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Abstract. The analysis of manifold-valued data requires efficient tools
from Riemannian geometry to cope with the computational complexity
at stake. This complexity arises from the always-increasing dimension of
the data, and the absence of closed-form expressions to basic operations
such as the Riemannian logarithm. In this paper, we adapt a generic
numerical scheme recently introduced for computing parallel transport
along geodesics in a Riemannian manifold to finite-dimensional manifolds
of diffeomorphisms. We provide a qualitative and quantitative analysis
of its behavior on high-dimensional manifolds, and investigate an appli-
cation with the prediction of brain structures progression.

1 Introduction

Riemannian geometry is increasingly meeting applications in statistical learning.
Indeed, working in flat space amounts to neglecting the underlying geometry of
the laws which have produced the considered data. In other words, such a sim-
plifying assumption ignores the intrinsic constraints on the observations. When
prior knowledge is available, top-down methods can express invariance properties
as group actions or smooth constraints and model the data as points in quotient
spaces, as for Kendall shape space. In other situations, manifold learning can be
used to find a low-dimensional hypersurface best describing a set of observations.

Once the geometry has been modeled, classical statistical approaches for
constrained inference or prediction must be adapted to deal with structured
data, as it is done in [4,5,11,13]. Being an isometry, the parallel transport arises
as a natural tool to compare features defined at different tangent spaces.

In a system of coordinates, the parallel transport is defined as the solution
to an ordinary differential equation. The integration of this equation requires
to compute the Christoffel symbols, which are in general hard to compute –e.g.
in the case of the Levi-Civita connection– and whose number is cubic in the
dimension. The Schild’s ladder [5], later improved into the Pole ladder [7] when
transporting along geodesics, is a more geometrical approach which only requires
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the computation of Riemannian exponentials and logarithms. When the geodesic
equation is autonomous, the scaling and squaring procedure [6] allows to com-
pute exponentials very efficiently. In Lie groups, the Baker-Campbell Haussdorff
formula allows fast computations of logarithms with a controlled precision. In
such settings, the Schild’s ladder is computationnally tractable. However, no
theoretical study has studied the numerical approximations or has provided a
convergence result. In addition, in the more general case of Riemannian mani-
folds, the needed logarithm operators are often computationally intractable.

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work [1] focuses on groups of diffeomorphisms, for shape analysis. Geodesic
trajectories can be computed by integrating the Hamiltonian equations, which
makes the exponential operator computationally tractable, when the logarithm
remains costly and hard to control in its accuracy. In [12] is suggested a numeri-
cal scheme which approximates the parallel transport along geodesics using only
the Riemannian exponential and the metric. The convergence is proved in [8].

In this paper, we translate this so-called fanning sheme to finite-dimensional
manifolds of diffeomorphisms built within the LDDMM framework [2]. We pro-
vide a qualitative and quantitative analysis of its behavior, and investigate a
high-dimensional application with the prediction of brain structures progression.
Section 2 gives the theoretical background and the detailed steps of the algo-
rithm, in the LDDMM context. Section 3 describes the considered application
and discusses the obtained results. Section 4 concludes.

2 Theoretical background and practical description

2.1 Notations and assumptions

Let M be a finite-dimensional Riemannian manifold with metric g and tangent
space norm ‖ · ‖g. Let γ : t → [0, 1] be a geodesic whose coordinates are known
at all time. Given t0, t ∈ [0, 1], the parallel transport of a vector w ∈ Tγ(s)M
from γ(t0) to γ(t) along γ will be noted Pt0,t(w) ∈ Tγ(t)M. We recall that
this mapping is uniquely defined by the integration from u = t0 to t of the
differential equation ∇γ̇(u)Pt0,u(w) = 0 with Pt0,t0(w) = w where ∇ is the Levi-
Civita covariant derivative.

