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ABSTRACT   

In order to build biological tissues spectral characteristics database to be used in a multispectral imaging system a tissues 
optical characterization bench is developed and validated. Several biological tissue types have been characterized in vitro 
and ex vivo with our device such as beef, turkey and pork muscle and beef liver. Multispectral images obtained have 
been analyzed in order to study the dispersion of biological tissues spectral luminance factor. Tissue internal structure 
inhomogeneity was identified as a phenomenon contributing to the dispersion of spectral luminance factor. This 
dispersion of spectral luminance factor could be a characteristic of the tissue. A method based on envelope technique has 
been developed to identify and differentiate biological tissues in the same scene. This method applied to pork tissues 
containing muscle and fat gives detection rates of 59% for pork muscle and 14% for pork fat.   

Keywords: Multispectral imaging, biological tissues spectral characteristics database, help in diagnosis 
 

1. INTRODUCTION  

Biomedical optics has evolved in medical area as a new interdisciplinary field covering a wide range of therapeutic and 
diagnostic techniques [1]. One main advantage of optical techniques is the use of non-harmful radiation (excepted when 
UV radiation is used). Moreover optical techniques are often non-invasive, easier to use and cheaper to implement [2]. 
This field covers a wide range of therapeutic and diagnosis techniques like photodynamic therapy, laser surgery, 
thermotherapy, optical tomography, optical biopsy and in vitro diffuse spectroscopy. The two last methods use visible 
and near infrared spectroscopy technique. In particular optical biopsy is a non or minimally invasive spectroscopic 
analysis of biological tissue without cutting or removed tissues. In vitro diffuse spectroscopy requires relatively small 
samples and provides fast analysis [1]. Diffuse reflectance spectroscopy analyses and characterizes biological tissues in 
order to study and determine their optical properties [3]. Its biomedical applications include a wide variety of organs and 
tissue types like colon, esophagus, stomach, bladder, cervix, ovaries, breast, brain, liver, pancreas, heart, and oral tissues 
[4]. This technique can also diagnose various skin diseases, such as venous ulcers, skin necrosis and interstitial oedema 
for example [5]. However devices developed for these techniques allow a few measurement points number (typically 6-
8) and optical properties may be biased by local tissue inhomogeneities [6]. 

Multispectral imaging is a powerful tool used in several application fields such as spatio-spectral diagnostics in 
agricultural [7], archaeology [8], art [9] and painting [10]. Multispectral imaging device determines the spectral 
characteristics of each pixel in the scene by providing images at several wavelengths. This method applied to the medical 
area may be a powerful tool for tissue analysis and may be an alternative solution to overcome optical spectroscopy 
limitations.  

We are working on developing of a multispectral imaging system for intraoperative diagnosis aid purpose. The system 
should be able to identify and differentiate biological tissues in a surgical scene by measurement of their spectral 
reflectance in the visible and the near infrared wavelength range. In the other hand multispectral images in the near 
infrared may be used to identify buried tissues.  

The architecture of our multispectral system is shown in Figure 1. The system is made up of two important parts, the 
acquisition system and the signal processing block. The acquisition system is constituted of a source that illuminates a 
scene. A CCD sensor records this scene at several wavelengths to give a multispectral image. The signal processing 

Sensors, Cameras, and Systems for Industrial and Scientific Applications XIII, 
edited by Ralf Widenhorn, Valérie Nguyen, Antoine Dupret, Proc. of SPIE-IS&T Electronic Imaging, 

SPIE Vol. 8298, 82980P · © 2012 SPIE-IS&T · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.909107

SPIE-IS&T/ Vol. 8298  82980P-1



 
 

 

 

block should be able to differentiate and identify biological tissues and diagnosis the state of the tissue. To fulfill this 
task this block has to use a biological tissues spectral characteristics database and an appropriate light propagation 
model.  

A considerable literature exists on in vitro database with optical properties of a lot of biological tissues [11]. However 
these databases are developed with other techniques and the use of them is not adapted to multispectral imaging [12]. 
The aim of this paper is to develop a database including spectral responses of biological tissues characterized by 
multispectral imaging device.  

 

Figure 1. Architecture of multispectral imaging system for help in diagnosis. The system is made up of the acquisition 
system and the signal processing block.  

