergence behavior of the averaged SGD iterates.
Our work opens up several avenues for future work: (a) show that Richardson-Romberg trick
can be applied to the decreasing step sizes setting, (b) study the extension of our results under
self-concordance condition.
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Notation

Denote by {e1, . . . , ed} the canonical basis of R
d. Let E and F be two vector spaces, denote by

E⊗F the tensor product of E and F . For all x ∈ E and y ∈ F denote by x⊗y ∈ E⊗F the tensor
product of x and y. Let n ∈ N

∗, denote by Cn(Rd) the set of n times continuously differentiable
functions from R

d to R. Let f ∈ Cn(Rd), denote by Dnf the nth differential of f . Let f ∈ C1(Rd),
denote by ∇f the gradient of f . Let f ∈ C2(Rd), denote by ∆f the Laplacian of f . Denote by
⌊·⌋ and ⌈·⌉ the floor and ceiling function respectively. For a, b ∈ R, denote by a ∨ b and a ∧ b the
maximum and the minimum of a and b respectively. Denote SL,µ the set of µ-strongly convex and
L-smooth functions on R

d. By abuse of notation, we will denote sometimes x⊗2 = xx⊤.
In the next sections mainly devoted to proofs, we first introduce definitions and generalities

about convex functions in Section A.1, then discuss extra different possible assumptions on the
noise in Section A.3. We prove the existence of a limit distribution in Section B.1, and address
asymptotic properties when γ → 0 in Section A.1. We prove the convergence of the Markov chain
in Section B.4, and study the relationship with the gradient flow in Section D.

A Generalities on convex and strongly convex functions

A.1 Definitions

Most of the following definitions can be found in Nesterov (2004). A continuously differentiable
function f is convex if there exists for any θ, η ∈ R

d we have:

f(η) ≥ f(θ) +
〈

f ′(θ), η − θ
〉

.

A continuously differentiable function f is L-smooth if its gradient is L-Lipschitz, i.e., if there
exists a constant L > 0, such that for any θ, η ∈ R

d we have:

‖f ′(η)− f ′(θ)‖ ≤ L‖η − θ‖ .

A continuously differentiable function f is µ-strongly convex if there exists a constant µ > 0,
such that for any θ, η ∈ R

d we have:

f(η) ≥ f(θ) +
〈

f ′(θ), η − θ
〉

+
µ

2
‖θ − η‖2 .

Recall that θ∗ refers to as argminθ∈Rd f , which is unique when f is strongly convex.
Let f be a L-smooth and µ-strongly convex function. Then for all θ, η ∈ R

d, it holds

f(θ)− f(θ∗) ≥ µ

2
‖θ − θ∗‖2 (11)

f(θ(γ)n )− f(θ∗) ≤ L‖θ(γ)n − θ∗‖2 (12)
〈

f ′(θ)− f ′(η), θ − η
〉

≥ µ‖θ − η‖2 (13)

〈

f ′(θ)− f ′(η), θ − η
〉

≥ 1

L
‖f ′(θ)− f ′(η)‖2 (14)

〈

f ′(θ)− f ′(η), θ − η
〉

≥ Lµ

L+ µ
‖θ − η‖2 + 1

L+ µ
‖f ′(θ)− f ′(η)‖2 . (15)

The first two inequalities are direct consequences of the definition and the fact that f ′(θ∗) =
0. (13) is shown in (Nesterov, 2004, Chapter 2, (2.1.24)). (14) is the co-coercivity equation in
(Zhu and Marcotte, 1996). (15) is a combination of the co-coercivity equation and of (13). It can
be found in (Nesterov, 2004, Chapter 2, (2.1.24)),

A.2 Quadratic case

Consider the following assumption on f .

Q1. There exists a positive definite matrix Σ such that f = fΣ := (θ 7→
∥

∥Σ1/2(θ − θ∗)
∥

∥

2
).

If there exists a positive definite matrix Σ such that f = fΣ := (θ 7→
∥

∥Σ1/2(θ − θ∗)
∥

∥

2
), then

A1 and A2 are satisfied, with µ the smallest eigenvalue of Σ, L its largest eigenvalue, and M = 0.
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A.3 Discussion on assumptions on the noise

Assumption A4, made in the text, can be weakened in order to apply to settings where input obser-
vations are un-bounded (typically, Gaussian inputs would not satisfy Assumption A4). Especially,
for most situations, we only need Assumption A7 below.

A7. (i) There exists τ ≥ 0 such that {E1/4[‖ε1(θ∗)‖4]} ≤ τ .

(ii) For all θ1, θ2 ∈ R
d, there exists L ≥ 0 such that, for p = 2, . . . , 4,

E ‖f ′
1(θ1)− f ′

1(θ2)‖
p ≤ Lp−1 ‖θ1 − θ2‖p−2

〈

θ1 − θ2, f
′(θ1)− f ′(θ2)

〉

, (16)

We can also make the stronger assumption that the noise is independent of θ (referred to as
the “semi-stochastic” setting, see Dieuleveut et al. (2016)), or more generally that the noise has a
uniformly bounded fourth order moment.

A8. There exists τ ≥ 0 such that supθ∈Rd{E1/4[‖ε1(θ)‖4]} ≤ τ .

Assumption A7 is the weakest, as it is satisfied for random design least mean squares and
logistic regression with bounded fourth moment of the inputs. Note that we do not assume that
gradient or gradient estimates are a.s. bounded, to avoid the need for a constraint on the space
where iterates live. Of course Assumption A4 implies Assumption A7. Moreover, in the special
case of Assumption A8 where the noise is independent of θ, then Assumption A4 is clearly satisfied
under Assumption A2.

B Results on the Markov chain defined by SGD

B.1 Proof of Proposition 1

Let λ1, λ2 be two probability measures on B(Rd) with finite second moment and γ > 0. Let θ
(1)
0 , θ

(2)
0

be independent and distributed according to λ1, λ2 respectively, and (θ
(1)
k )≥0,(θ

(2)
k )k≥0 the SGD

iterates associated with the step size γ, starting from θ
(1)
0 and θ

(2)
0 respectively and sharing the

same noise, i.e. for all k ≥ 0,
{

θ
(1)
k+1 = θ

(1)
k − γ

[

f ′(θ(1)k ) + εk+1(θ
(1)
k )
]

θ
(2)
k+1 = θ

(2)
k − γ

[

f ′(θ(2)k ) + εk+1(θ
(2)
k )
]

.
(17)

Therefore for all k ≥ 0, the distribution of (θ
(1)
k , θ

(2)
k ) belongs to Π(λ1Rγ , λ2Rγ) defined in Section 3

in the main document. Then by definition of the Wasserstein distance,

W 2
2 (λ1Rγ , λ2Rγ) ≤ E

[

‖θ(1)1 − θ
(2)
1 ‖2

]

≤ E

[

‖θ(1)0 − γf ′
1(θ

(1)
0 )− (θ

(2)
0 − γf ′

1(θ
(2)
0 )))‖2

]

i)

≤ E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2

− 2γ
〈

f ′(θ(1)0 )− f ′(θ(2)0 ), θ
(1)
0 − θ

(2)
0

〉

]

+γ2E

[

∥

∥

∥
f ′
1(θ

(1)
0 )− f ′

1(θ
(2)
0 )
∥

∥

∥

2
]

ii)

≤ E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2

− 2γ(1− γL)
〈

f ′(θ(1)0 )− f ′(θ(2)0 ), θ
(1)
0 − θ

(2)
0

〉

]

iii)

≤ (1− 2µγ(1− γL))E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2
]

,

using A3 for i), A7 for ii), and finally A1 for iii).
Thus by a straightforward induction, we get setting ρ = (1 − 2µγ(1− γL))

W 2
2 (λ1R

n
γ , λ2R

n
γ ) ≤ E

[

‖θ(1)n − θ(2)n ‖2
]

≤ ρE
[

‖θ(1)n−1 − θ
(2)
n−1‖2

]

≤ ρn
∫

Rd×Rd

‖x− y‖2 dλ1(x)dλ2(y) , (18)
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By (Villani, 2009, Theorem 6.16), the space P2(R
d) of probability measures with second order

moment on R
d endowed with W2 is a Polish space. As a consequence of (18) for λ2 = λ1R

p
γ , for

p ∈ N, and Picard fixed point theorem, (λ1R
n
γ )n≥0 is a Cauchy sequence and converges to a limit

πλ1
γ ∈ P2(R

d):

lim
n→+∞

W2(λ1R
n
γ , π

λ1

γ ) = 0 . (19)

In addition by the triangle inequality

W2(π
λ1

γ , πλ2

γ ) ≤W2(π
λ1

γ , λ1R
n
γ ) +W2(λ1R

n
γ , λ2R

n
γ ) +W2(π

λ2

γ , λ2R
n
γ ) .

Thus taking the limits as n→ +∞, we get W2(π
λ1
γ , πλ2

γ ) = 0 and πλ1
γ = πλ2

γ . The limit is thus the
same for all initial distributions and is denoted by πγ .

Moreover, πγ is invariant for Rγ . Indeed for all n ∈ N, n ≥ 1,

W2(πγRγ , πγ) ≤W2(πγRγ , πγR
n
γ ) +W2(πγR

n
γ , πγ) .