We denote Exp the exponential map, and for h small enough we define
Jwγ(t)(h), the Jacobi Field emerging from γ(t) in the direction w ∈ Tγ(t)M by:

Jwγ(t)(h) =
∂

∂ε

∣∣∣∣
ε=0

Expγ(t)
(
h [γ̇(t) + εw]

)
∈ Tγ(t+h)M. (1)

2.2 The key identity

The following proposition relates the parallel transport to a Jacobi field [12]:

Proposition. For all t > 0 small enough and w ∈ Tγ(0)M, we have:

P0,t(w) =
Jwγ(0)(t)

t
+ O

(
t2
)
. (2)



Proof. Let X(t) be the time-varying vector field corresponding to the parallel
transport of w, i.e. such that Ẋi + Γ iklX

lγ̇k = 0 with X(0) = w. At t = 0, in

normal coordinates the differential equation simplifies into Ẋi(0) = 0. Besides,
near t = 0 in the same local chart, the Taylor expansion of X(t) writes Xi(t) =
wi + O

(
t2
)
. Noticing that the ith normal coordinate of Expγ(0) (t [γ̇(t) + εw])

is t(vi0 + εwi), the ith coordinate of Jwγ(0)(t) = ∂
∂ε |ε=0Expγ(0) (t [γ̇(0) + εw]) is

therefore twi, and we thus obtain the desired result.

Subdividing [0, 1] into N intervals and iteratively computing the Jacobi fields
1
N Jwγ(k/N)(

1
N ) should therefore approach the parallel transport P0,1(w). With

an error in O
(

1
N2

)
at each step, a global error in O

(
1
N

)
can be expected. We

propose below an implementation of this scheme in the context of a manifold of
diffeomorphisms parametrized by control points and momenta. Its convergence
with a rate of O

(
1
N

)
is proved in [8].

2.3 The chosen manifold of diffeomorphisms

The LDDMM-derived construction proposed in [2] provides an effective way to
build a finite-dimensional manifold of diffeomorphims acting on the d-dimensional
ambient space Rd. Time-varying vector fields vt(.) are generated by the convolu-
tion of a Gaussian kernel k(x, y) = exp

[
−‖x− y‖2/2σ2

]
over ncp time-varying

control points c(t) = [ci(t)]i, weighted by ncp associated momenta α(t) = [αi(t)]i,
i.e. vt(.) =

∑ncp

i=1 k [. , ci(t)]αi(t). The set of such vector fields forms a Repro-
ducible Kernel Hilbert Space (RKHS).

Those vector fields are then integrated along ∂tφt(.) = vt[φ(.)] from φ0 = Id
into a flow of diffeomorphisms. In [10], the authors showed that the kernel-
induced distance between φ0 and φ1 –which can be seen as the deformation
kinetic energy– is minimal i.e. the obtained flow is geodesic when the control
points and momenta satisfy the Hamiltonian equations :

ċ(t) = Kc(t)α(t), α̇(t) = −1

2
gradc(t)

{
α(t)T Kc(t) α(t)

}
, (3)

whereKc(t) is the kernel matrix. A diffeomorphism is therefore fully parametrized
by its initial control points c and momenta α.

Those Hamiltonian equations can be integrated with a Runge-Kutta scheme
without computing the Christoffel symbols, thus avoiding the associated curse
of dimensionality. The obtained diffeomorphisms then act on shapes embedded
in Rd, such as images or meshes.

For any set of control points c = (ci)i∈{1,..,n}, we define the finite-dimensional

subspace Vc = span
{
k(., ci)ξ | ξ ∈ Rd, i ∈ {1, .., n}

}
of the vector fields’ RKHS.

We fix an initial set c = (ci)i∈{1,..,n} of distinct control points and define the set
Gc = {φ1 | ∂tφt = vt ◦ φt, v0 ∈ Vc , φ0 = Id}. Equipped with Kc(t) as –inverse–
metric, Gc is a Riemannian manifold such that Tφ1

Gc = Vc(1), where for all t in
[0, 1], c(t) is obtained from c(0) = c through the Hamiltonian equations (3) [9].