A multispectral imaging device is developed to characterize biological tissues. In vitro and ex vivo measurements of 
several biological tissues have been carried out using this device. Spectral characteristics of these tissues will be 
analyzed and introduced.  

 

2. TISSUES OPTICAL CHARACTERIZATION BENCH BY MULTISPECTRAL 
IMAGING 

2.1 Tests bench introduction  

The multispectral imaging test bench used for tissues characterization is shown in Figure 2. It is composed by one 
calibrated CCD camera, a monochromator with three holographic gratings and halogen light source.  

 

Figure 2. Architecture of optical characterization bench by multispectral imaging technique.  
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The monochromator provides a narrow band radiation ray which illuminates the biological tissue. The tissue under study 
is fixed on a black box absorbing all wavelengths going through it. Multispectral images produced by this system are 
obtained according to the 0°/45° CIE standard geometry. In this case specular contribution is minimized. As the quality 
of multispectral images is linked to device characteristics the CCD sensor is calibrated to improve the accuracy of the 
measurements. 

2.2 CCD sensor calibration 

We set up a calibration bench to characterize CCD sensor using a monochromator and an integrated sphere. The CCD 
sensor under test is placed in front of the integrated sphere to be illuminated by uniform monochromatic light. In order to 
calibrate this sensor, the spectral response, the dynamic range and the noise were evaluated experimentally. After 
averaging images to correct the temporal noise, a difference from 10% to 20% between pixel responses is obtained due 
to the sensor Fixed Pattern Noise (FPN). We have developed an algorithm by establishing mathematical model of pixels 
response versus light intensity. In the case of this sensor a first order polynomial model is used to build a correction 
matrix in order to reduce FPN. Figure 3 (a.) shows an image of pixels response non-uniformity at 660nm. Figure 3 (b.) 
shows the image after correction at the same wavelength. FPN is reduced after the CCD sensor correction and the non-
uniformity between pixels is decreased from 12% to 2%. 

        

Figure 3. (a.) Image of pixels response non-uniformity at 660nm. FPN between pixels is about 12%. (b.) Image after 
correction at 660nm. FPN between pixels is decreased to 2%. 

A calibrated CCD camera allows an accurate measurement of light distribution in the scene under study. We chose a 12 
bits CCD camera in order to higher Signal to Noise Ratio (SNR). 

An experimental protocol has been developed in order to characterize biological tissues in the same conditions. Tissues 
multispectral images are processed by a signal processing block to extract the spectral luminance factor β(λ) of each 
image pixel.  

2.3 Image processing 

This image processing algorithm elaborated to extract the spectral luminance factor in a scene comprises two steps. The 
first step reduces the fixed pattern noise in the image with a correction matrix calculated during earlier calibration. The 
second calculates β(λ) of each pixel for each corrected image using equation 1. 

        (1) 

Where  is the object reflectance,  the white diffuser reflectance.  

The obtained multispectral image of the scene spectral luminance factor allows analysis of the spectral characteristics of 
each pixel. Figure 4 shows an example of spectral luminance factor cube of biological tissue and a plot of β(λ) of one 
tissue area versus wavelength.  

Once the CCD sensor is calibrated and the image processing is developed the biological tissue characterization bench 
needs to be validated. 
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Figure 4. Spectral luminance factor example for a pork muscle area. Selected area is in red and its β(λ) is plotted for 
every wavelength  

2.4 Device validation 

Measurements of spectral luminance factor of different gray and colored patches from the “CRISATEL” acrylic chart 
[13] have been carried out with our multispectral imaging characterization test bench and a spectrophotometer. The 
acrylic chart has been developed for multispectral imaging system characterization purpose.  

Figure 5 (a.) shows the spectral luminance factor of a grey level patch obtained with the characterization test bench and 
with the spectrophotometer. A good agreement is obtained between characterization test bench measurements and those 
of the spectrophotometer. We defined a normalized dispersion error using equation 2 then calculated it on several 
uniform areas with different region sizes. Figure 5 (b.) shows dispersion error of spectral luminance factor as a function 
of the spectral luminance factor value at 570 nm. As grey levels are homogeneous with uniform surface a relative 
dispersion error doesn’t depend on size of window. However we observed that the higher the reflectance the lower the 
relative dispersion error. This shows that the relative dispersion error is closely related to Signal to Noise Ratio (SNR). 
At 570 nm relative dispersion error is lower than 4% for β(λ) > 0.3.   