Using (18) and (19), we get taking n→ +∞, W2(πγRγ , πγ) = 0 and πγRγ = πγ . The fact that πγ
is the unique stationary distribution can be shown by contradiction and using (18).

Thus finally for λ1 = δθ, λ2 = πγ , using the invariance of πγ and (18), we get:

W 2
2 (R

n
γ (θ, ·), πγ) ≤ (1− 2µγ(1− γL))n

∫

‖θ − ϑ‖2dπγ(ϑ) .

B.2 Existence of Poisson solutions

Using the process (θ
(1)
k,γ)≥0,(θ

(2)
k,γ)k≥0 defined by (17) with λ1 = δθ and λ2 = πγ and (18), we have

if h is Lh-Lipschitz, for any x ∈ R
d, any n ∈ N

∗:

∣

∣Rn
γ (h− πγ(h))(θ)

∣

∣ ≤ LhW
2
2 (R

n
γ (θ, ·), πγ)

≤ Lh(1− 2µγ(1− γL))n/2
(
∫

‖θ − ϑ‖2dπγ(ϑ)
)1/2

. (20)

In addition, for any (θ, ϑ) ∈ R
d × R

d, n ∈ N
∗, using (17):

∥

∥Rn
γh(θ)−Rn

γh(ϑ)
∥

∥ ≤ LhW
2
2 (R

n
γ (θ, ·), Rn

γ (ϑ, ·))
≤ Lh(1− 2µγ(1− γL))n/2‖θ − ϑ‖ . (21)

As a consequence by (20), for any Lipschitz continuous function ϕ and any θ ∈ R
d, {θ 7→

∑k
i=1(R

i
γϕ(θ)−πγ(ϕ))}k≥0 converges absolutely on all compact sets of R

d. Denote by ψγ the limit

associated with this sequence: ψγ : θ 7→ ∑∞
i=1(R

i
γϕ(θ) − πγ(ϕ)). By (21), ψγ is also Lipschitz

continuous. This function is called the solution to the Poisson equation since it satisfies (I −
Rγ)ψγ = ϕ− πγ(φ). Moreover, πγ(ψγ) = 0.

B.3 Asymptotic properties of the chain, behavior under equilibrium,

and drift.

In the following, we consider the function ϕ1 : θ 7→ θ − θ∗ ∈ R
d, and the function ϕ2 : θ 7→

(θ − θ∗)(θ − θ∗)⊤ ∈ R
d×d. In the quadratic case, we give an exact formula for the expectation

under the limit distribution of these two terms. For the general case, we propose a first order
development of these expectations.

The most important quantity, as we are eventually interested in the behavior of the averaged

iterate θ̄
(γ)
n , is the expectation of the identity function under the limit distribution, θ̄γ defined by

(3).
This part extends existing ideas from the literature to prove that γ−1/2(πγ − θ∗) converges

in distribution to a normal law when γ → 0. See for example (Pflug, 1986; Ljung et al., 1992).
We consider the Markov chain under the limiting stationary distribution, together with a Taylor
expansion of the function around the optimal point θ∗, in order to analyze how the average under
the stationary distribution θ̄γ deviates from θ∗.
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Analysis is carried through the dynamic (1) at stationarity, i.e. we assume that θ0 is distributed

according to πγ given by the study of the equilibrium equation: under stationarity, i.e., if θ
(γ)
n ∼ πγ ,

θ
(γ)
n+1

d
= θ(γ)n − γf ′(θ(γ)n )− γεn+1(θ

(γ)
n )

d
= πγ . (22)

In order to get a first order development of θ̄γ around θ∗, we use the definition of the stationary
distribution. We are going to use this equality several times to obtain information on θ’s first
moments under πγ . The first consequence of this equation is that, taking expectations on both
sides,

∫

Rd

f ′(θ)πγ(dθ) = 0 . (23)

Lemma 6 (Properties under stationarity, Quadratic case).
We consider, the stochastic gradient descent algorithm (1), for the quadratic function fΣ(θ) :=
∥

∥Σ1/2(θ − θ∗)
∥

∥

2
. Then the mean value under the stationary distribution of the iterate is the optimal

point:

θ̄γ =

∫

Rd

θπγ(dθ) = θ∗
∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ(Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)−1

∫

Rd

ε1(θ)
⊗2πγ(dθ) .

Moreover, for the least mean squares algorithm, as defined described in the examples in Sec-
tion 2.1,

θ(γ)n − θ∗ = (I − γΣ)
(

θ
(γ)
n−1 − θ∗

)

+ γεn(θ
(γ)
n−1)

εn(θ
(γ)
n−1) = (Σ− xn ⊗ xn)(θ

(γ)
n−1 − θ∗) + (yn − 〈θ∗, xn〉)xn ,

we have another formula:
∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ(Σ⊗ I + I ⊗ Σ− γM)−1

E[ξ⊗2
1 ] ,

where in the last equation, M is an operator on matrices such that M : A 7→ E[xnx
⊤
nAxnx

⊤
n ], and

ξn = (yn − 〈θ∗, xn〉)xn is the additive part of the noise (the part that does not depend on θ).

Proof. The first part directly comes from Equation (23) and the fact that gradients of fΣ are linear:
∫

Rd f
′(θ)πγ(dθ) = Σ

∫

Rd θ − θ∗πγ(dθ) = 0, thus
∫

Rd θπγ(dθ) = θ∗.
The second part comes from the development of Equation (22):

(θ
(γ)
1 − θ∗)

⊗2 d
=

(

(I − γΣ)
(

θ
(γ)
0 − θ∗

)

+ γε1(θ
(γ)
0 )
)⊗2

E(θ
(γ)
1 − θ∗)

⊗2 = (I − γΣ)E
(

θ
(γ)
0 − θ∗

)⊗2

(I − γΣ) + γ2E
(

ε1(θ
(γ)
0 )
)⊗2

E(θ
(γ)
1 − θ∗)

⊗2 = (I − γΣ⊗ I − γI ⊗ Σ + γ2Σ⊗ Σ)E
(

θ
(γ)
0 − θ∗

)⊗2

+γ2E
(

ε1(θ
(γ)
0 )
)⊗2

, (24)

Thus as if θ
(γ)
0 ∼ πγ , then θ

(γ)
1 ∼ πγ :

∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ(Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)−1

∫

Rd

ε1(θ)
⊗2πγ(dθ) .

Similarly, starting from:

θ
(γ)
1 − θ∗ = (I − γx1 ⊗ x1)

(

θ
(γ)
0 − θ∗

)

+ γξ1 ,

using the fact that E[xnx
⊤
n ] = Σ and the definition of M , one gets:

∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ(Σ⊗ I + I ⊗ Σ− γM)−1

E[ξ⊗2
1 ] .

Which concludes the proof.
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Lemma 7. Assume A1, A2, A3, A7. Then

E

[

−2γ
〈

f ′
n+1(θ

(γ)
n ), θ(γ)n − θ∗

〉

+ γ2
∥

∥

∥
f ′
n+1(θ

(γ)
n )
∥

∥

∥

2

|Fn

]

≤ −2γµ(1− γL)
∥

∥

∥
θ(γ)n − θ∗

∥

∥

∥

2

+ 2γ2τ2 ,

where f ′
n = εn + f ′ for all n ≥ 1 and (θ

(γ)
n )n≥0 is given by (1).

Proof. Under A7, we have:

E

[

∥

∥

∥
f ′
n+1(θ

(γ)
n )
∥

∥

∥

2

|Fn

]

≤ 2

(

E

[

∥

∥

∥
f ′
n+1(θ

(γ)
n )− f ′

n+1(θ∗)
∥

∥

∥

2
]

+ E

[

∥

∥f ′
n+1(θ∗)

∥

∥

2 |Fn

]

)

≤ 2

(

E

[

∥

∥

∥
f ′
n+1(θ

(γ)
n )− f ′

n+1(θ∗)
∥

∥

∥

2

|Fn

]

+ τ2
)

≤ 2
(

LE

[〈

f ′
n+1(θ

(γ)
n )− f ′

n+1(θ∗), θ
(γ)
n − θ∗

〉

|Fn

]

+ τ2
)

≤ 2
(

L
〈

f ′(θ(γ)n )− f ′(θ∗), θ
(γ)
n − θ∗

〉

+ τ2
)

.

Combining this result and A1 concludes the proof.

Lemma 8 (Properties under stationarity, general case).
If f satisfies Assumptions A1, A2, and we study stochastic gradient descent under Assumptions A3,
A7, we have:

θ̄γ − θ∗ =
1

2
γf ′′(θ∗)

−1f ′′′(θ∗)
(

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

∫

Rd

ε(θ)⊗2πγ(dθ)
)

+O(γ2)

∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

∫

Rd

ε(θ)⊗2πγ(dθ) +O(γ2) .

This lemma improves some result of (Pflug, 1986), and proves that the residual term is of order
O(γ2) (we first prove that it is of order O(γ3/2)) and then improve on that result.

Proof. As before, the proof relies on the analysis of the recursion under stationarity. That is we

consider θ
(γ)
0 ∼ πγ (thus θ

(γ)
1 ∼ πγ), and expand the stochastic gradient recursion:

θ
(γ)
1 = θ

(γ)
0 − γf ′

1(θ
(γ)
0 )

= θ
(γ)
0 − γ

(

f ′(θ(γ)0 ) + ε1(θ
(γ)
0 )
)

.

