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MALLIAVIN AND DIRICHLET STRUCTURES FOR

INDEPENDENT RANDOM VARIABLES

L. DECREUSEFOND AND H. HALCONRUY

Abstract. On any denumerable product of probability spaces, we construct
a Malliavin gradient and then a divergence and a number operator. This yields
a Dirichlet structure which can be shown to approach the usual structures for
Poisson and Brownian processes. We obtain versions of almost all the classical
functional inequalities in discrete settings which show that the Efron-Stein
inequality can be interpreted as a Poincaré inequality or that the Hoeffding
decomposition of U -statistics can be interpreted as an avatar of the Clark
representation formula. Thanks to our framework, we obtain a bound for the
distance between the distribution of any functional of independent variables
and the Gaussian and Gamma distributions.

1. Introduction

There are two motivations to the present paper. After some years of development,
the Malliavin calculus has reached a certain maturity. The most complete theories
are for Gaussian processes (see for instance [28, 39]) and Poisson point processes
(see for instance [1, 34]). When looking deeply at the main proofs, it becomes
clear that the independence of increments plays a major role in the effectiveness of
the concepts. At a very formal level, independence and stationarity of increments
induce the martingale representation property which by induction entails the chaos
decomposition, which is one way to develop Malliavin calculus for Poisson [29], Lévy
processes [31] and Brownian motion. It thus motivates to investigate the simplest
situation of all with independence: That of a family of independent, non necessarily
identically distributed, random variables.

The second motivation comes from Stein’s method1. The Stein method which
was initially developed to quantify the rate of convergence in the Central Limit
Theorem [37] and then for Poisson convergence [9], can be decomposed in three
steps (see [13]). In the first step, we have to find a functional identity which
characterizes the target distribution and solve implicitly or explicitly (as in the
semi-group method) the so-called Stein’s equation. It reduces the computation of
the distance to the calculation of

sup
F∈H

(

E [L1F (X)] +E [L2F (X)]
)

,

where H is the set of test functions which depends on the distance we are consid-
ering, L1 and L2 are two functional operators and X is a random variable whose
distribution we want to compare to the target distribution. For instance, if the

1Giving an exhaustive bibliography about Stein’s method is somehow impossible (actually,
MathSciNet refers more than 500 papers on this subject). The references given here are only
entry points to the items alluded to.

1
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target distribution is the Gaussian law on R,

L1F (x) = xF ′(x) and L2F (x) = −F ′′(x).

If the target distribution is the Poisson law of parameter λ,

L1F (n) = n (F (n)− F (n− 1)) and L2F (n) = λ(F (n + 1)− F (n)).

In the next step, we have to take into account how X is defined and transform L1F
such that it can be written as −L2F + remainder. This remainder is what gives
the rate of convergence. To make the transformation of L1F , several approaches
appeared along the years. One of the most popular approach (see for instance [5])
is to use exchangeable pairs: Construct a copy X ′ of X with good properties which
gives another expression of L1F , suitable to a comparison with L2F . To be more
specific, for the proof of the CLT, it is necessary to create an exchangeable pair
(S, S′) with S =

∑n
i=1Xi. This is usually done by first, choosing uniformly an

index I ∈ {1, · · · , n} and then, replacing XI with X ′ an independent copy of XI ,
so that the couple (S, S′ = S−XI +X ′) is an exchangeable pair. This means that

(1) E [F (S′) | I = a; Xb, b 6= a] = E [F (S) |Xb, b 6= a] .

Actually, it is the right-hand-side of (1) which gave us some clue on how to proceed
when dealing with functionals more general than the sum of random variables. An
alternative to exchangeable pairs, is the size-biased [10] or zero biased [19] couplings,
which again conveniently transform L1F . For Gaussian approximation, it amounts
to find a distribution X∗ such that

E [L1F (X)] = E [F ′′(X∗)] .

Note that for S as above, one can choose S∗ = S′. If the distribution of X∗

is absolutely continuous with respect to that of X , with Radon derivative Λ, we
obtain

E [L1F (X)] = E [F ′′(X) Λ(X)] ,

which means that we are reduced to estimate how far Λ is from the constant random
variable equal to 1. This kind of identity, where the second order derivative is
multiplied by a weight factor, is reminiscent to what can be obtained via integration
by parts. Actually, Nourdin and Peccati (see [26]) showed that the transformation
step can be advantageously made simple using integration by parts in the sense of
Malliavin calculus. This works well only if there exists a Malliavin gradient on the
space on which X is defined (see for instance [15]). That is to say, that up to now,
this approach is restricted to functionals of Rademacher [27], Poisson [15, 32] or
Gaussian random variables [30] or processes [11, 12]. Then, strangely enough, the
first example of applications of the Stein’s method which was the CLT, cannot be
handled through this approach. On the one hand, exchangeable pairs or size-biased
coupling have the main drawback to have to be adapted to each particular version
of X . On the other hand, Malliavin integration by parts are in some sense more
automatic but we need to be provided with a Malliavin structure.

The closest situation to our investigations is that of the Rademacher space,
namely {−1, 1}N, equipped with the product probability ⊗k∈Nµk where µk is a
Bernoulli probability on {−1, 1}.
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The gradient on the Rademacher space (see [27, 34]) is usually defined as

(2) D̂kF (X1, · · · , Xn) = E [Xk F (X1, · · · , Xn) |Xl, l 6= k]

= P(Xk = 1)F (X1, · · · ,+1, · · · , Xn)

−P(Xk = −1)F (X1, · · · ,−1, · · · , Xn),

where the ±1 are put in the k-th coordinate. It requires, for its very definition
to be meaningful, either that the random variables are real valued or that they
only have two possible outcomes. In what follows, it must be made clear that all
the random variables may leave on different spaces, which are only supposed to be
Polish spaces. That means that in the definition of the gradient, we cannot use
any algebraic property of the underlying spaces. Some of our applications does
concern random variables with finite number of outcomes but it does not seem
straightforward to devise what should be the weights, replacing P(Xk = 1) and
−P(Xk = −1). Furthermore, many applications, notably those revolving around
functional identities, rely not directly on the gradient D but rather on the operator
number L = −δD where δ is the adjoint, in a sense to be defined later. It turns out

that for the Rademacher space, the operators L̂ = −δ̂D̂ defined according to (2)
and L defined in Definition 2.2 do coincide. Our framework then fully generalizes
what is known about Rademacher spaces.

Since Malliavin calculus is agnostic to any time reference, we do not even assume
that we have an order on the product space. It is not a major feature since a
denumerable A is by definition in bijection with the set of natural integers and
thus inherits of at least one order structure. However, this added degree of freedom
appears to be useful (see the Clark decomposition of the number of fixed points
of a random permutations in Section 5) and bears strong resemblance with the
different filtrations which can be put on an abstract Wiener space, via the notion
of resolution of the identity [38]. During the preparation of this work, we found
strong reminiscences of our gradient with the map ∆, introduced in [6, 36] for the
proof of the Efron-Stein inequality, defined by

∆kF (X1, · · · , Xn) = E [F |X1, · · · , Xk]−E [F |X1, · · · , Xk−1] .

Actually, our point of view diverges from that of these works as we do not focus on
a particular inequality but rather on the intrinsic properties of our newly defined
gradient.

We would like to stress the fact that our Malliavin-Dirichlet structure gives a
unified framework for many results scattered in the literature. We hope to give
new insights on why these apparently disjointed results (Efron-Stein, exchangeable
pairs, etc.) are in fact multiple sides of the same coin.

We proceed as follows. In Section 2, we define the gradient D and its adjoint δ,
which we call divergence as it appears as the sum of the partial derivatives, as in Rn.
We establish a Clark representation formula of square integrable random variables
and an Helmholtz decomposition of vector fields. Clark formula appears to reduce
to the Hoeffding decomposition of U -statistics when applied to such functionals.
We establish a log-Sobolev inequality, strongly reminding that obtained for Pois-
son processes [41], together with a concentration inequality. Then, we define the
number operator L = δD. It is the generator of a Markov process whose stationary
distribution is the tensor probability we started with. We show in Section 4 that we
can retrieve the classical Dirichlet-Malliavin structures for Poisson processes and
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Brownian motion as limits of our structures. We borrow for that the idea of con-
vergence of Dirichlet structures to [8]. The construction of random permutations
in [22], which is similar in spirit to the so-called Feller coupling (see [3]), is an in-
teresting situation to apply our results since this construction involves a cartesian
product of distinct finite spaces. In Section 5, we present several applications of
our results. In subsection 5.1, we derive the chaos decomposition of the number of
fixed points of a random permutations under the Ewens distribution. This yields
an exact expression for the variance of this random variable. To the price of an
additional complexity, it is certainly possible to find such a decomposition for the
number of k-cycles in a random permutation. In subection 5.2, we give an analog
to Theorem 3.1 of [25, 32], which is a general bound of the Kolmogorov Rubinstein
distance to a Gaussian or Gamma distribution, in terms of our gradient D. We
apply this to a degenerate U-statistics of order 2.

2. Malliavin calculus for independent random variables

Let A be an at most denumerable set equipped with the counting measure:

L2(A) =

{

u : A→ R,
∑

a∈A

|ua|2 <∞
}

and 〈u, v〉L2(A) =
∑

a∈A

uava.

Let (Ea, a ∈ A) be a family of Polish spaces. For any a ∈ A, let Ea and Pa be
respectively a σ-field and a probability measure defined on Ea. We consider the
probability space EA =

∏

a∈AEa equipped with the product σ-field EA = ∨
a∈A

Ea
and the tensor product measure P = ⊗

a∈A
Pa.

The coordinate random variables are denoted by (Xa, a ∈ A). For any B ⊂ A, XB

denotes the random vector (Xa, a ∈ B), defined on EB =
∏

a∈B Ea equipped with
the probability PB = ⊗

a∈B
Pa.

A process U is a measurable random variable defined on (A× EA, P(A)⊗ EA).
We denote by L2(A×EA) the Hilbert space of processes which are square integrable
with respect to the measure

∑

a∈A εa⊗PA (where εa is the Dirac measure at point
a):

‖U‖2L2(A×EA) =
∑

a∈A

E
[

U2
a

]

and 〈U, V 〉L2(A×EA) =
∑

a∈A

E [UaVa] .

Our presentation follows closely the usual construction of Malliavin calculus.

Definition 2.1. A random variable F is said to be cylindrical if there exist a finite
subset B ⊂ A and a function FB : EB −→ L2(EA) such that F = FB ◦ rB , where
rB is the restriction operator:

rB : EA −→ EB

(xa, a ∈ A) 7−→ (xa, a ∈ B).

This means that F only depends on the finite set of random variables (Xa, a ∈ B).
It is clear that S is dense in L2(EA).

The very first tool to be considered is the discrete gradient, whose form has been
motivated in the introduction.

We first define the gradient of cylindrical functionals, for there is no question of
integrability and then extend the domain of the gradient to a larger set of functionals
by a limiting procedure. In functional analysis terminology, we need to verify the
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closability of the gradient: If a sequence of functionals converges to 0 and the
sequence of their gradients converges, then it should also converges to 0. This is
the only way to guarantee in the limiting procedure that the limit does not depend
on the chosen sequence.