 

Figure 5. (a.) Spectral luminance factor versus wavelength for different size of window (10*10 pixels, 20*20 pixels, 40*40 
pixels and 60*60 pixels) with the characterization test bench and with the spectrophotometer. (b.) Dispersion error of 
spectral luminance factor versus spectral luminance factor value at 570 nm for different size of window (10*10 pixels, 
20*20 pixels, 40*40 pixels and 60*60 pixels). 
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These results validate the test bench measurements that can be used for biological tissues characterization.  

 

3. BIOLOGICAL TISSUES CHARACTERIZATION RESULTS 

Several biological tissues have been characterized with our multispectral imaging test bench. We made several tests with 
beef, turkey and pork muscle and beef liver in vitro and we characterized with our test bench 17 different tissues ex vivo 
on pork.  

In order to study the spectral luminance factor β(λ) of the tissue we analyzed biological tissues images. The next deals 
with the study of the spectral luminance factor of beef muscle, its variation from an area to another on the same tissue. 

3.1 Introduction of tissue optical characterization  

Beef muscle has been characterized with our multispectral imaging test bench. Luminance factor cube is obtained and 
Figure 6 (a.) shows the β(λ) image at 660 nm. We want to study the tissue spectral luminance factor β(λ) and its 
variations on the tissue image. Twenty areas of 5 per 5 pixels are chosen on beef muscle image in order to calculate the 
spectral luminance factor median of each area. As we can see in Figure 6.a. the twenty areas are chosen in a 
homogeneous and similar texture regions. The plots of their luminance factor plots versus wavelengths in the 400nm-
1100nm range are displayed in Figure 6 (b.).  

      

Figure 6. (a.) Beef muscle spectral luminance factor image at 660 nm with the 5*5 pixels 20 areas studied on homogeneous 
region. (b.) β(λ) of the 20 areas studied versus wavelength. β(λ) of each area have same shape despite of their level 
difference 

Spectral luminance factor medians for all of every area have same shape despite of their level difference.  

We want to evaluate and quantify the variations of β(λ) on the tissue. We define and calculate the normalized dispersion 
error ED and the normalized fidelity error EF for this purpose using equation 2 and equation 3 respectively.  

        (2) 

                                                                                          (3) 

Where M(X(λ)) is the median, σ(X(λ)) the standard deviation, Xmax(λ) is the maximal value and Xmin(λ) is the minimal 
value.  

Figure 7 shows the β(λ) dispersion error ED calculated on the twenty areas as a function of wavelength. Dispersion error 
ED is quite high. For wavelengths below 600 nm the dispersion error is higher than 20%. ED decreases at 650 nm to reach 
7% in order to increase from 680 nm to 1000 nm to reach an ED error of 20%.  

SPIE-IS&T/ Vol. 8298  82980P-5



 
 

 

 

Many factors may contribute to the high variation of β(λ) on the tissue. Tissue surface roughness is probably an 
important factor. The luminance at the tissue surface may change from one area to another as shown in Figure 6.a. and 
this contributes to the dispersion β(λ). We also suspect inhomogeneity of the tissue internal structure as a non-negligible 
factor. 

Two analysis methods are developed in order to separate and identify error sources. These methods are introduced in the 
next section.  

 

Figure 7. Dispersion error ED versus wavelength. ED is higher than 20% below 600 nm then decreases at 650 nm to 
reach 7% and increases from 680 nm to 1000 nm to reach 20%. 

3.2 Incertitude sources evaluation methods 

In order to determine the influence of the tissue surface roughness we calculate ED on a tissue area and we study its 
variation as a function of the area. The influence of the tissue surface roughness has to be minimized with the increase of 
area. In order to determine the contribution of the non-homogeneity of the tissue surface luminance we developed a 
second method to calculate ED. This method calculates the normalized dispersion error ED and the normalized fidelity 
error EF of one vector that comprises all of the twenty areas. We evaluated ED and EF variation as a function of area. 

We applied the first method on twenty areas of the beef muscle of the Figure 6 (a.).  