For simplicity, in the rest of the proof, we skip the explicit dependence in γ in θ
(γ)
i , for i ∈ {0, 1}.

We only denote it θi.
We first prove that:

θ̄γ − θ∗ =
1

2
γf ′′(θ∗)

−1f ′′′(θ∗)
(

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

Eε⊗2
)

+O(γ3/2) .

We first notice that Eπγ‖θ − θ∗‖ = O(γ1/2), which will be used several times in the following.
Indeed, if θ0 ∼ πγ :

E

[

‖θ1 − θ∗‖2
]

= E

[

‖θ0 − θ∗ − γf ′
1(θ0)‖

2
]

= E

[

‖θ0 − θ∗‖2 − 2γ 〈f ′
1(θ0), θ0 − θ∗〉 − γ2 ‖f ′

1(θ0)‖
2
]

⇔ 0 ≤ −2γµE

[

‖θ0 − θ∗‖2
]

+ γ2τ2

Using Lemma 7, under Assumption A7, with τ2 the bound on E[‖ε1(θ∗)‖2]. Thus we have

Eπγ [‖θ − θ∗‖2] ≤ γτ2

2µ , and by Jensen, Eπγ [‖θ − θ∗‖] ≤ γ1/2τ√
2µ

= O(γ1/2) . More generally, we show

in Appendix C, in Lemma 11, that Eπγ [‖θ − θ∗‖4] = O(γ2), and thus Eπγ [‖θ − θ∗‖3] = O(γ3/2).
We now use the following expression for the SGD recursion:

θ1 = θ0 − γ (f ′(θ0) + ε1(θ0)) .
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For simplicity, in the following, we may denote: ε1 = ε1(θ0). By definition, we have θ̄γ = Eπγθ ,
and as it has been seen before, Eπγf

′(θ) = 0.
At it has been proved above, Eπγ‖θ − θ∗‖2 = O(γ), which also implies by Jensen’s inequality

that ‖θ̄γ − θ∗‖2 = O(γ). Using a Taylor expansion, we have that:

f ′(θ) = f ′′(θ∗)(θ − θ∗) +
1

2
f ′′′(θ∗)(θ − θ∗)

⊗2 +O(‖θ − θ∗‖3).

Where f ′′(θ∗) is the Hessian matrix of f , and f ′′′(θ∗) a third order tensor that acts on the second
order tensor (θ − θ∗)⊗2: f ′′′(θ∗)(θ − θ∗)⊗2 is a vector in R

d, such that for k ∈ [1; d], (f ′′′(θ∗)(θ −
θ∗)⊗2)k =

n
∑

i,j=1

∂3f
∂θi∂θj∂θk

(θ − θ∗)i(θ − θ∗)j .

0 = Eπγ

[

f ′′(θ∗)(θ − θ∗) +
1

2
f ′′′(θ∗)(θ − θ∗)

⊗2
]

+O(γ3/2),

using the fact that f is C4, with bounded 4−th derivative, and Eπγ [‖θ − θ∗‖3] = O(γ3/2). This
leads to

f ′′(θ∗)(θ̄γ − θ∗) +
1

2
f ′′′(θ∗)

[

Eπγ (θ − θ∗)
⊗2
]

= O(γ3/2) . (25)

Moreover, we have:

θ1 − θ∗ = θ0 − θ∗ − γ
[

f ′′(θ∗)(θ0 − θ∗) + ε1 +O(‖θ0 − θ∗‖)
]

= (I − γf ′′(θ∗))(θ0 − θ∗)− γε1 + γO(‖θ0 − θ∗‖).

Taking the second order moment of this equation, and using the fact that Eπγ [ε1(θ0 − θ∗)⊤] =
Eπγ [E[ε1(θ0 − θ∗)⊤|F0]] = Eπγ [E[ε1|F0](θ0 − θ∗)⊤] = 0, we get:

Eπγ (θ − θ∗)
⊗2 = (I − γf ′′(θ∗))Eπγ (θ − θ∗)

⊗2(I − γf ′′(θ∗)) + γ2Eπγ [ε
⊗2
1 ] + O(γ5/2).

This leads to:

Eπγ (θ − θ∗)
⊗2 = γ

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

Eπγ [ε
⊗2
1 ] +O(γ3/2). (26)

And combining Equation (25) and Equation (26), we get:

θ̄γ − θ∗ =
1

2
γf ′′(θ∗)

−1f ′′′(θ∗)
(

[

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
]−1

Eπγ [ε
⊗2
1 ]
)

+O(γ3/2) .

The rest of the proof is devoted to showing that the residual term is of order O(γ2).
At that point, we have also proved that E[θ−θ∗] = O(γ). To find the next term in the development,
we develop further each of the terms. We introduce the 4−th order tensor f (4) ∈ R

d×d×d×d, which
acts on R

d×d×d to give a vector of R
d. Using the following Taylor expansion, with f assumed to

be C5:

θ1 − θ∗ = θ0 − θ∗ − γ
[

f ′′(θ∗)(θ0 − θ∗) +
1

2
f (3)(θ∗)(θ0 − θ∗)

⊗2

+
1

6
f (4)(θ∗)(θ0 − θ∗)

⊗3 + ε1 +O(‖θ0 − θ∗‖4)
]

. (27)

Thus if θ0 ∼ πγ :

Eπγ [θ − θ∗] = Eπγ [θ − θ∗]− Eπγ

[

γ
[

f ′′(θ∗)(θ − θ∗) +
1

2
f (3)(θ∗)(θ − θ∗)(θ − θ∗)

⊤

+
1

6
f (4)(θ∗)(θ − θ∗)

⊗3 + ε1
]

]

+ γO(γ2)

f ′′(θ∗)Eπγ [θ − θ∗] = −Eπγ

[

1

2
f (3)(θ∗)(θ − θ∗)

⊗2 +
1

6
f (4)(θ∗)(θ − θ∗)

⊗3 + ε1

]

+O(γ2)

f ′′(θ∗)(θ̄γ − θ∗) = −1

2
f (3)(θ∗)Eπγ [(θ − θ∗)

⊗2]− 1

6
f (4)(θ∗)Eπγ [(θ − θ∗)

⊗3] +O(γ2) .

(28)

Using Assumption 3 (implying E[ε1(θ0)] = 0). To get the next term in the development, we need
to
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• Expand Eπγ [θ − θ∗]⊗2 = �γ +△γ2 + o(γ2);

• Expand Eπγ [(θ − θ∗)⊗3] = �γ2 + o(γ2).

First, we have, squaring Equation (27) and taking expectations:

E[θ1 − θ∗]
⊗2 = E

[

(I − γf ′′(θ∗)) (θ0 − θ∗) +
γ

2
f (3)(θ∗)(θ0 − θ∗)

⊗2 + γε1

+O(γ ‖θ0 − θ∗‖3)
]⊗2

= E[θ0 − θ∗]
⊗2 − γ(I ⊗ f ′′(θ∗) + f ′′(θ∗)⊗ I)E

[

(θ − θ∗)
⊗2
]

+O(γ3)

+
γ

2

(

(θ0 − θ∗)f
(3)(θ∗)(θ0 − θ∗)

⊗2 + [(θ0 − θ∗)f
(3)(θ∗)(θ0 − θ∗)

⊗2]⊤
)

+γ2Eε⊗2
1 + γE[(I − γf ′′(θ∗)) (θ0 − θ∗)ε

⊤
1 ] .

Where we have used:

• γ2E
[

(θ − θ∗)⊗2
]

= O(γ3).

• E[(I − γf ′′(θ∗)) (θ0 − θ∗)ε⊤1 ] = 0 (Assumption 3 again).

Under θ0
d
= θ1 ∼ πγ , and simplifying by Eπγ [θ − θ∗]⊗2 left and right and dividing by γ:

(I ⊗ f ′′(θ∗) + f ′′(θ∗)⊗ I)Eπγ

[

(θ − θ∗)
⊗2
]

=O(γ2)− E
1

2
f (3)(θ∗)(θ − θ∗)

⊗3−

E[
1

2
f (3)(θ∗)(θ − θ∗)

⊗3]⊤− γEε⊗2
1 . (29)

We now show that Eπγ [(θ − θ∗)⊗3] = O(γ2). It can then be used in both (29) and (28), to prove

that the next leading term is indeed or order O(γ2) and not γ3/2. To compute Eπγ [(θ − θ∗)⊗3] we
use the second order development again:

θ1 − θ∗ = θ0 − θ∗ − γ
[

f ′′(θ∗)(θ0 − θ∗) + ε1 +O(γ)
]

= (I − γf ′′(θ∗))(θ0 − θ∗)− γε1 +O(γ2).

Eπγ (θ − θ∗)
⊗2 = (I − γf ′′(θ∗))Eπγ (θ − θ∗)

⊗2(I − γf ′′(θ∗)) + γ2Eε⊗2 +O(γ5/2).