Definition 2.2 (Discrete gradient). For F ∈ S, DF is the process of L2(A× EA)
defined by one of the following equivalent formulations: For all a ∈ A,

DaF (XA) = F (XA)−E [F (XA) | Ga]

= F (XA)−
∫

Ea

F (XAra, xa) dPa(xa)

= F (XA)−E′ [F (XAra, X
′
a)]

where X ′
a is an independent copy of Xa.

Remark 1. A straightforward calculation shows that for any F,G ∈ S, any a ∈ A,
we have

Da(FG) = F DaG+GDaF −DaF DaG−E [FG | Ga] +E [F | Ga]E [G | Ga] .
This formula has to be compared with the formula D(FG) = F DG+GDF for the
Gaussian Malliavin gradient (see (16) below) and D(FG) = F DG+GDF+DF DG
for the Poisson gradient (see (11) below).

For F ∈ S, there exists a finite subset B ⊂ A such that F = FB ◦ rB. Thus, for
every a /∈ B, F is Ga-measurable and then DaF = 0. This implies that

‖DF‖2L2(A×EA) = E

[

∑

a∈A

|DaF |2
]

= E

[

∑

a∈B

|DaF |2
]

<∞,

hence (DaF, a ∈ A) defines an element of L2(A× EA).

Definition 2.3. The set of simple processes, denoted by S0(l
2(A)) is the set of

random variables defined on A× EA of the form

U =
∑

a∈B

Ua 1a,

for B a finite subset of A and such that Ua belongs to S for any a ∈ B.

The key formula for the sequel is the so-called integration by parts. It amounts
to compute the adjoint of D in L2(A× EA).

Theorem 2.4 (Integration by parts). Let F ∈ S. For every simple process U ,

(3) 〈DF,U〉L2(A×EA) = E

[

F
∑

a∈A

DaUa

]

.

Thanks to the latter formula, we are now in position to prove the closability
of D: For (Fn, n ≥ 1) a sequence of cylindrical functionals,

(

Fn
n→∞−−−−−→
L2(EA)

0 and DFn
n→∞−−−−−−−→

L2(A×EA)
η

)

=⇒ η = 0.

Corollary 2.5. The operator D is closable from L2(EA) into L2(A× EA).
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We denote the domain ofD in L2(EA) by D, the closure of the class of cylindrical
functions with respect to the norm

‖F‖1,2 =
(

‖F‖2L2(EA) + ‖DF‖2L2(A×EA)

)
1
2

.

We could as well define p-norms corresponding to Lp integrability. However, for
the current applications, the case p = 2 is sufficient and the apparent lack of
hypercontractivity of the Ornstein-Ulhenbeck semi-group (see below Section 2.2)
lessens the probable usage of other integrability order.

Since D is defined as a closure, it is often useful to have a general criterion to
ensure that a functional F , which is not cylindrical, belongs to D. The following
criterion exists as is in the settings of Wiener and Poisson spaces.

Lemma 2.6. If there exists a sequence (Fn, n ≥ 1) of elements of D such that

(1) Fn converges to F in L2(EA),
(2) supn ‖DFn‖D is finite,

then F belongs to D and DF = limn→∞DFn in D.

2.1. Divergence. We can now introduce the adjoint of D, often called the diver-
gence as for the Lebesgue measure on Rn, the usual divergence is the adjoint of the
usual gradient.

Definition 2.7 (Divergence). Let

Dom δ =
{

U ∈ L2(A× EA) :

∃ c > 0, ∀F ∈ D, |〈DF,U〉L2(A×EA)| ≤ c ‖F‖L2(EA)

}

.

For any U belonging to Dom δ, δU is the element of L2(EA) characterized by the
following identity

〈DF,U〉L2(A×EA) = E [F δU ] , for all F ∈ D.

The integration by parts formula (3) entails that for every U ∈ Dom δ,

δU =
∑

a∈A

DaUa.

In the setting of Malliavin calculus for Brownian motion, the divergence of
adapted processes coincide with the Itô integral and the square moment of δU
is then given by the Itô isometry formula. We now see how this extends to our
situation.

Definition 2.8. The Hilbert space D(l2(A)) is the closure of S0(l
2(A)) with respect

to the norm

‖U‖2
D(l2(A)) = E

[

∑

a∈A

|Ua|2
]

+E

[

∑

a∈A

∑

b∈A

|DaUb|2
]

.

In particular, this means that the map DU = (DaUb, a, b ∈ A) is Hilbert-
Schmidt as a map from L2(A × EA) into itself. As a consequence, for two such
maps DU and DV , the map DU ◦DV is trace-class (see [42]) with

trace(DU ◦DV ) =
∑

a,b∈A

DaUb DbVa.
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The next formula is the counterpart of the Itô isometry formula for the Brownian
motion, sometimes called the Weitzenböck formula (see [34, Eqn. (4.3.3)]) in the
Poisson settings.

Theorem 2.9. The space D(l2(A)) is included in Dom δ. For any U, V belonging
to D(l2(A)),

(4) E [δU δV ] = E [trace(DU ◦DV )] .

Remark 2. It must be noted that compared to the analog identity for the Brow-
nian and the Poisson settings, the present formula is slightly different. For both
processes, with corresponding notations, we have

‖δU‖2L2 = ‖U‖2L2 + trace(DU ◦DV ).

The absence of the term ‖U‖2L2 gives to our formula a much stronger resemblance
to the analog equation for the Lebesgue measure. As in this latter case, we do
have here δ1 = 0 whereas for the Brownian motion, it yields the Itô integral of the
constant function equal to one.

If A = N, let Fn = σ{Xk, k ≤ n} and assume that U is adapted, i.e. for all
n ≥ 1, Un ∈ Fn. Then, DnUk = 0 as soon as n > k, hence

E
[

δU2
]

= E

[

∞
∑

n=1

(

Un −E [Un | Fn−1]
)2
]

,

i.e. E
[

δU2
]

is the L2(N × EN)-norm of the innovation process associated to U ,
which appears in filtering theory.

2.2. Ornstein-Uhlenbeck semi-group and generator. Having defined a gra-
dient and a divergence, one may consider the Laplacian-like operator defined by
L = −δD, which is also called the number operator in the settings of Gaussian
Malliavin calculus.

Definition 2.10. The number operator, denoted by L, is defined on its domain

DomL =

{

F ∈ L2(EA) : E

[

∑

a∈A

|DaF |2
]

<∞
}

by

(5) LF = −δDF = −
∑

a∈A

DaF.

The map L can be viewed as the generator of a symmetric Markov process X ,
which is ergodic, whose stationary probability is PA. Assume first that A is finite.
Consider (Z(t), t ≥ 0) a Poisson process on the half-line of rate |A|, and the process
X(t) = (X1(t), · · · , XN (t), t ≥ 0) which evolves according to the following rule: At
a jump time of Z,

• Choose randomly (with equiprobability) an index a ∈ A,
• Replace Xa by an independent random variable X ′

a distributed according
to Pa.

For every x ∈ EA, a ∈ A, set x¬a = (x1, · · · , xa−1, xa+1, · · · , x|A|). The generator
of the Markov process X is clearly given by

|A|
∑

a∈A

1

|A|

∫

Ea

(

F (x¬a, x
′
a)− F (x)

)

dPa(x
′
a) = −

∑

a∈A

DaF (x).
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The factor |A| is due to the intensity of the Poisson process Z which jumps at rate
|A|, the factor |A|−1 is due to the uniform random choice of an index a ∈ A. Thus,
for a finite set A, L coincides with the generator of X . If we denote by P = (Pt, t ≥
0) the semi-group of X : For any x ∈ EA, for any bounded f : EA → R,

Ptf(x) = E [f(X(t)) |X(0) = x] .

Then, (Pt, t ≥ 0) is a strong Feller semi-group on L∞(EA). This result still holds
when EA is denumerable.

Theorem 2.11. For any denumerable set A, L defined as in (5) generates a strong
Feller continuous semi-group (Pt, t ≥ 0) on L∞(EA).

As a consequence, there exists a Markov process X whose generator is L as de-
fined in (5). It admits as a core (a dense subset of its domain) the set of cylindrical
functions.

From the sample-path construction of X , the next result is straightforward for
A finite and can be obtained by a limiting procedure for A denumerable.

Theorem 2.12 (Mehler formula). For a ∈ A, xa ∈ EA and t > 0, let Xa(xa, t)
the random variable defined by

Xa(xa, t) =

{

xa with probability (1 − e−t),

X ′
a with probability e−t,

where X ′
a is a Pa-distributed random variable independent from everything else.

In other words, if P xa,t
a denotes the distribution of Xa(xa, t), P

xa,t
a is a convex

combination of εxa and Pa:

P xa,t
a = (1 − e−t) εxa + e−tPa.

For any x ∈ EA, any t > 0,

PtF (x) =

∫

EA

F (y) ⊗
a∈A

dPxa,t
a (ya).

It follows easily that (Pt, t ≥ 0) is ergodic and stationary:

lim
t→∞

PtF (x) =

∫

EA

F dPa and X(0)
law
= Pa =⇒ X(t)

law
= Pa.

We then retrieve the classical formula (in the sense that it holds as is for Brow-
nian motion and Poisson process) of commutation between D and the Ornstein-
Uhlenbeck semi-group.

Theorem 2.13. Let F ∈ L2(EA). For every a ∈ A, x ∈ EA,

(6) DaPtF (x) = e−tPtDaF (x).

3. Functional identities

This section is devoted to several functional identities which constitute the crux
of the matter if we want to do some computations with our new tools.

It is classical that the notion of adaptability is linked to the support of the
gradient.

Lemma 3.1. Assume that A = N and let Fn = σ{Xk, k ≤ n}. For any F ∈ D, F
is Fk-measurable if and only if DnF = 0 for any n > k. As a consequence, DF = 0
if and only if F = E [F ].
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It is also well known that, in the Brownian of Poisson settings, D and conditional
expectation commute.

Lemma 3.2. For any F ∈ D, for any k ≥ 1, we have

(7) Dk E [F |Fk] = E [DkF | Fk] .
The Brownian martingale representation theorem says that a martingale adapted

to the filtration of a Brownian motion is in fact a stochastic integral. The Clark
formula gives the expression of the integrand of this stochastic integral in terms of
the Malliavin gradient of the terminal value of the martingale. We here have the
analogous formula.

Theorem 3.3 (Clark formula). For A = N and F ∈ D,

F = E [F ] +

∞
∑

k=1

DkE [F | Fk] .

If A is finite and if there is no privileged order on A, we can write

F = E [F ] +
∑

B⊂A

(|A|
|B|

)−1
1

|B|
∑

b∈B

DbE [F |XB] .

The chaos decomposition is usually deduced from the Clark formula by iteration.
If we apply Clark formula to E [F | Fk], we get

DkE [F | Fk] =
∞
∑

j=1

DkDjE [F | Fj∧k] = DkE [F | Fk] ,

since j > k implies DjE [F | Fk] = 0 in view of Lemma 3.1. Furthermore, the same
holds when k > j since it is easily seen that DjDk = DkDj . For j = k, simply
remark that DkDk = Dk. Hence, it seems that we cannot go further this way to
find a potential chaos decomposition.