 

Figure 8. (a.) ED of an area versus area size for several wavelengths. ED decreases exponentially with area to reach a limit 
EDr. (b.) ED of an area versus wavelength for several area sizes. ED decreases exponentially until 830 nm to reach EDr. 

We calculate ED versus area at each wavelength for each one of the twenty single areas. Figure 8 (a.) shows ED of an area 
as a function of area for several wavelengths. We note that ED decreases exponentially with the area so as to reach a limit 
EDr. This confirms the idea of lowering the contribution of roughness to ED expanding the area. The final EDr limit may 
be caused by internal structure non-homogeneity of biological tissue.  

Moreover Ed shows a non-negligible decrease with wavelength at each fixed area size as shown in Figure 8 (b.) This 
may be explained by the fact that small wavelengths radiation are absorbed at the tissue surface and can’t go deeper in 
the tissue. This luminance factor β(λ) at these short wavelengths is strongly affected by surface roughness, which 
increases ED. β(λ) is less affected by surface roughness because long wavelengths go deeper in the tissue. ED value at 
these wavelengths is essentially caused by the internal structure non-homogeneity of biological tissue. As a consequence 
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EDr has different values in the red and near infrared range. We defined EDrmax at 620 nm and EDrmin at 830 nm. We 
thought that the difference ΔEDr = EDrmax - EDrmin between these two limits is characteristic of tissue structure and nature.   

In order to have a good insight of the contribution of ED of the tissue internal structure non-homogeneity we studied 
EDrmin, EDrmax and ΔEDr on the twenty areas of beef tissue.  

Table 1 gives EDrmin, EDrmax and ΔEDr results calculated at each one of the twenty areas of Figure 6 (a.) These parameters 
show similar values from one area to another. A mean value of 1.05% is obtained for EDrmin with a standard deviation of 
0.4. EDrmax mean value is of 2.65% with a standard deviation of 0.8. ΔEDr mean value is 1.6% with standard deviation of 
0.7.  

Table 1. EDrmin, EDrmax and ΔEDr results for the 20 areas.  

Area Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 

EDrmin 1% 1% 1% 1% 1% 2% 1% 1% 0% 2% 

EDrmax 3% 2% 4% 2% 3% 3% 3% 2% 1% 4% 

ΔEDr 2% 1% 3% 1% 2% 1% 2% 1% 1% 2% 

 

Area Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 

EDrmin 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

EDrmax 3% 3% 2% 3% 2% 3% 2% 2% 4% 2% 

ΔEDr 2% 2% 1% 2% 1% 2% 1% 1% 3% 1% 

 

Tissue internal structure inhomogeneity contributes to the normalized dispersion error. For this beef tissue we evaluated 
this contribution at 620 nm and its value is EDrmax =2.65%. At 830 nm internal structure inhomogeneity contribution is 
EDrmin =1.05%. The contribution of the tissue internal structure inhomogeneity is lower than the contribution of the 
surface roughness which can reach 20% at short wavelengths.  

One disadvantage of this method to calculate ED arises from the fact that the enlargement of an area may increase ED 
instead of decreasing it. In fact by increasing the area we can overflow on tissue region with different brightness. This 
can’t allow determining tissue internal contribution to dispersion error.   

To overcome this limitation we used the second method to calculate ED. In fact gathering the twenty areas in one vector 
could minimize the luminance fluctuations on the tissue surface. Thus we can lower the contribution of surface 
roughness by enlarging the area in order to reach the contribution of the tissue internal structure to ED.  

Figure 9 shows ED results calculated on a vector assembling all of the twenty areas of beef muscle. Figure 9 (a.) plots ED 
as a function of area at several wavelengths and Figure 9 (b.) plots ED as a function of wavelength for several areas. As 
observed earlier ED decreases exponentially when the area increases to reach a limit EDr that depends on wavelength. We 
observed that ED decreases between 620 nm and 700 nm. We defined EDrmax at 620 nm and EDrmin at 700 nm. Using this 
method EDrmin equals 7%, EDrmax 11% and ΔEDr 4%. These Ed values are 4 to 7 times higher than those obtained with the 
first method.  