Let us denote in the following ηi = θi − θ∗, i ∈ {1, 2}:

E[η⊗3
1 ] = E(θ1 − θ∗)

⊗3

= E
(

(I − γf ′′(θ∗))η0 − γε1 +O(γ2)
)⊗3

= E((I − (γf ′′(θ∗)⊗ I ⊗ I + I ⊗ γf ′′(θ∗)⊗ I + I ⊗ I ⊗ γf ′′(θ∗))(η0)
⊗3

+O((γ2+3/2)) + γ2E[(I − γf ′′(θ∗))η0 ⊗ ε⊗2
1 + ε1 ⊗ (I − γf ′′(θ∗))η0 ⊗ ε1

+ε⊗2
1 ⊗ (I − γf ′′(θ∗))η0] + γ3E[ε⊗3

1 ] + 0 +O(γ3) .

Using the fact that E[ε1] = 0, and the fact that E[O(γ2)⊗((I − γf ′′(θ∗))η)
⊗2

] = O(γ3) as E[η⊗2] =

O(γ). Thus, if θ0
d
= θ1, simplifying by E[η⊗3

i ]:

γME[η⊗3
0 ] = γ2E

[

(I − γf ′′(θ∗))η0 ⊗ ε⊗2
1 + ε1 ⊗ (I − γf ′′(θ∗))η ⊗ ε1

+ε⊗2
1 ⊗ (I − γf ′′(θ∗))η0

]

+ γ3E[ε⊗3
1 ] + 0 +O(γ3) .

With M = (f ′′(θ∗) ⊗ I ⊗ I + I ⊗ f ′′(θ∗) ⊗ I + I ⊗ I ⊗ f ′′(θ∗)) : R
d×d×d → R

d×d×d. We need
to bound the term E[(I − γf ′′(θ∗))η0 ⊗ ε⊗2

1 ] and its symmetric counterparts. We recall that ε1
stands for ε1(θ0) and decompose it as the sum of an additive noise (independent on θ0) and a mul-
tiplicative one: ε1(θ0) = ε1(θ0)− ε1(θ∗)+ ε1(θ∗). For the multiplicative part, under Assumption 7,

E[‖ε1(θ0)− ε1(θ∗)‖2 |F0] ≤ L[‖θ0 − θ∗‖2], and thus E[(I − γf ′′(θ∗))η0 ⊗ (ε1(θ0) − ε1(θ∗))⊗2] =
O(γ3/2). For the additive part,

E[(I − γf ′′(θ∗))η0 ⊗ ε1(θ∗)
⊗2] = E[(I − γf ′′(θ∗))η0 ⊗ E[ε1(θ∗)

⊗2|F0]]

= E[(I − γf ′′(θ∗))η0 ⊗ C]

= (I − γf ′′(θ∗)(θ̄γ − θ∗)⊗ C ,
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with C = E[ε1(θ∗)⊗2] = E[ε1(θ∗)⊗2|F0] as ε1(θ∗)⊗2 is independent of F0, and thus E[(I −
γf ′′(θ∗))η0 ⊗ ε1(θ∗)⊗2] = O(γ). Finally, for the crossed term, we use the fact that the multi-
plicative noise is Lipschitz to get the same result. Overall

MEπγ

[

(θ − θ∗)
⊗3
]

= γ2
(

Eπγ [ε
⊗3
1 ] +

1

γ
Eπγ [η0 ⊗ ε⊗2

1 + ε1 ⊗ η0 ⊗ ε1 + ε⊗2
1 ⊗ η0]

)

= O(γ2) (30)

Combining (30) and the previously established results, we get the Lemma.

B.4 Convergence of second order moments

B.4.1 Poisson equation

We now introduce the Poisson equation; for a function ϕ : R
d → R

q locally-Lipschitz, let ψ : R
d →

R
q be a function such that πγ(ψ) = 0 and the following equations:

(I −Rγ)ψf = ϕ− πγ(ϕ) (31)

ψf =
∞
∑

i=0

Ri
γ(ϕ− πγ(ϕ)) , (32)

such that for any x ∈ R
d, ψf (x) =

∑∞
i=0R

i
γ(ϕ − πγ(ϕ))(x) =

∑∞
i=0 E

[

ϕ(θ
(γ)
i (x))

]

− πγ(ϕ). The

convergence of this sum has already been proved for Lipschitz functions, using the contraction in
Wasserstein distance between the law of iterates. More generally, for any locally Lipschitz function,
Theorem 12, proved in Appendix C, shows that the solution to the Poisson equation exists, and is
locally Lipschitz. As a consequence, we can consider recursively consider the solution to a Poisson
equation associated to the solution of a Poisson equation.

B.4.2 Convergence theorem

Theorem 9. Let ϕ : R
d → R

q be a locally Lipschitz function, let ψ be the solution of the Poisson
Equation (31). We assume that θ0 ∼ ν0 for some initial distribution ν0. We study Φ defined as
the following random variable in R

q.

Φ :=
1

n

n−1
∑

i=0

ϕ(θ
(γ)
i (ν0)) ,

Then:

EΦ = πγ(ϕ) +
1

n
ν0(ψ) +O(ρn) .

And if πγ(ϕ) = 0:

E(ΦΦ⊤)− (EΦ)(EΦ)⊤ =
1

n

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)⊤

]

dπγ(θ)

+
1

n2

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ + χ1

γ(θ)− χ2
γ(θ)

]

dν0(θ) +O(ρn) ,

where:

1. ρ := (1− 2µγ(1− γL))1/2.

2. ψγ is the solution to the Poisson equation associated with ϕ.

3. χ1
γ is the solution to the Poisson equation associated with ψγψ

⊤
γ .

4. χ2
γ is the solution to the Poisson equation associated with (Rγψγ)(Rγψ

⊤
γ ).
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Proof. In the following proof, in order to improve readability, we skip the dependance on γ for θ
(γ)
n ,

which is thus simply denoted θn. We have:

EΦ =
1

n

n−1
∑

i=0

E [ϕ(θν0i )] =
1

n

n−1
∑

i=0

ν0(R
n
γ (ϕ))

= πγ(ϕ) +
1

n

n−1
∑

i=0

ν0(R
n
γ (ϕ− πγ(ϕ)))

= πγ(ϕ) +
1

n
ν0(ψγ) + ν0(R

n
γ (ψγ))

= πγ(ϕ) +
1

n
ν0(ψ) +O(ρn) ,

with ρ := (1 − 2µγ(1− γL))1/2, and using the fact that ν0(R
n
γ (ψγ)) = ν0(R

n
γ (ψγ − π(ψγ))).

We now consider:

EΦΦ⊤ =
1

n2

n−1
∑

i,j=0

Eϕ(θν0i )ϕ(θν0j )⊤

=
1

n2

n−1
∑

i=0

(

Eϕ(θν0i )ϕ(θν0i )⊤ +

n−1
∑

j=i+1

[

Eϕ(θν0i )ϕ(θν0j )⊤ + Eϕ(θν0j )ϕ(θν0i )⊤
]

)

= − 1

n2

n−1
∑

i=0

ν0(R
i
γ(ϕ(·)ϕ(·)⊤))

+
1

n2

n−1
∑

i=0

( n−1
∑

j=i+1

[

Eϕ(θν0i )ϕ(θν0j )⊤ + Eϕ(θν0j )ϕ(θν0i )⊤
]

)

= − 1

n
πγ(ϕ(·)ϕ(·)⊤)−

1

n2
ν0

( ∞
∑

i=0

Ri
γ

(

(ϕ(·)ϕ(·)⊤)− πγ(ϕ(·)ϕ(·)⊤
)

)

+O(ρn) +
1

n2

n−1
∑

i=0

n−1
∑

j=i

[

Eϕ(θν0i )(Rj−i
γ ϕ(θν0i ))⊤ + E(Rj−i

γ ϕ(θν0i ))ϕ(θν0i )⊤
]

= − 1

n
πγ(ϕ(·)ϕ(·)⊤)−

1

n2
ν0
(

χ3
γ

)

+
1

n2

n−1
∑

i=0

( n−1−i
∑

j=0

[

Eϕ(θν0i )(Rj
γϕ(θ

ν0
i ))⊤ + E(Rj

γϕ(θ
ν0
i ))ϕ(θν0i )⊤

]

)

.

With χ3 the solution to the Poisson equation associated with ϕϕ⊤. Thus:

EΦΦ⊤ = − 1

n
πγ(ϕ(·)ϕ(·)⊤)−

1

n2
ν0
(

χ3
γ

)

+O(ρn)

+
1

n2

n−1
∑

i=0

ν0
(

Ri
γ

[

ϕ(·)ψγ(·)− ϕ(·)Rn−i
γ ψ(·)⊤

]

+ symmetric term
)

.

Using that 1
n2

∑n−1
i=0 ν0

(

Ri
γ

[

ϕ(·)Rn−i
γ ψ(·)⊤

])

= O(ρn), we get:

EΦΦ⊤ = − 1

n
πγ(ϕ(·)ϕ(·)⊤)−

1

n2
ν0
(

χ3
γ

)

+
1

n
πγ

(

ϕ(·)ψγ(·)⊤
)

+
1

n2
ν0(χ

4
γ)

+ symmetric terms +O(ρn) .