As mentioned in the Introduction, it may be useful to reverse the time arrow.
Choose an order on A so that A can be seen as N. Then, let

Hn = σ{Xk, k > n}.
and for any n ∈ {0, · · · , N − 1},

HN
n = Hn ∩ FN and HN

k = F0 = {∅, EA} for k ≥ N.

Note that HN
0 = FN and as in Lemma 3.1, F is Hk-measurable if and only if

DnF = 0 for any n ≤ k.

Theorem 3.4. For every F in D,

F = E [F ] +

∞
∑

k=1

Dk E [F | Hk−1] .

In the present context, the next result is a Poincaré type inequality as it gives
a bound for the variance of F in terms of the oscillations of F . In other context,
it turns to be called the Efron-Stein inequality [6]. It can be noted that both the
statement and the proof are similar in the Brownian and Poisson settings.

Corollary 3.5 (Poincaré or Efron-Stein inequality). For any F ∈ D,

var(F ) ≤ ‖DF‖2L2(A×EA).
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Another corollary of the Clark formula is the following covariance identity.

Theorem 3.6 (Covariance identity). For any F,G ∈ D,

(8) cov(F,G) = E

[

∑

k∈A

DkE [F | Fk] DkG

]

.

As for the other versions of the Malliavin calculus (Brownian, Poisson and
Rademacher), from (6), can be deduced another covariance identity.

Theorem 3.7. For any F,G ∈ D,

(9) cov(F,G) = E

[

∑

k∈A

DkF

∫ ∞

0

e−tPtE [DkG|Fk] dt
]

.

Then, using the so-called Herbst principle, we can derive a concentration in-
equality, which, as usual, requires an L∞ bound on the derivative of the functional
to be valid.

Theorem 3.8 (Concentration inequality). Let F for which there exists an order
on A with

M = sup
X∈EA

∞
∑

k=1

|DkF (X)|E [|DkF (X)| | Fk] <∞.

Then, for any x ≥ 0, we have

P(F −E [F ] ≥ x) ≤ exp

(

− x2

2M

)

·

In the Gaussian case, the concentration inequality is deduced from the logarith-
mic Sobolev inequality. This does not seem to be feasible in the present context
because D is not a derivation, i.e. does not satisfy D(FG) = F DG+GDF . How-
ever, we still have an LSI identity. For the proof of it, we follow closely the proofs
of [33, 41]. They are based on two ingredients: The Itô formula and the martingale
representation theorem. We get an ersatz of the former but the latter seems inac-
cessible as we do not impose the random variables to live in the same probability
space and to be real valued. Should it be the case, to the best of our knowledge,
the martingale representation formula is known only for the Rademacher space [40,
Section 15.1], which is exactly the framework of [33]. This lack of a predictable
representation explains the conditioning in the denominator of (10).

Theorem 3.9 (Logarithmic Sobolev inequality). Let a positive random variable
G ∈ L logL(EA). Then,

(10) E [G logG]−E [G] logE [G] ≤
∑

k∈A

E

[ |DkG|2
E [G | Gk]

]

.

In the usual vector calculus on R3, the Helhmoltz decomposition stands that a
sufficiently smooth vector field can be resolved in the sum of a curl-free vector field
and a divergence-free vector field. We have here the exact counterpart with our
definition of gradient.

Theorem 3.10 (Helhmoltz decomposition). Let U ∈ D(l2(A)). There exists a
unique couple (ϕ, V ) where ϕ ∈ L2(EA) and V ∈ L2(A× EA) such that E [ϕ] = 0,
δV = 0 and

Ua = Daϕ+ Va,
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for any a ∈ A.

4. Dirichlet structures

We now show that the usual Poisson and Brownian Dirichlet structures, associ-
ated to their respective gradient, can be retrieved as limiting structures of conve-
nient approximations. This part is directly inspired by [8] where with our notations,
the Xa’s are supposed to be real valued, independent and identically distributed
and the gradient be the ordinary gradient on RA.

For the definitions and properties of Dirichlet calculus, we refer to the first
chapter of [7]. On (EA,PA), we have already implicitly built a Dirichlet structure,
i.e. a Markov process X , a semi-group P and a generator L (see subsection 2.2).
It remains to define the Dirichlet form EA such that EA(F ) = E [F LF ] for any
sufficiently regular functional F .

Definition 4.1. For F ∈ D, define

EA(F ) = E

[

∑

a∈A

|DaF |2
]

= ‖DF‖2L2(A×EA).

The integration by parts formula means that this form is closed. Since we do
not assume any property on Ea for any a ∈ A and since we do not seem to have
a product rule formula for the gradient, we cannot assert more properties for EA.
However, following [8], we now show that we can reconstruct the usual gradient
structures on Poisson and Wiener spaces as well chosen limits of our construction.
For these two situations, we have a Polish space W , equipped with B its Borelean
σ-field and a probability measure P. There also exists a Dirichlet form E defined on
a set of functionals D. Let (EN , AN ) be a sequence of Polish spaces, all equipped
with a probability measure PN and their own Dirichlet form EN , defined on DN .
Consider maps UN from EN into W such that (UN)∗PN , the pullback measure of
PN by UN , converges in distribution to P. We assume that for any F ∈ D, the
map F ◦ UN belongs to DN . The image Dirichlet structure is defined as follows.
For any F ∈ D,

EUN (F ) = EN (F ◦ UN).
We adapt the following definition from [8].

Definition 4.2. With the previous notations, we say that ((UN )∗PN , N ≥ 1)
converges as a Dirichlet distribution whenever for any F ∈ Lip∩D,

lim
N→∞

EUN (F ) = E(F ).

4.1. Poisson point process. Let Y be a compact Polish space and NY be the
set of weighted configurations, i.e. the set of locally finite, integer valued measures
on Y. Such a measure is of the form

ω =

∞
∑

n=1

pn εζn ,

where (ζn, n ≥ 1) is a set of distinct points in Y with no accumulation point,
(pn, n ≥ 1) any sequence of positive integers. The topology on NY is defined by
the semi-norms

pf (ω) =

∣

∣

∣

∣

∣

∞
∑

n=1

pn f(ζn)

∣

∣

∣

∣

∣

,
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when f runs through the set of continuous functions on Y. It is known (see for
instance [21]) that NY is then a Polish space for this topology. For some finite
measure M on Y, we put on NY, the probability measure P such that the canonical
process is a Poisson point process of control measure M, which we consider without
loss of generality, to have total mass M(Y) = 1.

On NY, it is customary to consider the difference gradient (see [14, 29, 34]): For
any x ∈ Y, any ω ∈ NY,

(11) DxF (ω) = F (ω + εx)− F (ω).

Set

DP =

{

F : NY → R such that E

[∫

Y

|DxF |2 dM(x)

]

<∞
}

,

and for any F ∈ DP ,

E(F ) = E

[∫

Y

|DxF |2 dM(x)

]

.(12)

To see the Poisson point process as a Dirichlet limit, the idea is to partition
the set Y into N parts, CN1 , · · · , CNN such that M(CNk ) = pNk and then for each
k ∈ {1, · · · , N}, take a point ζNk into CNk so that the Poisson point process ω on Y

with intensity measure M is approximated by

ωN =

N
∑

k=1

ω(CNk ) εζNk .

We denote by PN the distribution of ωN . By computing its Laplace transform, it
is clear that PN converges in distribution to P. It remains to see this convergence
holds in the Dirichlet sense for the sequence of Dirichlet structures induced by our
approach for independent random variables.

Let (ζNk , k = 1, · · · , N) (respectively (pNk , k = 1, · · · , N)) be a triangular array
of points in Y (respectively of non-negative numbers) such that the following two
properties hold:
1) the pNk ’s tends to 0 uniformly:

(13) pN = sup
k≤N

pNk = O

(

1

N

)

;

2) the ζNk ’s are sufficiently well spread so that we have convergence of Riemann
sums: For any continuous and M-integrable function f : Y → R, we have

(14)

N
∑

k=1

f(ζNk ) pNk
N→∞−−−−→

∫

f(x) dM(x).

Take f = 1 implies that
∑

k p
N
k tends to 1 as N goes to infinity.

For any N and any k ∈ {1, · · · , N}, let µNk be the Poisson distribution on N, of
parameter pNk . In this situation, let EN = NN with µN = ⊗Nk=1µ

N
k . That means

we have independent random variables MN
1 , · · · ,MN

N , where MN
k follows a Poisson

distribution of parameter pNk for any k ∈ {1, · · · , N}. We turn these independent
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random variables into a point process by the map UN defined as

UN : NN −→ NY

(m1, · · · ,mN ) 7−→
N
∑

k=1

mk εζN
k
.

Lemma 4.3. For any F ∈ DP ,

(15) EUN (F )

=
N
∑

m=1

∞
∑

ℓ=0

E





(

∞
∑

τ=0

(

F (ωN(m) + ℓεζNm )− F (ωN(m) + τεζNm )
)

µNm(τ)

)2


µNm(ℓ),

where ωN(m) =
∑

k 6=mM
N
k εζNk .

Proof. According its very definition,

EUN (F ) =

N
∑

m=1

E





(

F (ωN(m) +MN
m εζNm )−

∞
∑

τ=0

F (ωN(m) + τεζNm )µNm(τ)

)2


 .

The result follows by conditioning with respect to MN
m , whose law is µNm. �

Since the vague topology on NY is metrizable, one could define Lipschitz func-
tions with respect to this distance. However, this turns out to be not sufficient for
the convergence to hold.

Definition 4.4. A function F : NY → R is said to be TV − Lip if F is continuous
for the vague topology and if for any ω, η ∈ NY,

|F (ω)− F (η)| ≤ distTV(ω, η),

where distTV represents the distance in total variation between two point measures,
i.e. the number of distinct points counted with multiplicity.

Theorem 4.5. For any F ∈ TV − Lip ∩ DP , with the notations of Lemma [4.3]
and (12),

EUN (F )
N→∞−−−−→ E(F ).

4.2. Brownian motion. For details on Gaussian Malliavin calculus, we refer to [28,
39]. We now consider P as the Wiener measure on W = C0([0, 1];R). Let
(hk, k ≥ 1) be an orthonormal basis of the Cameron-Martin space H ,

H =

{

f : [0, 1] → R, ∃ḟ ∈ L2 with f(t) =

∫ t

0

ḟ(s) ds

}

and ‖f‖H = ‖ḟ‖L2.

A function F : W → R is said to be cylindrical if it is of the form

F (ω) = f(δBv1, · · · , δBvn),
where v1, · · · , vn belong to H ,

δBv =

∫ 1

0

v(s) dω(s)

is the Wiener integral of v and f belongs to the Schwartz space S(Rn). For h ∈ H ,

(16) ∇hF (ω) =

n
∑

k=1

∂f

∂xk
(δBv1, · · · , δBvn)hk.



14 L. DECREUSEFOND AND H. HALCONRUY

The map ∇ is closable from L2(W ;R) to L2(W ;H). Thus, it is meaningful to
define DB as the closure of cylindrical functions for the norm

‖F‖1,2 = ‖F‖L2(W ) + ‖∇F‖L2(W ;H).