In the case of this tissue the second method is not adapted to ED calculation. However the first method seems to be better 
adapted. In fact the tissue is flat allow sufficient widening of the studied area until it acceptably cancels the surface 
roughness effect.   
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Figure 9. (a.) ED of the 20 areas versus area size for several wavelengths. ED decreases exponentially with area to reach a 
limit EDr. (b.) ED of the 20 areas versus wavelength for several area sizes. EDr decreases exponentially until 700 nm to 
reach EDr. 

In order to quantify normalized fidelity error of β(λ), EF has been calculated with the second method. 

Figure 10 (a.) shows EF of all of the twenty areas in function of area for several wavelengths and Figure 10 (b.) shows EF 
for all of the twenty areas in function of wavelength for several areas. Fidelity error shows the same trend as dispersion 
error. We defined EFrmax at 620 nm and EFrmin at 700 nm. EFrmin is of 20%, EFrmax of 40% and ΔEFr of 20%.  

 

Figure 10. (a.) EF of an area versus area size for several wavelengths. EF decreases exponentially with area to reach a limit 
EFr. (b.) EF of an area versus wavelength for several area sizes. EF decreases exponentially until 700 nm to reach EFr. 

The dispersion error ED calculated with methods 1 and 2 and the fidelity error have enabled us to determine and quantify 
the phenomena contributing to β(λ) variation on a tissue. One main phenomenon is the state of surface roughness inter 
alia. For short wavelengths, β(λ) is strongly affected by surface roughness. In fact ED value can reach 20% with method 
1 and 45% with method 2. However when wavelengths go deeper in the tissue, β(λ) is less affected by surface 
roughness.  

The contribution of surface roughness can be cancelled with the expansion of the area. β(λ) variation reaches a limit EDr 
defined by the non homogeneity of the tissue internal structure. We observed that EDr decreases with the wavelength and 
we defined EDrmin and EDrmax for each tissue. We think that these parameters and their difference ΔEDr is a characteristic 
of the tissue. Beef muscle shows a ΔEDr value of 1.6% with the first method and 4% with the second method. Internal 
structure error defines the limit of all measurements device as the imaging device that we want to develop. Moreover a 
reproducibility error could be added to these incertitude sources quantified by EF and its value can reach 20% for ΔEFr. 
An optimum size area for this tissue can be determined in order to minimize surface roughness contribution. 

A statistical study was carried out on several tissue types such as beef, turkey and pork muscle and beef liver in order to 
evaluate EDrmin, EDrmax and ΔEDr variation from sample to sample and from one individual to another.  
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3.3 Results 

A statistical study has been made on several individuals for four types of tissue: beef muscle, turkey muscle, pork muscle 
and beef liver. Moreover this study will determine an optimum area in order to minimize the contribution of the surface 
condition to determine the spectral luminance factor for every types of tissue.  

Tables 2, 3, 4 and 5 show ED calculated with the two methods and EF calculated with the second method respectively for 
beef muscle, turkey muscle, pork muscle and beef liver. 

Table 2. ED and EF for beef muscle. 

 ED     
Method 1 

ED     
Method 2 

EF    
Method 2 

 mean std mean std mean std 

min 3% 2 5% 1 21% 4 

max 7% 4 9% 2 31% 5 

   Δ 5% 2.5 3.5% 2.5 11% 4 

 

ΔEDr determined with the second method is lower (3.5%) than ΔEDr calculated with the first method (5%) and EF (11%).  

Table 3. ED and EF for turkey muscle. 

 ED     
Method 1 

ED       
Method 2 

EF    
Method 2 

 mean std mean std mean std 

min 4.5% 4 5.75% 3 21% 9 

max 10% 6.5 10% 5 32% 13 

   Δ 5% 3.5 5% 3 11% 7 

 

ΔEDr determined with the second method is the same as ΔEDr calculated with the first method (5%) and both are lower 
than EF  value (11%).  