2.4 Summary of the algorithm

We are now ready to describe the algorithm on the Riemannian manifold Gc.

Algorithm. Divide [0, 1] into N intervals of length h = 1
N where N ∈ N. We

note ωk the momenta of the transported diffeomorphism, ck the control points
and αk the momenta of the geodesic γ at time k

N . Iteratively :

(i) Compute the main geodesic control points ck+1 and momenta αk+1, using
a Runge-Kutta 2 method.

(ii) Compute the control points c±hk+1 of the perturbed geodesics γ±h with initial
momenta and control points (αk±hωk, ck), using a Runge-Kutta 2 method.

(iii) Approximate the Jacobi field Jk+1 by central finite difference :

Jk+1 =
c+hk+1 − c

−h
k+1

2h
. (4)

(iv) Compute the transported momenta ω̃k+1 according to equation (2) :

Kck+1
ω̃k+1 =

Jk+1

h
. (5)

(v) Correct this value with ωk+1 = βk+1ω̃k+1+δk+1αk+1, where βk+1 and δk+1

are normalization factors ensuring the conservation of ‖ω‖Vc = ωTkKckωk
and of 〈αk, ωk〉ck = αTkKckωk.

As step of the scheme is illustrated in Figure 1. The Jacobi field is com-
puted with only four calls to the Hamiltonian equations. This operation scales
quadratically with the dimension of the manifold, which makes this algorithm
practical in high dimension, unlike Christoffel-symbol-based solutions. Step (iv)
–solving a linear system of size ncp– is the most expensive one, but remained
within reasonable computational time in the investigated examples.

Fig. 1: Step of the parallel transport of the vector w (blue arrow) along the
geodesic γ. Jwγ is computed by central finite difference with the perturbed
geodesics γh and γ−h, integrated with a second-order Runge-Kutta scheme (dot-
ted black arrows). A fan of geodesics is formed.



In [8], the authors prove the convergence of this scheme, and show that
the error increases linearly with the size of the step used. The convergence is
guaranteed as long as the step (ii) is performed with a method of order at least
two. A first order method in step (iii) is also theoretically sufficient to guarantee
convergence. Those variations will be studied in Section 3.3.

3 Application to the prediction of brain structures

3.1 Introducing the exp-parallelization concept

Fig. 2: Time-reparametrized exp-parallelization of a reference geodesic model.
The black dots are the observations, on which are fitted a geodesic regression
(solid black curve, parametrized by the blue arrow) and a matching (leftmost
red arrow). The red arrow is then parallel-transported along the geodesic, and
exponentiated to define the exp-parallel curve (black dashes).

Fig. 3: Illustration of the exp-parallelization concept. Top row: the reference
geodesic at successive times. Bottow row: the exp-parallel curve. Blue arrows:
the geodesic momenta and velocity field. Red arrows: the momenta describing
the initial registration with the target shape and its transport along the geodesic.



Exploiting the fanning scheme described in Section 2.4, we can parallel-
transport any set of momenta along any given reference geodesic. Figure 2
illustrates the procedure. The target shape is first registered to the reference
geodesic : the diffeomorphism that best transforms the chosen reference shape
into the target one is estimated with a gradient descent algorithm on the initial
control points and momenta [2]. Such a procedure can be applied generically
to images or meshes. Once this geodesic is obtained, its initial set of momenta
is parallel-transported along the reference geodesic. Taking the Riemannian ex-
ponential of the transported vector at each point of the geodesic defines a new
trajectory, which we will call exp-parallel to the reference one.

As pointed out in [5], the parallel transport is quite intuitive in the context
of shape analysis, for it is an isometry which transposes the evolution of a shape
into the geometry of another shape, as illustrated by Figure 3.

3.2 Data and experimental protocol

Repeated Magnetic Resonance Imaging (MRI) measurements from 71 subjects
are extracted from the ADNI database and preprocessed through standard pipeli-
nes into affinely co-registered surface meshes of hippocampi, caudates and putam-
ina. The geometries of those brain sub-cortical structures are altered along the
Alzheimer’s disease course, which all considered subjects finally convert to.