Definition 4.6. A function F : W → R is said to be H-C1 if

• for almost all ω ∈W , h 7−→ F (ω + h) is a continuous function on H,
• for almost all ω ∈W , h 7−→ F (ω+h) is continuously Fréchet differentiable

and this Fréchet derivative is continuous from H into R⊗H.

We still denote by ∇F the element of H such that

d

dτ
F (ω + τh)

∣

∣

∣

∣

τ=0

= 〈∇F (ω), h〉H .

For N ≥ 1, let

eNk (t) =
√
N 1[(k−1)/N, k/N)(t) and hNk (t) =

∫ t

0

eNk (s) ds.

The family (hNk , k = 1, · · · , N) is then orthonormal in H . For (Mk, k = 1, · · · , N)
a sequence of independent identically distributed random variables, centered with
unit variance, the random walk

ωN (t) =
N
∑

k=1

Mk h
N
k (t), for all t ∈ [0, 1],

is known to converge in distribution in W to P. Let EN = RN equipped with the
product measure PN = ⊗Nk=1ν where ν is the standard Gaussian measure on R.
We define the map UN as follows:

UN : EN −→W

m = (m1, · · · ,mN ) 7−→
N
∑

k=1

mk h
N
k .

It follows from our definition that:

Lemma 4.7. For any F ∈ L2(W ;R),

EUN (F ) =

N
∑

k=1

E

[

(

F (ωN )−E′
[

F (ωN(k) +M ′
k h

N
k )
])2
]

,

where ωN(k) = ωN −Mk h
N
k and M ′

k is an independent copy of Mk. The expectation

is taken on the product space RN+1 equipped with the measure PN ⊗ ν.

The definition of Lipschitz function we use here is the following:

Definition 4.8. A function F : W → R is said to be Lipschitz if it is H-C1 and
for almost all ω ∈W ,

|〈∇F (ω), h〉| ≤ ‖ḣ‖L1 .

In particular since eNk ≥ 0, this implies that

|〈∇F (ω), hNk 〉| ≤ hNk (1)− hNk (0) =
1√
N

·
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For F ∈ DB ∩ H-C1, we have

(17) F (ω + h)− F (ω) = 〈∇F (ω), h〉H + ‖ḣ‖L1 ε(ω, h),

where ε(ω, h) is bounded and goes to 0 in L2, uniformly with as ‖ḣ‖L1 tends to 0.

Theorem 4.9. For any F ∈ DB ∩ H-C1,

EUN (F )
N→∞−−−−→ E

[

‖∇F‖2H
]

= E(F ).

5. Applications

5.1. Representations. We now show that our Clark decomposition yields inter-
esting decomposition of random variables. For U -statistics, it boils down to the
Hoeffding decomposition.

Definition 5.1. For an integer m, let h : R
m → R be a symmetric function,

and X1, · · · , Xn, n random variables supposed to be independent and identically
distributed. The U -statistics of degree m and kernel h is defined, for any n ≥ m by

Un = U(X1, · · · , Xn) =

(

n

m

)−1
∑

A∈([n],m)

h(XA)

where ([n],m) denotes the set of ordered subsets A ⊂ [n] = {1, · · · , n}, of cardinal-
ity m.

More generally, for a set B, (B,m) denotes the set of subsets of B with m
elements.

If E [|h(X1, · · · , Xm)|] is finite, we define hm = h and for 1 ≤ k ≤ m− 1,

hk(X1, · · · , Xk) = E [h(X1, · · · , Xm) |X1, · · · , Xk] .

Let θ = E [h(X1, · · · , Xm)], consider g1(X1) = h1(X1)− θ, and

gk(X1, · · · , Xk) = hk(X1, · · · , Xk)− θ −
k−1
∑

j=1

∑

B∈([k],j)

gj(XB),

for any 1 ≤ k ≤ m. Since the variables X1, · · · , Xn are independent and identically
distributed, and the function h is symmetric, the equality

E [h(XA∪B) |XB] = E [h(XC∪B) |XB] ,

holds for any subsets A and C of [n]\B, of cardinality n− k.

Theorem 5.2 (Hoeffding decomposition of U-statistics, [23]). For any integer n,
we have

(18) Un = θ +
m
∑

k=1

H(k)
n

where H
(k)
n is the U -statistics based on kernel gk, i.e. defined by

H(k)
n =

(

n

k

)−1
∑

B⊂([n],k)

gk(XB).
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As mentioned above, reversing the natural order of A, provided that it exists, can
be very fruitful. We illustrate this idea by the decomposition of the number of fixed
points of a random permutation under Ewens distribution. It could be applied to
more complex functionals of permutations but to the price of increasingly complex
computations.

For every integer N , denote by SN the space of permutations on {1, · · · , N}.
We always identify SN as the subgroup of SN+1 stabilizing the element N+1. For
every k ∈ {1, · · · , N}, define Jk = {1, · · · , k} and

J = J1 × J2 × · · · × JN .
The coordinate map from J to Jk is denoted by Ik. Following [22], we have

Theorem 5.3. There exists a natural bijection Γ between J and SN .

Proof. To a sequence (i1, · · · , iN) where ik ∈ Jk, we associate the permutation

Γ(i1, · · · , iN) = (N, iN) ◦ (N − 1, iN−1) . . . ◦ (2, i2).
where (i, j) denotes the transposition between the two elements i and j.

To an element σN ∈ SN , we associate iN = σN (N). Then, N is a fixed point
of σN−1 = (N, iN) ◦ σN , hence it can be identified as an element σN−1 of SN−1.
Then, iN−1 = σN−1(N − 1) and so on for decreasing indices.

It is then clear that Γ is one-to-one and onto. �

In [22], Γ is described by the following rule: Start with permutation σ1 = (1), if
at the N -th step of the algorithm, we have iN = N then the current permutation is
extended by leaving N fixed, otherwise, N is inserted in σN−1 just before iN in the
cycle of this element. This construction is reminiscent of the Chinese restaurant
process (see [3]) where iN is placed immediately after N . An alternative construc-
tion of permutations is known as the Feller coupling (see [3]). In our notations, it
is given by

σ1 = (1); σN = σN−1 ◦ (σ−1
N−1(iN ), N).

Definition 5.4 (Ewens distribution). For some t ∈ R+, for any k ∈ {1, · · · , N},
consider the measure Pk defined on Jk by

Pk({j}) =



















1

t+ k − 1
if j 6= k,

t

t+ k − 1
for j = k.

Under the distribution P = ⊗kPk, the random variables (Ik, k = 1, · · · , N) are
independent with law given by P(Ik = j) = Pk({j}), for any k.

The Ewens distribution of parameter t on SN , denoted by Pt, is the push-forward
of P by the map Γ.

A moment of thought shows that a new cycle begins in the first construction for
each index where ik = k. Moreover, it can be shown that

Theorem 5.5 (see [22]). For any σ ∈ SN ,

Pt({σ}) = tcyc(σ)

(t+ 1)(t+ 2)× · · · × (t+N − 1)
,

where cyc(σ) is the number of cycles of σ.
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For any F , a measurable function on SN , we have the following diagram

(J , ⊗Nk=1Pk)

(SN , P
t) R

Γ F̃ = F ◦ Γ

F

We denote by i = (i1, · · · , iN ) a generic element of J and by σ = Γ(i).

Let C1(σ) denote the number of fixed points of the permutation σ and C̃1 =
C1 ◦Γ. For any k ∈ JN , the random variable Uk(σ) is the indicator of the event (k

is a fixed point of σ) and let ŨNk = Uk ◦Γ. The Clark formula with reverse filtration

shows that we can write ŨNk as a sum of centered orthogonal random variables as
in the Hoeffding decomposition of U-statistics (see Theorem 5.2).

Theorem 5.6. For any k ∈ {1, · · · , N},

(19) Ũk = 1(Ik=k)1(Im 6=k, m∈{k+1,··· ,N}).

and under Pt, ŨNk is Bernoulli distributed with parameter tpkαk, where for any
k ∈ {1, · · · , N},

pk =
1

t+ k − 1
and αk =

N
∏

j=k+1

j − 1

t+ j − 1
·

Moreover,

ŨNk = tpkαk +
(

1(Ik=k) − tpk

)

N
∏

m=k+1

1(Im 6=k)

− tpk

N−k−1
∑

j=1

t+ k − 1

t+ k + j − 2

(

1(Ik+j=k) − pk+j

)

N−k
∏

l=j+1

1(Ik+l 6=k).

Since

C̃1 =

N
∑

k=1

ŨNk ,

we retrieve the result of [4]:

E
[

C̃1

]

=
tN

t+N − 1
,

and the following decomposition of C̃1 can be easily deduced from the previous
theorem.
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Theorem 5.7. We can write

C̃1 = t

(

1− t− 1

N + t− 1

)

+

N
∑

l=1

DlŨ
N
l +

N
∑

l=2

t

t+ l − 2
Dl

(

l−1
∑

k=1

N
∏

m=l

1(Im 6=k)

)

= t

(

1− t− 1

N + t− 1

)

+

N
∑

l=1

(1(Il=l) −
t

t+ l − 1
)

N
∏

m=l+1

1(Im 6=l)

−
N−1
∑

l=2

t

t+ l − 2

l−1
∑

k=1

(

1(Il=k) −
1

t+ l − 1

) N
∏

m=l+1

1(Im 6=k).

Remark 3. Note that such a decomposition with the natural order on N would be
infeasible since the basic blocks of the definition of C̃1, namely the Ũk, are anticipa-
tive (following the vocabulary of Gaussian Malliavin calculus), i.e. Ũk ∈ σ(Ik+l, l =
0, · · · , N − k).

This decomposition can be used to compute the variance of C̃1. To the best of
our knowledge, this is the first explicit, i.e. not asymptotic, expression of it.

Theorem 5.8. For any t ∈ R, we get

var[C̃1] =
Nt

t+N − 1

(

t

t+N − 1
+ 1− 2t2

N

N
∑

k=1

1

t+ k − 1

)

·

We retrieve
var [C̃1] −−−−→

N→∞
t,

as can be expected from the Poisson limit.

5.2. Stein-Malliavin criterion. For (E, d) a Polish space, let M1(E) the set
of probability measures on E. It is usually equipped with the weak convergence
generated by the semi-norms

pf (P) =

∣

∣

∣

∣

∫

E

f dP

∣

∣

∣

∣

for any f bounded and continuous from E to R. Since E is Polish, we can find a
denumerable family of bounded continuous functions (fn, n ≥ 1) which generates
the Borelean σ-field on E and the topology of the weak convergence can be made
metric by considering the distance:

ρ(P,Q) =

∞
∑

n=1

2−n ψ(pfn(P−Q))

where ψ(x) = x/(1+x). Unfortunately, this definition is not prone to calculations so
that it is preferable to use the Kolmogorov-Rubinstein (or Wasserstein-1) distance
defined by

κ(P,Q) = sup
ϕ∈Lip1

∣

∣

∣

∣

∫

E

ϕdP−
∫

E

ϕdQ

∣

∣

∣

∣

where

ϕ ∈ Lipr ⇐⇒ sup
x 6=y∈E

|ϕ(x) − ϕ(y)|
d(x, y)

≤ r.