With χ4 the solution to the Poisson equation associated with ϕψ⊤
γ .
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For the first order terms, which scale as 1
n , we have:

E(ΦΦ⊤)− (EΦ)(EΦ)⊤ =
1

n
πγ
(

−ϕ(·)ϕ(·)⊤ + ϕ(·)ψγ(·)⊤ + ψγ(·)ϕ(·)⊤
)

=
1

n
πγ
(

−ϕ(·)ϕ(·)⊤ + ϕ(·)ψ(·)⊤ + ψ(·)ϕ(·)⊤
)

=
1

n
πγ
(

−(ϕ− ψ)(·)(ϕ − ψ)(·)⊤ + ψ(·)ψ(·)⊤
)

=
1

n
πγ
(

−(Rγψ)(·)(Rγψ)(·)⊤ + ψ(·)ψ(·)⊤
)

,

using the fact that for the solution to the Poisson equation: ψ−Rγψ = ϕ, i.e., ψ−ϕ = Rγψ. This
can also be written:

E(ΦΦ⊤)− (EΦ)(EΦ)⊤ =
1

n

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)⊤

]

dπγ(θ) .

For the following order in O(1/n2), we have:

E(ΦΦ⊤)− (EΦ)(EΦ)⊤ − term

n
=

−1

n2
+

1

n2
ν0(−χ3

γ + χ4
γ) + symmetric term

=
1

n2
ν0(χ

1
γ − χ2

γ) ,

using the linearity of Rγ and the fact that: −ϕϕ⊤ + ψγϕ
⊤ + ϕψ⊤

γ = −(ϕ − ψ)(·)(ϕ − ψ)(·)⊤ +

ψ(·)ψ(·)⊤, thus: ν0(−χ3
γ + χ4

γ) = ν0(χ
1
γ − χ2

γ).
This is the expected result.

B.4.3 Application in the quadratic case (f = fΣ), for ϕ = I

We consider, the stochastic gradient descent algorithm (1), for the quadratic function fΣ(θ) :=
∥

∥Σ1/2(θ − θ∗)
∥

∥

2
. We consider the classical stochastic approximation noise oracle of the least mean

squares (LMS) algorithm:

θn,γ − θ∗ = (I − γΣ) (θn−1,γ − θ∗) + γεn(θn−1,γ)

εn(θn−1,γ) = (Σ− xn ⊗ xn)(θn−1,γ − θ∗) + (yn − 〈θ∗, xn〉)xn .

We first recall the observation made in Appendix B.3: for quadratic functions, under the
stationary distribution, the mean value of the iterate is the optimal point. According to Lemma 6,
we have πγ(ϕ) = 0. The following Lemma recovers result from Défossez and Bach (2015), as a
corollary of our more general theorem.

Lemma 10. If f is a quadratic function fΣ, and we consider the LMS algorithm with γL ≤ 1/2,
then with ρ ≤ (1− γµ), we have:

E

[

(θ̄(γ)n − θ∗)
⊗2
]

=
1

n2γ2
Σ−1Ω(θ0 − θ∗)

⊗2Σ−1 +
1

n
Σ−1

[

Eπγε
⊗2
]

Σ−1

− 1

n2γ
Σ−1Ω

[

Σ⊗ I + I ⊗ Σ− γT
]−1[

Eξ⊗2
]

Σ−1 .

With Ω := (Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)(Σ⊗ I + I ⊗ Σ− γT )−1.

Moreover, the value of ρ is known: ρ = (1 − 2γµ(1 − γL)) ≤ (1 − γµ) if γL ≤ 1/2, with
µ = λmin(Σ).

Proof. We consider the linear function ϕ which is ϕ(θ) = θ − θ∗. We then have that ψ(θ) =
(γΣ)−1(θ − θ∗). Indeed from Equation (32), for any θ0:

ψ(θ0) =

∞
∑

i=0

E(θ
(θ0)
i,γ )− θ∗ =

∞
∑

i=0

(I − γΣ)i(θ0 − θ∗) = (γΣ)−1(θ0 − θ∗) .
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We can thus apply Theorem 3 to get a bound on E

(

(θ̄
(γ)
n − θ∗)(θ̄

(γ)
n − θ∗)⊤

)

. Indeed, with the

previous notations, ϕ = θ̄
(γ)
n − θ∗. We recall that:

E(ΦΦ⊤)− (EΦ)(EΦ)⊤ =
1

n

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)⊤

]

dπγ(θ)

+
1

n2

∫

Rd

[

ψγ(θ)ψγ(θ)
⊤ + χ1

γ(θ)− χ2
γ(θ)

]

dν0(θ) +O(ρn) .

Term proportional to 1/n.
We need to compute the expectation under the stationary distribution of ϕ(θ)⊗2. For simplicity,
we here denote Eε⊗2 =

∫

Rd ε1(θ)
⊗2πγ(dθ). We have, according to Lemma 6:

∫

Rd

(θ − θ∗)
⊗2πγ(dθ) = γ

[

Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ
]−1

Eε⊗2.

The expectation of ψ(θ)ψ(θ)⊤ under the stationary is
∫

Rd

ψ(θ)ψ(θ)⊤πγ(dθ) = (γΣ)−1γ
[

Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ
]−1

Eε⊗2(γΣ)−1

=
1

γ
(Σ−1 ⊗ Σ−1)

[

Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ
]−1

Eε⊗2 .

Moreover,
∫

Rd

(ϕ(θ) − ψ(θ))(ϕ(θ) − ψ(θ))⊤πγ(dθ) =
[

I − (γΣ)−1
]

γ
[

Σ⊗ I + I ⊗ Σ
]−1

Eε⊗2
[

I − (γΣ)−1
]

.

Adding both these results and simplifying by
[

Σ ⊗ I + I ⊗ Σ − γΣ⊗ Σ
]

, we get the following
1/n-term:

1

n
Eθ∼πγ

[

ψ(θ)ψ(θ)⊤ − (Rγψ)(θ)(Rγψ)(θ)
⊤] =

1

n
Σ−1

[

∫

Rd

(

ε1(θ)
⊗2
)

πγ(dθ)
]

Σ−1 .

Term proportional to 1/n2.
We assume ν0 = δθ0 . This term is composed of three terms:

T1 := −Eθ0∼ν0 [ψ(θ0)]Eθ0∼ν0 [ψ(θ0)]
⊤

ψ(θ0) = (γΣ)−1(θ0 − θ∗)

T1 = − 1

γ2
Σ−1

[

(θ0 − θ∗)
⊗2
]

Σ−1 .

We note that, using ψ = (γΣ)−1ϕ, and Rγψ = ψ − ϕ = −(I − (γΣ)−1)ϕ that:

T2 := ν0(χ
1
γ)

= (I − (γΣ)−1)ν0(χ
3
γ)(I − (γΣ)−1) .

Similarly:

T2 := ν0(χ
1
γ)

= (γΣ)−1ν0(χ
3
γ)(γΣ)

−1 .

Where we recall that denote χ3
γ the solution to the Poisson equation associated with θ 7→ ϕ(θ)⊗2.

We can compute explicitly this solution, indeed, following Equation 24:

E
[

(θxn,γ − θ∗)
⊗2
]

= (I − γΣ⊗ I − γI ⊗ Σ+ γ2M)E
[

(θxn−1,γ − θ∗)
⊗2
]

+ E[ξ⊗2
n ]

χ3
γ(x) :=

∞
∑

i=1

E
[

(θxn,γ − θ∗)
⊗2
]

− πγ(ϕ(θ)
⊗2)

= (γΣ⊗ I + γI ⊗ Σ− γ2M)−1
[

E
[

(θx0,γ − θ∗)
⊗2
]

− πγ(ϕ(θ)
⊗2))

]

Eθ∼ν0

[

χ3
γ

]

:= (γΣ⊗ I + γI ⊗ Σ− γ2M)−1
[

(θ0 − θ∗)
⊗2 − πγ(ϕ(θ)

⊗2))
]

.
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Simplification comes from the fact that we study an arithmetico-geometric recursion of the form
wn+1 = awn + b, a < 1, and study

∑∞
i=0 wn − w∞ = (1 − a)−1(w0 − w∞). Here we cannot apply

the recursion with (Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ) because then b would depend on n. Finally,

T2 + T3 =
1

γ
(Σ−1 ⊗ Σ−1)(Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)Eθ∼ν0 [χ(x)]

= (Σ−1 ⊗ Σ−1)Ω
[

(θ0 − θ∗)
⊗2 − γ(Σ⊗ I + I ⊗ Σ− γM)−1

E[ξ⊗2
1 ])

]

.

With: Ω = (Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)(Σ⊗ I + I ⊗ Σ− γT )−1.
Overall, we get that:

Eθ̄n − θ∗ =
1

n
(γΣ)−1(θ0 − θ∗)

cov(θ̄n) =
1

n
Σ−1

[

Eε⊗2
]

Σ−1 − 1

n2γ

[

Σ−1 ⊗ Σ−1
]

Ω
[

Σ⊗ I + I ⊗ Σ− γT
]−1[

Eξ⊗2
]

+
1

n2
(Σ−1 ⊗ Σ−1)(Ω− I)(θ0 − θ∗)

⊗2 .

Finally:

E

[

(θ̄(γ)n − θ∗)
⊗2
]

=
1

n2γ2
(Σ−1 ⊗ Σ−1)(Ω)(θ0 − θ∗)

⊗2 +
1

n
Σ−1

[

Eε⊗2
]

Σ−1

− 1

n2γ

[

Σ−1 ⊗ Σ−1
]

Ω
[

Σ⊗ I + I ⊗ Σ− γT
]−1[

Eξ⊗2
]

.