Table 4. ED and EF for pork muscle 

 ED     
Method 1 

ED       
Method 2 

EF    
Method 2 

 mean std mean std mean std 

min 2% 1.5 5% 2 17% 6 

max 6% 3.5 8.5% 2.5 25% 6 

   Δ 4.5% 7 3% 1.5 9% 3 

 

ΔEDr determined with the second method is lower (3%) than ΔEDr calculated with the first method (4.5%) and EF (9%).  
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Table 5. ED and EF for beef liver 

 ED     
Method 1 

ED       
Method 2 

EF    
Method 2 

 mean std mean std mean std 

min 0.7% 0.7 10% 6 20% 8 

max 2% 2.5 5.5% 2.5 35% 8 

   Δ 2% 2 4.5% 4.5 13% 5 

 

ΔEDr determined with the first method is lower (2%) than ΔEDr calculated with the second method (4.5%) and EF (13%).  

ΔEDr value determines the contribution of the internal structure for each tissue. It depends on the structure of the tissue. 
ΔEDr is similar for beef (ΔEDr with method 1 equals 5% and 3.5% with second method), pork (ΔEDr with method 1 equals 
5% and 5% with second method) and turkey (ΔEDr with method 1 equals 4.5% and 3% with second method) muscle. 
ΔEDr value is the lowest (2% with method 1 and 4.5% with method 2) for beef liver. ΔEDr could be characteristic for each 
tissue type in order to determine tissue nature. 

This statistical study allows us to determine the contribution of internal structure error for each type of tissue. We will 
determine spectral luminance factor for each type of these tissues under study minimizing contribution of surface 
condition. 

3.4 Spectral characteristics of biological tissues 

In order to identify biological tissues, a database has to be developed with all the biological tissues spectral 
characteristics. These spectral characteristics take into account different incertitude sources developed earlier. A method 
was developed in order to define luminance factor in minimizing the contribution of surface roughness. This method is 
based on the calculation of the tissue envelope. 

This method consists in determining the histogram of each area under study for every wavelength. Gaussian normal law 
expectation and standard deviation are then determined from the histogram for each wavelength. Standard deviations 
composed the envelope. Envelope mean is given by Gaussian expectation of β(λ). The Figure 11 gives an example of 
beef muscle envelope for one area size (Figure 6. (a.)). 

 

Figure 11. Beef muscle envelope for 50*50 pixels area. This envelope is the spectral characteristic for this tissue. Area 
size is chosen to minimize roughness surface state of tissue 

As we have selected the optimum area, the so determined envelope minimizes the error due to surface condition. 
Envelopes for every type of biological tissue can be determined for each individual. Figure 12 shows β(λ) expectation 
for beef, turkey and pork muscle and beef liver of one characterized scene.  
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Figure 12. Beef, turkey and pork muscle and beef liver envelopes of one characterized scene. Beef liver envelope is 
clearly different of the others. The three other tissue envelopes are similar despite small differences between them.  

Beef liver β(λ) shape shows a quite difference from three others biological tissues. Even if their shapes are different the 
three others shapes are similar to each other. We have to identify tissues even if they are similar. Moreover errors 
determined are high and we have to consider these errors to identify and differentiate biological tissues. 

 

4. BIOLOGICAL TISSUES DIFFERENTIATION 

The aim of database elaboration is to identify and differentiate biological tissues that are presents on the same scene. For 
every biological tissue characterized by our device its enveloped has been determined. In order to differentiate tissues for 
a first time a first solution is to determine the spectral luminance factor for one area and to compare it to a tissue 
envelope in order to know whether this area belongs to the tissue or not. One example is shown in Figure 13 with pork 
muscle.  

 

Figure 13. (a.) Pork muscle β(λ) at 650 nm. Flat pork is on the image top in white and muscle is gray. (b.) Pork muscle 
envelope and pork fat envelope. Envelops exhibit the same shape despite their vertical displacement 

The image covering a 5 per 5 pixels window. β(λ) median of this window is compared with muscle and fat envelopes. 
The more frequently β(λ) median belongs to the envelope the more likely the pixel belongs to this tissue.  

Figure 14 shows probability for each pixel to belong to pork muscle (a.) and pork fat (b.). 
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Figure 14. (a.) Probability for each pixel to belong to pork muscle. The higher the pixel is red, the more it belongs to pork 
muscle. (b.) Probability for each pixel to belong to pork fat. The higher the pixel is red, the more it belongs to pork fat. 