Two subjects are successively chosen as references, for they have fully de-
veloped the disease within the clinical measurement protocol. As illustrated on
Figure 2, a geodesic regression [3] is first performed on each reference subject to
model the observed shape progression. The obtained trajectory on the chosen
manifold of diffeomorphisms is then exp-parallelized into a shifted curve, which
is hoped to model the progression of the target subject.

To account for the variability of the disease dynamics, for each subject two
scalar coefficients encoding respectively for the disease onset age and the rate of
progression are extracted from longitudinal cognitive evaluations as in [11]. The
exp-parallel curve is time-reparametrized accordingly, and finally gives predic-
tions for the brain structures. In the proposed experiment, the registrations and
geodesic regressions typically feature around 3000 control points in R3, so that
the deformation can be seen as an element of a manifold of dimension 9000.

3.3 Estimating the error associated to a single parallel transport

To study the error in this high-dimensional setting, we compute the parallel
transport for a varying number of discretization steps N , thus obtaining in-
creasingly accurate estimations. We then compute the empirical relative errors,
taking the most accurate computation as reference.

Arbitrary reference and target subjects being chosen, Figure 4 gives the re-
sults for the proposed algorithm and three variations : without enforcing the
conservations at step (v) [WEC], using a Runge-Kutta of order 4 at step (ii)
[RK4], and using a single perturbed geodesic to compute J at step (iii) [SPG].
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We recover a linear behavior with the length of the step 1
N in all cases. The SPG

variant converges much slower, and is excluded from the following considerations.
For the other algorithms, the empirical relative error remains below 5% with

15 steps or more, and below 1% with 25 steps or more. The slopes of the asymp-
totic linear behaviors, estimated with the last 10 experimental measurements,
range from 0.10 for the RK4 method to 0.13 for the WEC one. Finally, an iter-
ation takes respectively 4.26, 4.24 and 8.64 seconds for the proposed algorithm,
the WEC variant and the RK4 one. Therefore the initially detailed algorithm
in section 2.4 seems to achieve the best tradeoff between accuracy and speed in
the considered experimental setting.

3.4 Prediction performance

Table 1 gathers the predictive performance of the proposed exp-parallelization
method. The performance metric is the Dice coefficient, which ranges from 0 for
disjoint structures to 1 for a perfect match. A Mann-Witney test is performed
to quantify the significance of the results in comparison to a naive methodology,
which keeps constant the baseline structures over time. Considering the very high
dimension of the manifold, failing to accurately capture the disease progression

Method

Predicted follow-up visit

M12 M24 M36 M48 M60 M72 M96

N=140 N=134 N=123 N=113 N=81 N=62 N=17

[exp] .882

.884

.852

.852

.825

.809

}
∗∗

.796

.764

}
∗∗∗

.768

.734

}
∗∗

.756

.706

}
∗∗∗

.730

.636

}
∗∗[ref]

Table 1: Averaged Dice performance measures. In each cell, the first line gives the
average performance of the exp-parallelization-based prediction [exp], and the
second line the reference one [ref]. Each column corresponds to an increasingly
remote predicted visit from baseline. Significance levels [.05, .01, .001].



trend can quickly translates into unnatural predictions, much worse than the
naive approach.

The proposed paradigm significantly outperforms the naive prediction three
years or later from the baseline, thus demonstrating the relevance of the exp-
parallelization concept for disease progression modeling, made computationally
tractable thanks to the operational qualities of the fanning scheme for high-
dimensional applications.

4 Conclusion

We detailed the fanning scheme for parallel transport on a high-dimensional
manifold of diffeomorphisms, in the shape analysis context. Our analysis unveiled
the operational qualities and computational efficiency of the scheme in high
dimensions, with a empirical relative error below 1% for 25 steps only. We then
took advantage of the parallel transport for accurately predicting the progression
of brain structures in a personalized way, from previously acquired knowledge.
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