In the semi stochastic setting, we would get:

E

[

(θ̄(γ)n − θ∗)
⊗2
]

=
1

n2γ2
(Σ−1 ⊗ Σ−1)(θ0 − θ∗)

⊗2 +
1

n
Σ−1

[

Eε⊗2
]

Σ−1

− 1

n2γ

[

Σ−1 ⊗ Σ−1
][

Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ
]−1[

Eξ⊗2
]

.

C Further properties of the Markov chain (θ
(γ)
k )k≥0

We give uniform bound on the moments of the chain (θ
(γ)
k )k≥0 for γ > 0. We denote δn = ‖θn − θ∗‖.

Denote by
κ = 2µL/(µ+ L) . (33)

For p ≥ 1 define
mp = E

1/p [‖ε1(θ∗)‖p] , for p ≥ 1 . (34)

We give a bound on the p-order moment of the chain, under the assumption that the noise has a
moment of order 2p.

Lemma 11 (Final iterate). Under Assumptions A1,A2, A3, A7, one has the following bound on
the E

1/p[δ2pn+1], p = 1, 2. For the 2nd order moment,

E[δ2n+1] ≤ (1− 2γµ(1− γL))n δ20 +
γσ2

µ
. (35)

For th 4th-order moment, for γ ≤ 1
18L

E
1/2[δ4n+1] ≤ (1− 2γµ(1− 9γL))E

1/2[δ4n] + 20γ2τ2

E
1/2[δ4n] ≤ (1− 2γµ(1− 9γL))nE

1/2[δ40 ] +
20γτ2

µ
.

More generally, assume A1-A2-A3-A4(2p), for p ≥ 1. There exist numerical constants Cp, Dp

that only depend on p, such that, if γL ≤ 1/2Cp,

E
1/p
θ

[

∥

∥

∥
θ(γ)n − θ∗

∥

∥

∥

2p
]

≤ (1− 2γµ(1− CpγL))
n
E
1/p
θ

[

‖θ0 − θ∗‖2p
]

+
Dpγm

2
2p

µ
.
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Moreover, under stationary distribution πγ , under the Assumptions above, one has:

Eπγ

[

‖δn‖2p
]

≤
(

Dpγm
2
2p

µ

)p

. (36)

Remark: Note that there is no contradiction between Equation (36) and Theorem 5, as for any

p ≥ 2, one has for g(θ) = ‖θ − θ∗‖2 and hg the solution to the Poisson equation, that h′′g(θ∗) = 0,
so that the first term in the development (of order γ) is indeed 0.

Lemma 11. We only prove the result for p = 1, 2 as it then naturally extends for any p.
The proof for the 2nd moment is very close to the one from (Needell et al., 2014) but we

extend it without a.s. Lipschitzness (Assumption A4) but with Assumption A7. We recall that
θn+1 = θn − γf ′(θn) + γεn+1.

We have that

‖θn+1 − θ∗‖2 = ‖θn − θ∗ − γf ′(θn) + γεn+1‖2 . (37)

According to assumption A3, we have θn is Fn measurable, and E[εn+1|Fn] = 0. Thus E[〈θn −
θ∗, εn+1〉|Fn] = 0.

E[‖θn+1 − θ∗‖2|Fn] = E[‖θn − θ∗‖|2|Fn]− 2γE[〈f ′(θn), θn − θ∗〉|Fn]

+γ2E[‖f ′
n(θn)− f ′

n(θ∗)‖2|Fn] + 2γ2E[‖f ′
n(θ∗)‖2|Fn] . (38)

Moreover, under Assumption A7, one has that E[‖f ′
n(θ∗)‖2|Fn] = E[‖ε1(θ∗)‖2] ≤ τ2 (using

Hölder’s inequality), and E[‖f ′
n(θn)− f ′

n(θ∗)‖2|Fn] ≤ L〈f ′(θn)− f ′(θ∗), θn − θ∗〉. Thus:

E[δ2n+1|Fn] ≤ E[δ2n|Fn]− 2γ〈f ′(θn)− f ′(θ∗), θn − θ∗〉+ 2γ2L〈f ′(θn)− f ′(θ∗), θn − θ∗〉
+γ2τ2

≤ (1− 2γµ(1− γL)) δ2n + 2γ2τ2 . (39)

Thus if γ ≤ 1
L , we have

E[δ2n+1] ≤ (1− 2γµ(1− γL))E[δ2n] + 2γ2τ2 . (40)

Thus if γL ≤ 1.

E[δ2n+1] ≤ (1− 2γµ(1− γL))n δ20 + γ2τ2
n−1
∑

i=0

(1− 2γµ)i (41)

= (1− 2γµ(1− γL))
n
δ20 +

γτ2

γµ(1− γL)
. (42)

Lemma 11. We have that

δ4n+1 =
(

‖θn − θ∗‖2 − 2γ〈f ′
n(θn), θn − θ∗〉+ γ2‖f ′

n(θn)‖2
)2

=
(

δ2n − 2γ〈f ′
n(θn), θn − θ∗〉+ γ2‖f ′

n(θn)‖2
)2

= δ4n − 4γδ2n〈f ′
n(θn), θn − θ∗〉+ 4γ2〈f ′

n(θn), θn − θ∗〉2 + 2γ2δ2n‖f ′
n(θn)‖2

−4γ3〈f ′
n(θn), θn − θ∗〉‖f ′

n(θn)‖2 + γ4‖f ′
n(θn)‖4.

Moreover:

E[‖f ′
n(θn)‖p|Fn] ≤ 2p−1 (E[‖f ′

n(θn)− f ′
n(θ∗)‖p|Fn] + E[‖f ′

n(θ∗)‖p|Fn])

≤ 2p−1 (‖f ′
n(θn)− f ′

n(θ∗)‖p + E[‖ε1(θ∗)‖p|Fn])

≤ 2p−1 (‖f ′
n(θn)− f ′

n(θ∗)‖p + τp) , (43)

using at the first line Minkowski’s inequality and the fact that x 7→ xp is convex on R
+ for

p = 1, . . . , 4 thus (x + y)p ≤ 2p−1(xp + yp), and at the last line the Assumption A7 on the noise:
E[‖ε1(θ∗)‖p|Fn] ≤ τp.
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Thus,

E[δ4n+1|Fn] ≤ δ4n − 4γδ2nE[〈f ′
n(θn), θn − θ∗〉|Fn] + 4γ2E[〈f ′

n(θn), θn − θ∗〉2|Fn]

+2γ2δ2nE[‖f ′
n(θn)‖2|Fn]− 4γ3E[〈f ′

n(θn), θn − θ∗〉‖f ′
n(θn)‖2|Fn]

+γ4E[‖f ′
n(θn)‖4|Fn]

≤ δ4n − 4γδ2n〈f ′(θn), θn − θ∗〉+ 4γ2E[‖f ′
n(θn)‖2δ2n|Fn]

+2γ2δ2nE[‖f ′
n(θn)‖2|Fn] + 4γ3δnE[‖f ′

n(θn)‖3|Fn] + γ4E[‖f ′
n(θn)‖4|Fn]

≤ δ4n − 4γδ2n〈f ′(θn), θn − θ∗〉+ 12γ2δ2nE[‖f ′
n(θn)− f ′

n(θ∗)‖2|Fn]

+16γ3δnE[‖f ′
n(θn)− f ′

n(θ∗)‖3|Fn] + 8γ4E[‖f ′
n(θn)− f ′

n(θ∗)‖4|Fn]

+12γ2τ2δ2n + 16γ3δnτ
3 + 8γ4τ4,

using Cauchy Schwartz several times for the second inequality and equation (43) for the third one.
Then, using part (ii) of Assumption A7:

E[δ4n+1|Fn] ≤ δ4n − 4γδ2n〈f ′(θn), θn − θ∗〉+ 12γ2Lδ2n〈f ′(θn), θn − θ∗〉
+16γ3L2δ2n〈f ′(θn), θn − θ∗〉+ 8γ4L3δ2n〈f ′(θn), θn − θ∗〉
+12γτ2δ2n + 8γ2τ2δ2n + 8γ4τ4 + 8γ4τ4

= δ4n + (−4γ + 12γ2L+ 16γ3L2 + 8γ4L3)δ2n〈f ′(θn), θn − θ∗〉
+(12γ2τ2 + 8γ2τ2)δ2n + 16γ4τ4

≤ δ4n − 4γ(1− 9γL)δ2n〈f ′(θn), θn − θ∗〉+ 20γ2τ2δ2n + 16γ4τ4,

using γL ≤ 1 at the last line. Finally, using the smooth and strong convexity equation (15), we
have:

E[δ4n+1|Fn] ≤ (1− 4γµ(1− 9γL)) δ4n + 20γ2τ2δ2n + 16γ4τ4,

Thus finally:

E[δ4n+1] ≤ (1− 4γµ(1− 9γL))E[δ4n] + 20γ2τ2E[δ2n] + 16γ4τ4

≤
(

(1− 4γµ(1− 9γL))
1/2

E[δ4n]
1/2 + 20γ2τ2

)2

.