Theorem 11.3.1 of [16] states that the distances κ and ρ yield the same topology.
When E = R, the Stein’s method is one efficient way to compute the κ distance
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between a measure and the Gaussian distribution. If E = Rn, for technical reasons,
it is often assumed that the test functions are more regular than simply Lipschitz
continuous and we are led to compute

κH(P,Q) = sup
ϕ∈H

∣

∣

∣

∣

∫

E

ϕdP−
∫

E

ϕdQ

∣

∣

∣

∣

where H is a space included in Lip1 like the set of k-times differentiable functions
with derivatives up to order k bounded by 1.

The setting in which we need to compute a KR distance is very often the situation
in which we have another Polish spaceG with a probability measure µ and a random
variable F with value in E. The objective is then to compare some measure P on E
and PF = F∗µ the distribution of F , i.e. the push-forward of µ by the application
F . This means that we have to compute

(20) sup
ϕ∈H

∣

∣

∣

∣

∫

E

ϕdP−
∫

G

ϕ ◦ F dµ

∣

∣

∣

∣

.

As mentioned in Section 1, when using the Stein’s method, we first characterize P

by a functional identity and then use different tricks to transform (20) in a more
tractable expression. The usual tools are exchangeable pairs, coupling or Malliavin
integration by parts. For the latter to be possible requires that we do have a Malli-
avin structure on the measured space (G,µ). In [25, 32], generic theorems are given
which link κH(P,PF ) with some functionals of the gradient of F . For instance, if
(G,µ) is the space of locally finite configurations on a space g, equipped with the
Poisson distribution of control measure σ and P is the Gaussian distribution in R,

(21) κH(P,PF ) ≤ E

[∣

∣

∣

∣

1−
∫

g

DzF DzL
−1F dσ(z)

∣

∣

∣

∣

]

+

∫

g

E
[

|DzF |2|DzL
−1F |

]

dσ(z),

where D is the Poisson-Malliavin gradient (see Eqn. (11)), L = D∗D the associated
generator and H is the space of twice differentiable functions with first derivative
bounded by 1 and second order derivative bounded by 2. In [17], an analog re-
sult is given when P is a Gamma distribution and (G,µ) is either a Poisson or a
Gaussian space. To the best of our knowledge, when µ is the distribution of a fam-
ily of independent random variables, the distance κH(P,PF ) is evaluated through
exchangeable pairs or coupling, which means to construct an ad-hoc structure for
each situation at hand. We intend to give here an exact analog to (21) in this
situation using only our newly defined operator D. Our first result concerns the
Gaussian approximation. To the best of our knowledge, there does not yet exist
a Stein criterion for Gaussian approximation which does not rely on exchangeable
pairs or any other sort of coupling.

Remark 4. In what follows, we deal with functions F defined on EA, that means
that F is a function of XA and as such, we should use the notation F (XA). For
the sake of notations, we identify F and F (XA).
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Theorem 5.9. Let P denote the standard Gaussian distribution on R. For any
F : EA → R such that E [F ] = 0 and F ∈ DomD. Then,

κH(P,PF ) ≤ E

[∣

∣

∣

∣

∣

1−
∑

a∈A

DaF (−DaL
−1)F

∣

∣

∣

∣

∣

]

+
∑

a∈A

E

[∫

EA

(

F − F (XA¬a;x)
)2

dPa(x) |DaL
−1F |

]

.

The proof of this version follows exactly the lines of the proof of Theorem 3.1 in
[25, 32] but we can do slightly better by changing a detail in the Taylor expansion.

Theorem 5.10. Let P denote the standard Gaussian distribution on R. For any
F : EA → R such that E [F ] = 0 and F ∈ DomD. Then,

(22) κH(P,PF ) ≤ sup
ψ∈Lip2

E

[

ψ(F )−
∑

a∈A

ψ(F (X ′
¬a))DaF (−DaL

−1)F

]

+
∑

a∈A

E

[∫

EA

(

F − F (XA¬a;x)
)2

dPa(x) |DaL
−1F |

]

,

where X ′
¬a = XA¬a ∪ {X ′

a}.

This formulation may seem cumbersome, but it easily gives a close to the usual
bound in the Lyapounov central limit theorem, with a non optimal constant (see
[18]).

Corollary 5.11. Let (Xn, n ≥ 1) be a sequence of thrice integrable, independent
random variables. Denote

σ2
n = var(Xn), s

2
n =

n
∑

j=1

σ2
j and Yn =

1

sn

n
∑

j=1

(Xj −E [Xj ]) .

Then,

κH(P,PYn) ≤
2(
√
2 + 1)

s3n

n
∑

j=1

E
[

|Xj −E [Xj] |3
]

.

Remark 5. If we use Theorem 5.9, we get

κH(P,PYn) ≤ E





∣

∣

∣

∣

∣

∣

1−
n
∑

j=1

X2
j

s2n

∣

∣

∣

∣

∣

∣



+
2

s3n

n
∑

j=1

E
[

|Xj −E [Xj ] |3
]

and the quadratic term is easily bounded only if the Xi’s are such that E
[

X4
i

]

is
finite, which in view of Corollary 5.11 is a too stringent condition.

The functional which appears in the central limit theorem is the basic example
of U-statistics. If we want to go further and address the problem of convergence of
more general U-statistics, we need to develop a similar apparatus for the Gamma
distribution. Recall that the Gamma distribution of parameter r and λ has density

fr,λ(x) =
λr

Γ(r)
xr−1e−λx 1R+(x).
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Let Yr,λ ∼ Γ(r, λ), it has mean r/λ and variance r/λ2. Denote by Y r,λ = Yr,λ−r/λ.
As described in [20], Z ∼ Y r,λ = Yr,λ − r/λ if and only if E [Lr,λf(Z)] = 0 for any
f once differentiable, where

Lr,λf(y) =
1

λ

(

y +
r

λ

)

f ′(y)− yf(y).

The Stein equation

(23) Lr,λf(y) = g(y)−E
[

g(Y r,λ)
]

has a solution fg which satisfies

(24) ‖fg‖∞ ≤ ‖g′‖∞, ‖f ′
g‖∞ ≤ 2λmax

(

1,
1

r

)

‖g′‖∞

and ‖f ′′
g ‖∞ ≤ 2λ

(

max

(

λ,
λ

r

)

‖g′‖∞ + ‖g′′‖∞
)

,

noting that fg is solution of (23) if and only if hg : x 7→ 1

λ
f
(

x− r

λ

)

solves

xh′(x) + (r − λx)h(x) = g(x)−E [g(Yr,λ)] ,

studied in [2, 17].

Theorem 5.12. Let H is the set of twice differentiable functions with first and
second derivative bounded by 1. There exists c > 0 such that for any F ∈ DomD
with E [F ] = 0

(25) κH(PF , PY r,λ
) ≤ cE

[∣

∣

∣

∣

∣

1

λ
F +

r

λ2
−
∑

a∈A

DaF (−DaL
−1)F

∣

∣

∣

∣

∣

]

+ c
∑

a∈A

E

[∫

EA

(

F (XA)− F (XA¬a;x)
)2

dPa(x) |DaL
−1F |

]

.

This theorem reads exactly as [17, Theorem 1.5] for Poisson functionals and is
proved in a similar fashion.

Remark 6. The generalization of this result to multivariate Gamma distribution
will be considered in a forthcoming paper. The difficulty lies in the regularity es-
timates of the solution of the Stein equation associated to multivariate Gamma
distribution, which require lengthy calculations.

As a corollary, we obtain the KR distance between a degenerate U-statistics of
order 2 and a Gamma distribution. We restricted ourselves to simple second order
U-statistics for the sake of simplicity and brevity. Compared to the more general
[17, Theorem 1.1], the computations are here greatly simplified by the absence of
exchangeable pairs.

Theorem 5.13. Let A = {1, · · · , n} and (Xi, i ∈ A) a family of independent and
identically distributed real-valued random variables such that

E [X1] = 0, E
[

X2
1

]

= σ2 and E
[

X4
1

]

<∞.

Consider the random variable

F =
2

n− 1

∑

(i,j) 6=∈A

XiXj
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where (i, j)6= means that we enumerate all the couples (i, j) with distinct compo-
nents. Then, there exists c > 0, independent of n, such that

(26) κH(PF , PY
1/2,1/2σ2

) ≤ c
σ2

√
n
E
[

X4
1

]

.

The proof of Theorem 5.13 is rich of insights. In Gaussian, Poisson or Rademacher
contexts, the computation of L−1F is easily done when there exists a chaos decom-
position since L operates as a dilation on each chaos (see [25, 26, 32]). In [35,
Lemma 3.4 and below], a formula for L−1 of Poisson driven U-statistics is given,
not resorting to the chaos decomposition. It is based on the fact that L applied to
a U-statistics F of order k yields kF plus a U-statistics of order (k− 1). Then, the
construction of an inverse formula can be made by induction. In our framework, the
action of L on a U-statistics yields kF plus a U-statistics of order k so that no in-
duction seems possible. However, for an order k U-statistics which is degenerate of
order (k−1), we have LF = kF . For k = 2, this hypothesis of degeneracy is exactly
the sufficient condition to have a convergence towards a Gamma distribution.

The decomposition (36) (see below) is enlightening by itself: The term 〈DF, (DL−1)F 〉L2(A)

is a U-statistics of order 3. The second order part of its Hoeffding decomposition
cancels with the variance term (2σ4). The term 2σ2F is canceled by the third
order term of its Hoeffding decomposition. It is this term which defines the rate of
convergence as all the other terms tend to 0 as n−1. This procedure paves the way
for the analysis of higher order U-statistics with degeneracy of order 1, which are
also known to converge to a Gamma distribution.

6. Proofs

6.1. Proofs of Section 2.

Proof of Theorem 2.4. The process trace(DU) = (DaUa, a ∈ B) belongs to L2(A×
EA): Using the Jensen inequality, we have

(27) ‖ trace(DU)‖2L2(A×EA) = E

[

∑

a∈B

|DaUa|2
]

≤ 2
∑

a∈B

E
[

U2
a

]

<∞.

Moreover,

〈DF,U〉L2(A×EA) = E

[

∑

a∈A

(F −E [F | Ga]) Ua
]

= E

[

∑

a∈B

(F −E [F | Ga]) Ua
]

= E

[

F
∑

a∈B

(Ua −E [Ua | Ga])
]

,

since the conditional expectation is a projection in L2(EA). �

Proof of corollary 2.5. Let (Fn, n ≥ 1) be a sequence of random variables defined
on S such that Fn converges to 0 in L2(EA) and the sequence DFn converges to η
in L2(A× EA). Let U be a simple process. From the integration by parts formula
(3)

E

[

∑

a∈A

DaFn Ua

]

= E

[

Fn
∑

a∈A

DaUa

]
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where
∑

a∈A

DaUa ∈ L2(EA) in view of (27). Then,

〈η, U〉L2(A×EA) = lim
n→∞

E

[

Fn
∑

a∈A

DaUa

]

= 0,

for any simple process U . It follows that η = 0 and then the operator D is closable
from L2(EA) to L2(A× EA). �

Proof of Lemma 2.6. Since supn ‖DFn‖D is finite, there exists a subsequence which
we still denote by (DFn, n ≥ 1) weakly convergent in L2(A × EA) to some limit
denoted by η. For k > 0, let nk be such that ‖Fm − F‖L2 < 1/k for m ≥ nk.
The Mazur’s Theorem implies that there exists a convex combination of elements
of (DFm,m ≥ nk) such that

∥

∥

∥

Mk
∑

i=1

αkiDFmi − η
∥

∥

∥

L2(A×EA)
< 1/k.