If β(λ) median is entirely inside the envelope, the detection rate is 59% for pork muscle and 14% for the pork fat. The 
detection rate is low for pork fat and not enough high for pork muscle. This technique for differentiating the tissues has 
to be improved in order to increase the detection rate for each tissue. Moreover if the envelope level changes between 
one individual to another, then the detection rate will be low because the database will not be the same for several 
samples of the tissue type. 
 

5. CONCLUSION AND PERSPECTIVES  

The aim of this work is to develop a biological tissues spectral characteristics database to be used in a multispectral 
imaging system. We set up a test bench using a calibrated CCD sensor and a monochromator for tissue characterization 
by multispectral imaging technique. The test bench has been validated by carrying measurements of the CRISATEL 
acrylic chart samples and by comparing the results with those of a spectrophotometer. Once test bench had been 
calibrated, several biological tissues were characterized in vitro such as beef, turkey and pork muscle and beef liver. Ex 
vivo characterization was also conducted in removing seventeen tissues on a living pork in animal laboratory.  
Multispectral images were analyzed with an image processing tool to study the variation of the spectral luminance factor 
β(λ) on the same tissue. We observed 20% to 30% β(λ) variation on a beef muscle. This high β(λ) variation on a given 
tissue may be an obstacle to identify and differentiate biological tissues.  
We developed an analysis technique to determine and quantify the contribution of different phenomena involved in this 
variation. One main factor is the tissue surface roughness and its contribution to beef muscle β(λ) variation was 
evaluated with our analysis technique. We found that the contribution of the surface roughness is depending upon the 
wavelength and can reach 20% at short wavelengths. We identified the inhomogeneity of the tissue internal structure as a 
factor contributing to β(λ) variation. Its contribution is wavelength dependent and decreases with increasing wavelength. 
This factor contribution has been quantified for beef muscle and its value is 1.6%. The non-uniformity of the tissue 
surface luminance is also a factor that contributes to β(λ) variation.  
Image processing can be used to minimize the contribution of the non-uniformity of the tissue surface luminance and of 
the surface roughness to β(λ). However the non-homogeneity of the tissue internal structure defines the limit of all 
measuring system as the imaging device that we want to develop.  
We think that the non-homogeneity of the tissue internal structure can be considered as a tissue characteristic. As the 
dispersion of the normalized β(λ) decreases with increasing wavelength, we defined EDrmin as the normalized β(λ) 
dispersion at 830 nm and EDrmax as the normalized β(λ) dispersion at 620 nm. The difference ΔEDr = EDrmax - EDrmin could 
be an additional parameter characteristic of the biological tissue. In order to verify these assumptions a statistical study 
was carried out on several tissue types such as beef, turkey and pork muscle and beef liver in order to study ΔEDr, EDrmin 
and EDrmax variation from sample to sample and from one individual to another. We observed that the three parameters 
have shown a variation from sample to sample on the same individual and from one individual to another. We calculated 
the mean values and we found EDrmin=3%, EDrmax=7%, ΔEDr=5% for beef muscle, EDrmin=4.5%, EDrmax=10%, ΔEDr=5% 
for turkey muscle, EDrmin=2%, EDrmax=6%, ΔEDr=4.5% for pork muscle and EDrmin=0.7%, EDrmax=2%, ΔEDr=2% for beef 
liver. EDrmin, EDrmax and ΔEDr of beef and pork muscle have closely related values due to the fact that their structures are 
similar.  Even if EDrmin, EDrmax of turkey muscle are close to those of the two other types of muscle we observed a 
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difference with this tissue and ΔEDr is the same. This may be explaining by the fact that the three tissues belong to the 
same class i.e. muscle. In other hand EDrmin, EDrmax and ΔEDr of beef liver are different and lower values than those of 
muscle.  
In order to use results of biological tissues characterization to build a biological tissues spectral characteristics database, 
we proposed a method to identify and differentiate biological tissues. This method consists in determining the β(λ) 
envelope of a tissue minimizing the contribution of surface roughness. One study on pork muscle and fat was made. We 
obtained a moderate detection rate for muscle with 59% and a low rate for fat with 14%. This method could be improved 
in order to have a better detection of each tissue. In fact we could use additional parameters for detecting tissue as the 
tissue internal structure and others parameters which are under study.  
Compared to single point spectral characterization of tissue, spectral imaging is a promising technique. 
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