Using that 20γ2τ2E[δ2n] ≤ (1 − 4γµ(1 − 9γL))1/2E[δ4n]
1/240γ2τ2 i.e., E[δ2n] ≤ E[δ4n]

1/2, and (1 −
4γµ(1− 9γL))1/2 ≥ 1/2 which is true if γ ≤ 1

9L and (1− 4γµ(1− 9γL)) ≥ (1− 4/9)1/2 ≥ 1/2.

E
1/2[δ4n+1] ≤ (1− 2γµ(1− 9γL))E

1/2[δ4n] + 20γ2τ2.

If 9γL ≤ 1.
Which concludes the proof.

Theorem 12. Assume A1-A2-A3-A4(2k2)-A9(k1)- for k1, k2 ∈ N, k1 ≥ 1. Let g : R
d → R

satisfying A5(k1, k2) for k2 ∈ N. Then, there exists Ck2
≥ 0 only depending on k2 such that for

all γ ∈ (0, Ck2
/L), for all initial point θ ∈ R

d, there exists C such that for all n ≥ 1:

∣

∣

∣

∣

∣

Eθ

[

n−1
n
∑

i=1

{

g(θ
(γ)
i )
}

]

−
∫

Rd

g(θ)πγ(dθ)

∣

∣

∣

∣

∣

≤ Cn−1 .

Proof.
∣

∣

∣

∣

∣

n
∑

i=1

(

Eθ

[

g(θθi,γ)
]

−
∫

Rd

g(θ)πγ(dθ)

)

∣

∣

∣

∣

∣

=

n
∑

i=1

∣

∣

∣

∣

(
∫

y∈Rd

Eθ

[

g(θθi,γ)− g(θyi,γ)
]

πγ(y)

)
∣

∣

∣

∣

=
n
∑

i=1

(
∫

y∈Rd

Eθ

[∥

∥g(θθi,γ)− g(θyi,γ)
∥

∥

]

πγ(y)

)

.

Using Lemma 14, a.s.,

∥

∥g(θθi,γ)− g(θyi,γ)
∥

∥ ≤ ag
∥

∥θθi,γ − θyi,γ
∥

∥ ((bg +
∥

∥θθi,γ − θ∗
∥

∥

k2

+
∥

∥θyi,γ − θ∗
∥

∥

k2
)) .
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By Cauchy Schwartz, then Minkowski:

Eθ

[
∥

∥g(θθi,γ)− g(θyi,γ)
∥

∥

]

≤agE1/2
θ

[

∥

∥θθi,γ − θyi,γ
∥

∥

2
]

E
1/2
θ

[

(bg +
∥

∥θθi,γ − θ∗
∥

∥

k2

+
∥

∥θyi,γ − θ∗
∥

∥

k2
)2
]

≤ag
(

W2(R
n
γ (θ, .), R

n
γ (y, .)

)1/2

×
(

bg + E
1/2
θ

[

∥

∥θθi,γ − θ∗
∥

∥

2k2

]

+ E
1/2
θ

[

∥

∥θyi,γ − θ∗
∥

∥

2k2

])

.

With ρ = (1− γµ(1− γL)), we have, using Lemma 11 , which implies that:

E
1/2
θ

[

∥

∥

∥
θ(γ)n − θ∗

∥

∥

∥

2p
]

≤ 2p/2−1
E
1/2
θ

[

∥

∥

∥
θ
(γ)
0 − θ∗

∥

∥

∥

2p
]

+ 2p/2

(

Dpγm
2
2p

µ

)p/2

.

Eθ

[∥

∥g(θθi,γ)− g(θyi,γ)
∥

∥

]

≤ agρ
n/2 ‖θ − y‖

(

bg + 2p/2−1
E
1/2
θ

[

∥

∥

∥
θ
(γ)
0 − θ∗

∥

∥

∥

2k2

]

+2p/2−1 ‖y − θ∗‖k2 2p/2+1

(

Dpγm
2
2p

µ

)p/2
)

.

Thus
∣

∣

∣

∣

∣

Eθ

[

n−1
n
∑

i=1

{

g(θ
(γ)
i )
}

]

−
∫

Rd

g(θ)πγ(dθ)

∣

∣

∣

∣

∣

≤ C

n

n
∑

i=1

ρn/2 ≤ C

γµn

C = ag

∫

Rd

(

‖θ − y‖
(

bg + 2p/2−1
E
1/2
θ

[

∥

∥

∥
θ
(γ)
0 − θ∗

∥

∥

∥

2k2

]

+ 2p/2−1 ‖y − θ∗‖k2

2p/2+1

(

Dpγm
2
2p

µ

)p/2
)

dπγ(y)

)

.

D Regularity of the gradient flow and estimates on Poisson

solution

Let k ∈ N
∗ and consider the following assumption.

A9 (k). f ∈ Ck(Rd) and there exists M ≥ 0 such that for all i ∈ {2, . . . , k}, supθ∈Rd

∥

∥Dif(θ)
∥

∥ ≤ L̄.

Lemma 13. Assume A1 and A9(k + 1) for k ∈ N, k ≥ 1.

a) For all t ≥ 0, φt ∈ Ck(Rd). In addition for all θ ∈ R, φ
(k)
t (x) : t 7→ Dkφt(θ) satisfies the

following ordinary differential equation,

φ̇
(k)
t (x) = Dk {∇f(φt(θ))} , for all t ≥ 0 ,

with φ
(2)
0 (x) = Id and φ

(k)
0 (x) = 0 for k ≥ 2.

b) For all t ≥ 0 and θ ∈ R
d, ‖φt(θ)− θ∗‖2 ≤ e−2µt ‖θ − θ∗‖2 .

c) If k ≥ 2, for all t ≥ 0,

∇φt(θ∗) = e−∇2f(θ∗) .

d) If k ≥ 3, for all t ≥ 0 and i, j, k ∈ {1, . . . , d},
〈

D2φt(θ∗) {vi,vj} ,vk

〉

=
e−λit − e−(λk+λj)t

λi − λk − λj
,

where {v1, . . . ,vd} and {λ1, . . . , λd} are the eigenvectors and the eigenvalues of ∇2f(θ∗)
respectively satisfying for all i ∈ {1, . . . , d}, ∇2f(θ∗)vi = λivi.
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Proof. a) This is a fundamental result on the regularity of flows of autonomous differential
equations, see e.g. (Hartman, 1982, Theorem 4.1 Chapter V)

b) Let θ ∈ R
d. Differentiate ‖φt(θ)‖2 with respect to t and using A1, that f is at least

continuously differentiable and Grönwall’s inequality concludes the proof.

c) By Lemma 13-a) and since θ∗ is an equilibrium point, for all x ∈ R
d, ξxt (θ∗) = Dφt(θ∗) {x}

satisfies the following ordinary differential equation

ξ̇xs (θ∗) = −∇2f(φs(θ∗))ξ
x
s (θ∗)ds = −∇2f(θ∗)ξ

x
s (θ∗)ds . (44)

with ξx0 (θ∗) = x. The proof then follows from uniqueness of the solution of (44).

d) By Lemma 13-a), for all x1, x2 ∈ R
d, ξx1,x2

t (θ∗) = Diφt(θ∗) {x1 ⊗ x2} satisfies the ordinary
stochastic differential equation:

dξx1,x2
s

ds
(θ∗) = −D3f(φs(θ∗)) {∇φs(θ∗)x1 ⊗∇φs(θ∗)x2 ⊗ ei} −D2f(φs(θ∗)) {ξx1,x2

s } ei .

By c) and since θ∗ is an equilibrium point we get that ξx1,x2

t (θ∗) satisfies

dξx1,x2
s

ds
(θ∗) = −D3f(θ∗)

{

e−∇2f(θ∗)tx1 ⊗ e−∇2f(θ∗)tx2 ⊗ ei

}

−D2f(θ∗) {ξx1,x2

s } ei .

Therefore we get for all i, j, k ∈ {1, . . . , d},

d
〈

ξ
vi,vj
s ,vk

〉

ds
= −D3f(θ∗)

{

e−λitvi ⊗ e−λjtvj ⊗ vk

}

− λk 〈ξvi,vj
s ,vk〉 .

This ordinary differential equation can be solved analytically which finishes the proof.

Under A1 and A9(k), k ∈ N, k ≥ 1, for any function g : R
d → R

q, locally Lipschitz, denote by
hg the solution of the continuous Poisson equation defined for all θ ∈ R

d by

hg(θ) =

∫ ∞

0

(g(φs(θ))− g(θ∗))dt . (45)

Note that hg is well-defined by Lemma 13-b) and since g is assumed to be locally-Lipschitz. Note
that by (8), we have for all g : R

d → R, locally Lipschitz,

Ahg(θ) = g(θ)− g(θ∗) . (46)

In addition define hId : R
d → R

d for all x ∈ R
d by

hId(θ) =

∫ ∞

0

{φs(θ)− θ∗} dt . (47)

Note that hId is also well-defined by Lemma 13-b).

Lemma 14. Let g : R
d → R satisfying A5(k1, k2) for k1, k2 ∈ N, k1 ≥ 1.

a) Then for all θ1, θ2 ∈ R
d,

|g(θ1)− g(θ2)| ≤ ag ‖θ1 − θ2‖
{

bg + ‖θ1 − θ∗‖k2 + ‖θ2 − θ∗‖k2

}

.