Moreover, since the αki are positive and sums to 1,

∥

∥

∥

Mk
∑

i=1

αki Fmi − F
∥

∥

∥

L2(EA)
≤ 1/k.

We have thus constructed a sequence

F k =

Mk
∑

i=1

αki Fmi

such that F k tends to F in L2 and DF k converges in L2(A × EA) to a limit. By
the construction of D, this means that F belongs to D and that DF = η. �

Proof of Theorem 2.11. To prove the existence of (Pt, t ≥ 0) for a countable set,
we apply the Hille-Yosida theorem:

Proposition 6.1 (Hille-Yosida). A linear operator L on L2(EA) is the generator
of a strongly continuous contraction semigroup on L2(EA) if and only if

(1) DomL is dense in L2(EA).
(2) L is dissipative i.e. for any λ > 0, F ∈ DomL,

‖λF − LF‖L2(EA) ≥ λ‖F‖L2(EA).

(3) Im(λ Id−L) dense in L2(EA).

We know that S ⊂ DomL and that S is dense in L2(EA), then so does DomL.
Let (An, n ≥ 1) an increasing sequence of subsets of A such that ∪n≥1An = A.

For F ∈ L2(EA), let Fn = E [F | FAn ]. Since (Fn, n ≥ 1) is a square integrable
martingale, Fn converges to F both almost-surely and in L2(EA). For any n ≥ 1, Fn
depends only on XAn . Abusing the notation, we still denote by Fn its restriction to
EAn so that we can consider LnFn where Ln is defined as above on EAn . Moreover,
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according to Lemma 3.2, DaFn = E [DaF | FAn ], hence

λ2‖Fn‖2L2(EA) ≤ ‖λFn − LnFn‖2L2(EAn ) = E





(

λFn +
∑

a∈A

DaFn

)2




= E



E

[

λF +
∑

a∈A

DaF
∣

∣

∣FAn

]2




n→∞−−−−→ ‖λF − LF‖2L2(EA).

Therefore, point (2) is satisfied.
Since An is finite, there exists Gn ∈ L2(EAn) such that

Fn = (λ Id−Ln)Gn(XAn) = λGn(XAn) +
∑

a∈An

DaGn(XAn)

= λG̃n(XA) +
∑

a∈An

DaG̃n(XA) = λG̃n(XA) +
∑

a∈A

DaG̃n(XA),

where G̃n(XA) = Gn(XAn) depends only on the components whose index belongs
to An. This means that Fn belongs to the range of λ Id−L and we already know
it converges in L2(EA) to F . �

Proof of Theorem 2.13. For A finite, denote by Za the Poisson process of intensity 1
which represents the time at which the a-th component is modified in the dynamics
of X . Let τa = inf{t ≥ 0, Za(t) 6= Za(0)} and remark that τa is exponentially
distributed with parameter 1, hence

E [F (X(t))1t≥τa |X(0) = x]

= (1− e−t)E

[∫

Ea

F (X¬a(t), x
′
a) dPa(x

′
a)
∣

∣

∣X(0) = x

]

= (1− e−t)E [E [F (X(t)) | Ga] |X(0) = x]

= E [E [F (X(t)) | Ga]1t≥τa |X(0) = x] .

Then,

DaPtF (x) = PtF (x) −E [PtF (x) | Ga]
= E [(F (X(t))−E [F (X(t)) | Ga])1t<τa |X(0) = x]

+E [(F (X(t))−E [F (X(t)) | Ga])1t≥τa |X(0) = x]

= e−tPtDaF (x).

For A infinite, let (An, n ≥ 1) an increasing sequence of finite subsets of A such
that ∪n≥1An = A. For F ∈ L2(EA), let Fn = E [F | FAn ]. Since P is a contraction
semi-group, for any t, PtFn tends to PtF in L2(EA) as n goes to infinity. From
the Mehler formula, we known that PtFn = Pnt Fn where Pn is the semi-group
associated to An, hence

(28) DaPtFn = DaP
n
t Fn = e−tPnt DaFn.



MALLIAVIN AND DIRICHLET STRUCTURES FOR INDEPENDENT RANDOM VARIABLES25

Moreover,

E

[

∑

a∈An

|DaPtFn|2
]

= e−2t
∑

a∈An

E
[

|PtDaFn|2
]

≤ e−2t
∑

a∈An

E
[

|DaFn|2
]

= e−2t
∑

a∈An

E
[

|E [DaF | FAn ] |2
]

≤ e−2t
∑

a∈An

E
[

|DaF |2
]

≤ e−2t‖DF‖2
D
.

According to Lemma [2.6], this means that PtF belongs to D. Let n go to infinity
in (28) yields (6). �

Proof of Lemma 2.9. For U and V in S0(l
2(A)), from the integration by parts for-

mula,

E [δU δV ] = 〈Dδ(U), V 〉L2(A×EA)

= E

[

∑

a∈A

Da(δU)Va

]

= E





∑

(a,b)∈A2

VaDaDbUb





= E





∑

(a,b)∈A2

VaDbDaUb





= E





∑

(a,b)∈A2

DbVaDaUb



 = E [trace(DU ◦DV )] .

It follows that E
[

δU2
]

≤ ‖U‖2
D(l2(A)). Then, by density, D(l2(A)) ⊂ Dom δ and

Eqn. (4) holds for U and V in Dom δ. �

6.2. Proofs of Section 3.

Proof of Lemma 3.1. Let k ∈ A. Assume that F ∈ Fk. Then, for every n > k, F
is Gn-measurable and DnF = 0.
Let F ∈ D such that DnF = 0 for every n > k. Then F is Gn-measurable for any
n > k. From the equality Fk = ∩

n>k
Gn, it follows that F is Fk-measurable. �

Proof of Lemma 7. For any k ≥ 1, Fk ∩ Gk = Fk−1, hence

DkE [F | Fk] = E [F |Fk]−E [F | Fk−1] = E [DkF | Fk] .

The proof is thus complete. �
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Proof of Theorem 3.3. Let F an Fn-measurable random variable. It is clear that

F −E [F ] =

n
∑

k=1

(E [F | Fk]−E [F | Fk−1]) =

n
∑

k=1

DkE [F | Fk] .

For F ∈ D, apply this identity to Fn = E [F | Fn] to obtain

Fn −E [F ] =

n
∑

k=1

DkE [F | Fk] .

Remark that for l > k, in view of Lemma 3.1,

(29) E [Dk E [F | Fk]DlE [F | Fl]] = E [DlDk E [F | Fk]E [F | Fl]] = 0,

since Dk E [F | Fk] is Fk-measurable. Hence, we get

E
[

|F −E [F ] |2
]

≥ E
[

|Fn −E [F ] |2
]

=
n
∑

k=1

E
[

DkE [F | Fk]2
]

.

Thus, the sequence (DkE [F | Fk] , k ≥ 1) belongs to l2(N) and the result follows
by a limiting procedure.

We now analyze the non-ordered situation. If A is finite, each bijection between
A and {1, · · · , n} defines an order on A. Hence, there are |A| ! possible filtrations.
Each term of the form

DikE [F |Xi1 , · · · , Xik ]

appears (k − 1)! (|A| − k)! times since the order of Xi1 , · · · , Xik−1
is irrelevant to

the conditioning. The result follows by summation then renormalization of the
identities obtained for each filtration. �

Proof of Theorem 3.4. Remark that

DkE
[

F | HN
k−1

]

= E
[

F | HN
k−1

]

−E
[

F | HN
k−1 ∩ Gk

]

= E
[

F | HN
k−1

]

−E
[

F | HN
k

]

.

For F ∈ FN , since the successive terms collapse, we get

F −E [F ] = E
[

F | HN
0

]

−E
[

F | HN
N

]

=
N
∑

k=1

DkE
[

F | HN
k−1

]

=
∞
∑

k=1

DkE
[

F | HN
k−1

]

,

by the very definition of the gradient map. As in (29), we can show that for any
N ,

E
[

Dk E
[

F | HN
k−1

]

Dl E
[

F | HN
l−1

]]

= 0, for k 6= l.

Consider FN = E [F | FN ] and proceed as in the proof of Lemma 3.3 to conclude. �
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Proof of Corollary 3.5. According to (29) and (7), we have

var(F ) = E





∣

∣

∣

∣

∣

∑

k∈A

DkE [F |Fk]
∣

∣

∣

∣

∣

2




= E

[

∑

k∈A

∣

∣

∣
DkE [F |Fk]

∣

∣

∣

2
]

= E

[

∑

k∈A

∣

∣

∣
E [Dk F |Fk]

∣

∣

∣

2
]

≤ E

[

∑

k∈A

E
[

|DkF |2|Fk
]

]

= E

[

∑

k∈A

|DkF |2
]

,

where the inequality follows from then Jensen inequality. �

Proof of Theorem 3.6. Let F,G ∈ D, the Clark formula entails

cov(F,G) = E [(F −E [F ])(G −E [G])]

= E





∑

k,l∈A

DkE [F | Fk] DlE [G | Fl]





= E

[

∑

k∈A

DkE [F | Fk] DkE [G | Fk]
]

= E

[

∑

k∈A

DkF DkE [G | Fk]
]

where we have used (29) in the third equality and the identity DkDk = Dk in the
last one. �

Proof of Theorem 3.7. Let F,G ∈ L2(EA).

cov(F,G) = E

[

∑

k∈A

DkE [F |Fk]DkE [G|Fk]
]

= E

[

∑

k∈A

DkE [F |Fk]
(

−
∫ ∞

0

LPtE [G|Fk] dt
)

]

=

∫ ∞

0

E

[

∑

k∈A

DkE [F |Fk]
(

∑

l∈A

DlPtE [G|Fk] dt
)]

=

∫ ∞

0

e−tE

[

∑

k∈A

DkF PtDkE [G|Fk]
]

dt

when we have used the orthogonality of the sum, (6) and the Fk-measurability of
PtDkE [G|Fk] to get the last equality. �
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Proof of Theorem 3.8. Assume with no loss of generality that F is centered. Ap-
ply (8) to θF and eθF ,

θ
∣

∣E
[

FeθF
]∣

∣ = θ

∣

∣

∣

∣

∣

E

[

∑

k∈A

DkF DkE
[

eθF | Fk
]

]∣

∣

∣

∣

∣

≤ θ
∑

k∈A

E

[

|DkF |
∣

∣

∣DkE
[

eθF | Fk
]

∣

∣

∣

]

.

Recall that

DkE
[

eθF | Fk
]

= E′
[

E
[

eθF | Fk
]

−E
[

eθF (X¬k,X
′
k) | Fk

]]

= E

[

E′
[

eθF − eθF (X¬k,X
′
k)
] ∣

∣

∣Fk
]

= E
[

eθF E′
[

1− e−θ∆kF
]

∣

∣

∣Fk
]

where ∆kF = F − F (X¬k, X
′
k) so that DkF = E′ [∆kF ].