Assume in addition A1 and A9(k1 + 1).

b) Then for all θ ∈ R
d,

|hg| (θ) ≤ ag

{

(bg/µ) ‖θ − θ∗‖+ (k2µ)
−1 ‖θ − θ∗‖k2

}

.
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c) If k1 ≥ 2, then ∇hId(θ∗) = (∇2f(θ∗))−1. If k1 ≥ 3, then for all i, j ∈ {1, . . . , d},

∂2hId
∂θi∂θj

(θ∗) = −D3f(θ∗)
{[

(

∇2f(θ∗)⊗ Id+ Id⊗∇2f(θ∗)
)−1 {ei ⊗ ej}

]

⊗ ei

}

(∇2f(θ∗))
−1ei ,

where {e1, . . . , ed} are the canonical basis of R
d.

Proof. a) Let θ1, θ2 ∈ R
d. By the mean value theorem, there exists s ∈ [0, 1] such that if

ηs = sθ1 + (1− s)θ2 then
|g(θ1)− g(θ2)| = Dg(ηs) {θ1 − θ2} .

The proof is then concluded using A5(k1, k2) and

‖ηs − θ∗‖ ≤ max (‖θ1 − θ∗‖ , ‖θ2 − θ∗‖) .

b) For all θ ∈ R
d, we have using the first result of the Lemma and (45)

|hg(θ)| ≤ ag

∫ +∞

0

‖φs(θ)− θ∗‖
{

bg + ‖φs(θ)− θ∗‖k2

}

ds .

The proof then follows from Lemma 13-b).

c) The proof is a direct consequence of Lemma 13-c)-d) and (45).

Theorem 15. Assume A1-A9(k1+1) for k1, k2 ∈ N, k1 ≥ 2. Let g : R
d → R satisfying A5(k1, k2)

for k2 ∈ N.

a) For all t ≥ 0, φt ∈ Ck1 (Rd) and for all i ∈ {1, . . . , k}, there exists Ci ≥ 0 such that for all
θ ∈ R

d and t ≥ 0,
∥

∥Diφt(θ)
∥

∥ ≤ Cie
−µt .

b) Let g ∈ Ck1(Rd). Then hg ∈ Ck1 (Rd) and for all i ∈ {0, . . . , k1}, there exists Ci ≥ 0 such
that for all θ ∈ R

d,
∥

∥Dihg(θ)
∥

∥ ≤ Ci

{

1 + ‖θ − θ∗‖k2

}

.

Proof. a) The proof is by induction on k1. By Lemma 13-a), for all x ∈ R
d, and θ ∈ R

d,
ξxt (θ) = Dφt(θ) {x} satisfies

dξxs
ds

(θ) = −∇2f(φs(θ))ξ
x
s (θ)ds . (48)

with ξx0 (θ) = x. Now differentiating s → ‖ξxs (θ)‖2, using A1 and Grünwall’s inequality, we get

‖ξxs (θ)‖2 ≤ e−2mt ‖x‖2 which implies the result for k1 = 2.

Let now k1 > 2. Using again Lemma 13-a), Faà di Bruno’s formula (Levy, 2006, Theorem 1) and
since (7) can be written on the form

dφt
ds

(θ) = −
d
∑

j=1

Df(φt(θ)) {ei} ei ,

for all i ∈ {2, . . . , k1}, θ ∈ R
d and x1, · · · , xi ∈ R

d, ξx1,··· ,xi

t (θ) = Diφt(θ) {x1 ⊗ · · · ⊗ xi} satisfies
the ordinary differential equation:

dξx1,··· ,xi
s

ds
(θ) = −

d
∑

j=1

∑

Ω∈P({1,...,i})
D|Ω|+1f(φs(θ))







ei ⊗
i
⊗

l=1

⊗

j1,··· ,jl∈Ω

ξ
xj1 ,··· ,xjl
s (θ)







ei , (49)

where P({1, . . . , i}) is the set of partitions of {1, . . . , i}, which does not contain the empty set
and |Ω| is the cardinal of Ω ∈ P({1, . . . , i + 1}). We now show by induction on i that for all
i ∈ {1, . . . , k1}, there exists a universal constant Ci such that for all t ≥ 0 and θ ∈ R

d,

sup
x∈Rd

∥

∥Diφt(θ)
∥

∥ ≤ Cie
−µt . (50)
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For i = 1, the result follows from the case k1 = 1. Assume that the result is true for {1, . . . , i} for
i ∈ {1, . . . , k1−1}. We show the result for i+1. By (49), we have for all θ ∈ R

d and x1, · · · , xi ∈ R
d,

∥

∥ξ
x1,··· ,xi+1

t (θ)
∥

∥

2

dt
=

−
∫ t

0

∑

Ω∈P({1,...,i+1})
D|Ω|+1f(φs(θ))







ξ
x1,··· ,xi+1

t (θ)⊗
i+1
⊗

l=1

⊗

j1,...,jl∈Ω

ξ
xj1 ,··· ,xjl
s (θ)







ds .

Isolating the term corresponding to Ω = {{1, . . . , i + 1}} in the sum above and using Young’s
inequality, A1, Grönwall’s inequality and the induction hypothesis, we get that there exists a
universal constant Ci+1 such that for all t ≥ 0 and x ∈ R

d (50) holds for i+ 1.

b) The proof is a consequence of a), (45), A5(k1, k2) and Leibniz’s rule.

E Proof of Theorem 5

We preface the proof of the Theorem by two fundamental first estimates.

Theorem 16. Assume A1-A2-A3-A4(2(k2+3)), for k1, k2 ∈ N, k1 ≥ 1. Let g : R
d → R satisfying

A5(3, k2). Then, there exists Ck2
≥ 0 only depending on k2 such that for all γ ∈ (0, Ck2

/L), n ∈ N
∗,

γ > 0 and θ ∈ R
d,

Eθ

[

n−1
n
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

=
Eθ

[

hg(θ
(γ)
n+1)

]

− hg(θ)

nγ

− (γ/2)

∫

Rd

D2hg(θ̃)E

[

{

ε(θ̃)
}⊗2

]

dπγ(θ̃) + (γ/n)Ã1(θ) + γ2Ã2(θ, n) ,

where
Ã1(θ) ≤ C

{

1 + ‖θ − θ∗‖k2+2
}

, Ã2(θ, n) ≤ C
{

1 + ‖θ − θ∗‖k2+3
/n
}

,

for some constant C ≥ 0 independent of γ and n.

Proof. Let n ∈ N
∗, γ > 0 and θ ∈ R

d. Consider the sequence (θ
(γ)
k )k≥0 defined by the stochastic

gradient recursion (1) and starting at θ. Theorem 15 shows that hg ∈ C3(Rd). Therefore using (1)
and the Taylor expansion formula, we have for all i ∈ {1, . . . , n}

hg(θ
(γ)
i+1) = hg(θ

(γ)
i ) + γDhg(θ

(γ)
i )

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}

+ (γ2/2)D2hg(θ
(γ)
i )

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

+ (γ3/(3!))D3hg(θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

,

where s
(γ)
i ∈ [0, 1] and ∆θ

(γ)
i+1 = θ

(γ)
i+1 − θ

(γ)
i . Therefore by (46), we get

n−1
n
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

=
hg(θ

(γ)
n+1)− hg(θ)

nγ
− n−1

n
∑

i=1

Dhg(θ
(γ)
i−1)εi+1(θ

(γ)
i )

− (γ/(2n))
n
∑

i=1

D2hg(θ
(γ)
i )

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

− (γ2/(3!n))

n
∑

i=1

D3hg(θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

.
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Taking the expectation and using A3, we have

Eθ

[

n−1
n
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

=
Eθ

[

hg(θ
(γ)
n+1)

]

− hg(θ)

nγ

− (γ/2)

∫

Rd

D2hg(θ̃)E

[

{

ε(θ̃)
}⊗2

]

dπγ(θ̃) + Ã1 + Ã2 ,

where

Ã1 = (γ/(2n))Eθ

[

n
∑

i=1

(

D2hg(θ∗) {εi+1(θ∗)}⊗2 −D2hg(θ
(γ)
i )

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

)

]

Ã2 = −(γ2/(3!n))Eθ

[

n
∑

i=1

D3hg(θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−∇f(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

]

.

The proof is then concluded using Theorem 15, Lemma 11 and Theorem 12.

Corollary 17. Assume A1-A2-A3-A4(2(k2+3)), for k1, k2 ∈ N, k1 ≥ 1. Let g : R
d → R satisfying

A5(3, k2). Then there exists Ck2
≥ 0 only depending on k2 such that for all γ ∈ (0, Ck2

/L), there
exists C ≥ 0 independent of γ such that

∣

∣

∣

∣

∫

Rd

g(θ̃)πγ(dθ̃) − g(θ∗) + (γ/2)

∫

Rd

D2hg(θ̃)E

[

{

ε(θ̃)
}⊗2

]

dπγ(θ̃)

∣

∣

∣

∣

≤ Cγ2 .

Proof. The proof is a direct consequence of Theorem 12 and Theorem 16.

Proof of Theorem 5. Under the stated assumptions, θ 7→ D2hg(θ)E
[

{ε(θ)}⊗2
]

satisfies the condi-

tions of Corollary 17. The proof then follows from combining Corollary 17 applied to this function
and Theorem 16.
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