Since (x 7→ 1− e−x) is concave, we get

DkE
[

eθF | Fk
]

≤ E
[

eθF (1 − e−θDkF ) | Fk
]

≤ θ E
[

eθF |DkF | | Fk
]

.

Thus,

∣

∣E
[

FeθF
]∣

∣ ≤ θ E

[

eθF
∞
∑

k=1

|DkF |E [|DkF | | Fk]
]

≤M θ E
[

eθF
]

.

By Gronwall lemma, this implies that

E
[

eθF
]

≤ exp

(

θ2

2
M

)

·

Hence,

P(F −E [F ] ≥ x) = P(eθ(F−E[F ])) ≥ eθx) ≤ exp(−θx+
θ2

2
M).

Optimize with respect to θ gives θopt = x/M , hence the result. �

Proof of Theorem 3.9. We follow closely the proof of [41] for Poisson process. Let
G ∈ L2(EA) be a positive random variable such that DG ∈ L2(A × EA). For any
non-zero integer n, define Gn = min(max( 1n , G), n), for any k, Lk = E [Gn|Fk] and
L0 = E [Gn]. We have,

Ln logLn − L0 logL0 =

n−1
∑

k=0

Lk+1 logLk+1 − Lk logLk

=
n−1
∑

k=0

logLk(Lk+1 − Lk) +
n−1
∑

k=0

Lk+1(logLk+1 − logLk).
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Note that (logLk(Lk+1 − Lk), k ≥ 0) and (Lk+1 − Lk, k ≥ 0) are martingales,
hence

E [Ln logLn − L0 logL0]

= E

[

n−1
∑

k=0

Lk+1 logLk+1 − Lk+1 logLk − Lk+1 + Lk

]

= E

[

n−1
∑

k=0

Lk+1 logLk+1 − Lk logLk − (logLk + 1)(Lk+1 − Lk)

]

= E

[

n−1
∑

k=0

ℓ(Lk, Lk+1 − Lk)

]

,

where the function ℓ is defined on Θ = {(x, y) ∈ R2 : x > 0, x+ y > 0} by

ℓ(x, y) = (x + y) log(x+ y)− x log x− (log x+ 1)y.

Since ℓ is convex on Θ, it comes from the Jensen inequality for conditional expec-
tations that

n−1
∑

k=0

E [ℓ(Lk, Lk+1 − Lk)] =

n−1
∑

k=0

E [ℓ(E [Gn | Fk] , Dk+1E [Gn | Fk+1])]

=

n
∑

k=1

E [ℓ(E [Gn | Fk−1] ,E [DkGn | Fk])]

≤
n
∑

k=1

E [E [ℓ(E [Gn | Gk] , DkGn) | Fk]]

=

n
∑

k=1

E [ℓ(E [Gn | Gk] , DkGn)]

=
∞
∑

k=1

E [ℓ(E [Gn | Gk] , DkGn)] .

We know from [41] that for any non-zero integer k, ℓ(E [Gn | Gk] , DkGn) converges
increasingly to ℓ(E [G | Gk] , DkG) P-a.s., hence by Fatou Lemma,

E [G logG]−E [G] logE [G] ≤
∞
∑

k=1

E [ℓ(E [G | Gk] , DkG)] .

Furthermore, for any (x, y) ∈ Θ, ℓ(x, y) ≤ |y|2/x, then,

E [G logG]−E [G] logE [G] ≤
∞
∑

k=1

E

[ |DkG|2
E [G | Gk]

]

·

The proof is thus complete. �

Proof of Theorem 3.10. We first prove the uniqueness. Let (ϕ, V ) and (ϕ′, V ′) two
convenient couples. We haveDa(ϕ−ϕ′) = V ′

a−Va for any a ∈ A and
∑

a∈ADa(V
′
a−
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Va) = 0, hence

0 = E

[

(ϕ− ϕ′)
∑

a∈A

Da(V
′
a − Va)

]

= E

[

∑

a∈A

Da(ϕ− ϕ′)(V ′
a − Va)

]

= E

[

∑

a∈A

(V ′
a − Va)

2

]

.

This implies that V = V ′ and D(ϕ − ϕ′) = 0. The Clark formula (Theorem 3.3)
entails that 0 = E [ϕ− ϕ′] = ϕ− ϕ′.

We now prove the existence. Since E [Daϕ | Ga] = 0, we can choose

Va = E [Ua | Ga] ,

which implies Daϕ = DaUa, and guarantees δV = 0. Choose any ordering of the
elements of A and remark that, in view of (29),

E





(

∞
∑

k=1

E [DkUk | Fk]
)2


 = E





(

∞
∑

k=1

DkE [Uk | Fk]
)2




= E

[

∞
∑

k=1

(

DkE [Uk | Fk]
)2
]

≤
∞
∑

k=1

E
[

|DkUk|2
]

≤ ‖U‖2
D(l2(A)),

hence

ϕ =

∞
∑

k=1

E [DkUk | Fk] ,

defines a square integrable random variable of null expectation, which satisfies the
required property. �

6.3. Proofs of Section 4.

Proof of Theorem 4.5. Starting from (15), the terms with τ = 0 can be decomposed
as

e−2pNm

N
∑

m=1

E

[

(

F (ωN(m) + εζNm )− F (ωN(m))
)2
]

µNm(1) +RN0 .

Since F belongs to TV − Lip,

RN0 ≤
N
∑

m=1

∞
∑

ℓ=2

l2µNm(l) ≤ c1N(pN )2E
[

(Poisson(pN ) + 2)2
]

≤ c2N(pN )2,

where the c1 and c2 are irrelevant constants. As NpN is bounded, RN0 goes to 0 as
N grows to infinity. For the very same reasons, the sum of the terms of (15) with
τ ≥ 1 converge to 0, thus

lim
N→∞

EUN (F ) = lim
N→∞

N
∑

m=1

e−2pNm E

[

(

F (ωN(m) + εζNm )− F (ωN(m))
)2
]

pNm.
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Consider now the space N
ζ
Y
= NY×{ζNk , k = 1, · · · , N} with the product topology

and probability measure P̃N = PN ⊗∑k p
N
k εζNk . Let

ψ : NY × {ζNk , k = 1, · · · , N} −→ E

(ω, ζ) 7−→
(

F (ω − (ω(ζ) − 1)εζ)− F (ω − ω(ζ)εζ)
)2

.

Then, we can write

N
∑

m=1

E

[

(

F (ωN(m) + εζNm )− F (ωN(m))
)2
]

pNm =

∫

N
ζ
Y

ψ(ω, ζ) dP̃N (ω, ζ).

Under P̃N , the random variables ω and ζ are independent. Equation (14) means
that the marginal distribution of ζ tends to M (assumed to be a probability measure
at the very beginning of this construction). Moreover, we already know that PN

converges in distribution to P. Hence, P̃N tends to P ⊗M as N goes to infinity.
Since F is in TV − Lip, ψ is continuous and bounded, hence the result. �

Proof of Theorem 4.9. For F ∈ DB ∩ H-C1, in view of (17), we have

F (ωN)− F (ωN(k) +M ′
k h

N
k )

= (Mk −M ′
k) 〈∇F (ωN(k)), hNk 〉H +

Mk −M ′
k√

N
ε(ωN(k), h

N
k ).

Hence,

N
∑

k=1

E

[

(

F (ωN )−E′
[

F (ωN(k) +M ′
k h

N
k )
])2
]

=

N
∑

k=1

E

[

(

Mk 〈∇F (ωN(k)), hNk 〉H +E′

[

Mk −M ′
k√

N
ε(ωN(k), h

N
k )

]

)2
]

=

N
∑

k=1

E
[

〈∇F (ωN(k)), hNk 〉2H
]

+ Rem,

and

Rem ≤ c

N

N
∑

k=1

E

[

ε(ωN(k), h
N
k )2

]

N→∞−−−−→ 0,

by the Césaro theorem. It follows that EUN (F ) has the same limit as

N
∑

k=1

E
[

〈∇F (ωN(k)), hNk 〉2H
]

.

As N goes to infinity, we add more and more terms to the random walk, so that
the influence of one particular term becomes negligible. The following result is well
known [8, Proposition 3]: For any k ∈ {1, . . . , N}, for any bounded ψ and ϕ,

E
[

ψ(Mk)ϕ(ω
N )
] N→∞−−−−→ E [ψ(Mk)]E [ϕ(ω)] .
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Since ‖∇F‖H belongs to L∞ and ‖hNk ‖∞ tends to 0, this entails that for any k,

lim
N→∞

E
[

〈∇F (ωN(k)), hNk 〉2H
]

= lim
N→∞

E
[

〈∇F (ωN ), hNk 〉2H
]

= lim
N→∞

E
[

‖πVN∇F (ωN )‖2H
]

,

where πVN is the orthogonal projection in H onto span{hNk , k = 1, · · · , N}. We
conclude by dominated convergence. �

6.4. Proofs of Section 5.

Proof of Theorem 5.2. Take care that in the argument of h, all the sets are con-
sidered as ordered: When we write B ∪ C, we implicitly reorder its elements, for
instance

h(X{1,3}∪{2}) = h(X1, X2, X3).

Apply the Clark formula,

Un − θ =

(

n

m

)−1
∑

A∈([n],m)

∑

B⊂A

(

m

|B|

)−1
1

|B|
∑

b∈B

DbE [h(XA) |XB]

=

(

n

m

)−1
∑

B⊂[n]

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

A⊃B
A∈([n],m)

DbE [h(XA) |XB]

=

(

n

m

)−1
∑

B⊂[n]

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)

DbE [h(XB∪C) |XB] .

It remains to prove that

(30)

m
∑

k=1

(

m

k

)

H(k)
n

=

(

n

m

)−1
∑

B⊂[n],|B|≤m

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)

DbE [h(XB∪C) |XB] .

for any integer n. For n = 1, it is straightforward that

g1(X1) = h(X1)− θ = D1E [h(X1)|X1] .

Assume the existence of an integer n such that (30) holds for any set of cardinality
n. In particular, for any l ∈ [n+ 1]

m
∑

k=1

(

m

k

)

H
(k)
Al

=

(

n

m

)−1
∑

B⊂[Al],|B|≤m

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)

DbE [h(XB∪C) |XB] ,
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where Al = [n+ 1]\{l}. Let m such that m ≤ n. Then,

m
∑

k=1

(

m

k

)

H
(k)
n+1

=
m
∑

k=1

(

m

k

)(

n+ 1

k

)−1
1

n+ 1− k

n+1
∑

l=1

∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1
∑

l=1

m
∑

k=1

(

m

k

)(

n

k

)−1
∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1
∑

l=1

(

n

m

)−1

×
∑

B⊂[Al],|Al|≤m

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)

DbE [h(XB∪C) |XB]

=
n+ 1−m

n+ 1

(

n

m

)−1

×
∑

B⊂[n+1],|B|≤m

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)

DbE [h(XB∪C) |XB]

=

(

n+ 1

m

)−1

×
∑

B⊂[n+1],|B|≤m

(

m

|B|

)−1
1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)

DbE [h(XB∪C) |XB] ,

where we have used in the first line that each subset B of [n + 1] of cardinality k
appears in n+ 1− k different subsets Al (for l ∈ [n+ 1]\B), and in the same way,
in the penultimate line, that each subset B ∪ C of [n+ 1] of cardinality m appears
in n + 1 − m different subsets Al (for l ∈ [n + 1]\B ∪ C). Eventually, the case
m = n+ 1 follows from

n+1
∑

k=1

∑

B∈([n+1],k)

gk(XB) = h(X[n+1])− θ

=
∑

B⊂[n+1]

(

n+ 1

|B|

)−1
1

|B|
∑

b∈B

DbE
[

h(X[n+1]) |XB

]

,

by applying the Clark formula to h. �

Proof of Theorem 5.6. By the previous construction, for

i = (i1, · · · , iN) ∈ (Ik = k) ∩
N
⋂

m=k+1

(Im 6= k),

the permutation σ = Γ(i) admits k as a fixed point. Hence,
{

(Ik = k) ∩
N
⋂

m=k+1

(Im 6= k)

}

⊂ (ŨNk = 1).
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As both events have cardinality (N−1)!, they do coincide. The values of pk and αk
are easily computed since the random variables (Im, k ≤ m ≤ N) are independent.
According to Theorem 3.4,

ŨNk = E
[

ŨNk

]

+

N
∑

l=1

DlE
[

Ũk | Hl−1

]

= E
[

ŨNk

]

+

N
∑

l=1

E
[

ŨNk | Hl−1

]

−E
[

ŨNk | Hl

]

.

Since ŨNk ∈ Hk−1, DlE

[

Ũk | Hl−1

]

= 0 for l < k. For l = k, we get

E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik, Ik+1, · · ·
]

−E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

=
(

1(Ik=k) −Pk({k})
)

N
∏

m=k+1

1(Im 6=k).

For l = k + 1,

E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

−E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+2, Ik+3, · · ·
]

= tpk

(

1(Ik+1 6=k) −Pk+1({k}c)
)

N
∏

m=k+2

1(Im 6=k)

= −tpk
(

1(Ik+1=k) −Pk+1({k})
)

N
∏

m=k+2

1(Im 6=k).

The subsequent terms are handled similarly and the result follows. �

Proof of Theorem 5.7. By the very definition of C̃1, we have

(31) C̃1 = E
[

C̃1

]

+
N
∑

k=1

N
∑

l=k

DlE
[

ŨNk | Hl−1

]

.

For k = l, E
[

ŨNk | Hl−1

]

= ŨNk and for l > k,

E
[

ŨNk | Hl−1

]

=
t

t+ k − 1

(

1− 1

t+ k

)

. . .

(

1− 1

t+ l − 2

) N
∏

m=l

1(Im 6=k)

=
t

t+ l − 2

N
∏

m=l

1(Im 6=k).
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It is straightforward that l > k,

Dl

(

N
∏

m=l

1(Im 6=k)

)

=

(

1(Il 6=k) − (1− 1

t+ l − 1
)

) N
∏

m=l+1

1(Im 6=k)

= −
(

1(Il=k) −
1

t+ l − 1

) N
∏

m=l+1

1(Im 6=k).

The result then follows by direct computations. �

Proof of Theorem 5.8. Recall that for j 6= l,DlE
[

ŨNk | Hl−1

]

andDjE
[

ŨNm | Hj−1

]

are orthogonal in L2. In view of (31), according to the integration by parts formula,
we have

var [C̃1] =

N
∑

k=1

N
∑

m=1

N
∑

l=k

N
∑

j=m

E
[

DlE
[

ŨNk | Hl−1

]

DjE
[

ŨNm | Hj−1

]]

=

N
∑

k=1

N
∑

m=1

N
∑

l=k∨m

E

[

DlE

[

ŨNk | Hl−1

]

DlE

[

ŨNm | Hl−1

]]

= 2

N
∑

k=1

N
∑

m=k+1

N
∑

l=m

E
[

UNk DlE
[

ŨNm | Hl−1

]]

+E

[

N
∑

k=1

N
∑

l=k

ŨNk DlE
[

ŨNk | Hl−1

]

]

.

Then, for l ≥ m > k,

E
[

UNk DlE
[

ŨNm | Hl−1

]]

= − t

t+ l − 2
E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Il=m) −
1

t+ l − 1

) N
∏

j=l+1

1(Ij 6=m)





= − tPk({k})
t+ l − 2

(

Pl({m})− 1

t+ l− 1

)

E





l−1
∏

p=k+1

1(Ip 6=k)



E





N
∏

p=l+1

1(Ip /∈{k,m})





= 0,

since, for any l ≥ m > k

E
[

1(Il=m)1(Il 6=k)

]

= E
[

1(Il=m)

]

= Pl({m}) = 1

t+ l− 1
.
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Furthermore, for l > k,

E
[

ŨNk DlE
[

ŨNk | Hl−1

]]

= − t

t+ l − 2
E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Il=k) −
1

t+ l− 1

) N
∏

p=l+1

1(Ip 6=k)





=
t

(t+ l − 1)(t+ l − 2)
Pk({k})E





N
∏

p=k+1

1(Ip 6=k)





=
t2

(t+ l − 1)(t+ l − 2)(t+N − 1)
,

as
∏N
p=k+1 1(Ip 6=k)1(Il=k) = 0, for l > k. Finally, for l = k, we get

E
[

ŨNk DlE
[

ŨNk | Hl−1

]]

= E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Ik=k) −
t

t+ k − 1

) N
∏

p=k+1

1(Ip 6=k)





=

(

t

t+ k − 1
− t2

(t+ k − 1)2

)

t+ k − 1

t+N − 1

=
t(k − 1)

(t+ k − 1)(t+N − 1)
·

It follows that

var [C̃1]

=
t2

t+N − 1

N
∑

k=1

N
∑

l=k+1

1

(t+ l − 1)(t+ l− 2)
+

t

t+N − 1

N
∑

k=1

k − 1

t+ k − 1

=
t

t+N − 1

(

Nt

t+N − 1
+N − 2t

N
∑

k=1

1

t+ k − 1

)

.

The proof is thus complete. �

Proof of Theorem 5.10. We have to compute

sup
ϕ∈H

E [ϕ′(F )− Fϕ(F )] ,

where H is the set of twice differentiable functions with second order derivative
bounded by 2. Since F is centered

E [Fϕ(F )] = E
[

LL−1F ϕ(F )
]

=
∑

a∈A

E
[

(−DaL
−1)F Daϕ(F )

]

.

The trick is to use the Taylor expansion taking the reference point to be X ′
¬a instead

of XA. This yields

Daϕ(F ) = E′ [ϕ(F (XA))− ϕ(F (X ′
¬a, X

′
a))] = ϕ′(F (X ′

¬a))DaF +R,
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where

R =
1

2

∫ 1

0

E′

[

ϕ′′
(

θF (X ′
¬a) + (1− θ)F (XA)

)(

F (XA)− F (X ′
¬a)
)2
]

dθ.

Hence

E [ϕ′(F )− Fϕ(F )]

= E

[

ϕ′(F )−
∑

a∈A

ϕ′(F (X ′
¬a)) DaF (−DaL

−1)F

]

+
∑

a∈A

E
[

R (−DaL
−1)F

]

.

The rightmost term of the the latter equation easily yields the rightmost of (22).
Since ‖ϕ′′‖∞ < 2, it is clear that ϕ′ belongs to Lip2 hence the formulation of the
distance with a supremum. �

Proof of Corollary 5.11. Without loss of generality, we can assume that Xi is cen-
tered for any i ≥ 1. Remark that

DjXk =

{

0 if j 6= k,

Xk if j = k.

Hence LYn = Yn and Yn = L−1Yn. According to Theorem 5.10,

κH(P,PYn) ≤ sup
ψ∈Lip2

E

[

ψ(F )− 1

s2n

∑

i∈A

ψ
(

F
(

Yn − Xi −X ′
i

sn

)

)

X2
i

]

+
1

s3n

n
∑

j=1

E

[∫

EA

(

Xi − x
)2

dPi(x) |Xi|
]

.

By independence, since ψ is 2-Lipschitz continuous,

∣

∣

∣

∣

∣

E

[

ψ(F )− 1

s2n

∑

i∈A

ψ
(

F (Yn − Xi −X ′
i

sn
)
)

X2
i

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

s2n

∑

i∈A

σ2
i E

[

ψ(F )− ψ
(

F (Yn − Xi −X ′
i

sn
)
)

]

∣

∣

∣

∣

∣

≤ 2

s3n

∑

i∈A

σ2
i E [|Xi −X ′

i|] ≤
2
√
2

s3n

∑

i∈A

σ3
i .

Moreover,

E

[∫

EA

(

Xi − x
)2

dPi(x) |Xi|
]

= E
[

|Xi|3
]

+ σ2E [|Xi|]

≤ E
[

|Xi|3
]

+ σ3 ≤ 2E
[

|Xi|3
]

according to the Hölder inequality. Hence the result. �



38 L. DECREUSEFOND AND H. HALCONRUY

Proof of Theorem 5.12. According to the principle of the Stein method, we have to
estimate

(32) sup
fg ,g∈H

E

[

1

λ

(

ϕ(F ) +
r

λ

)

− Fϕ′(F )

]

where ϕ = fg is the solution of the Stein equation (23). For any a ∈ A, thanks to
the Taylor expansion,

(33) −Daϕ(F ) = E′ [ϕ(F (X¬a, X ′
a))− ϕ(F (X))] = −ϕ′(F )DaF +R,

where

(34) R =
1

2

∫ 1

0

(1− θ)

×E′

[

ϕ′′
(

(1− θ)F (X) + θF (X¬a, X ′
a)
)(

F (X)− F (X¬a, X ′
a)
)2
]

dθ

According to (3) and to the definition of L,

(35) E [Fϕ(F )] = E
[

LL−1F ϕ(F )
]

= E
[

−δ(DL−1F )ϕ(F )
]

= E
[

〈Dϕ(F ),−DL−1F 〉L2(A)

]

.

Plug (33) into (35):

E
[

〈Dϕ(F ),−DL−1F 〉L2(A)

]

= −
∑

a∈A

E
[

Daϕ(F )Da(L
−1F )

]

= −
∑

a∈A

E
[

ϕ′(F )DaFDa(L
−1F )

]

+
∑

a∈A

E
[

R Da(L
−1F )

]

= E
[

ϕ′(F )〈DF,−DL−1F 〉L2(A)

]

+E
[

〈R,−DL−1F 〉L2(A)

]

.

Then,

∣

∣

∣E

[

1

λ
(F +

r

λ
)ϕ′(F )− Fϕ(F )

]

∣

∣

∣

≤
∣

∣

∣

∣

E

[

ϕ′(F )
( 1

λ
(F +

r

λ
)− 〈DF,−DL−1F 〉L2(A)

)

]∣

∣

∣

∣

+
∣

∣E
[

〈R,−DL−1F 〉L2(A))
]∣

∣ = B1 +B2.

Since ϕ′ is bounded, we get

B1 ≤ ‖ϕ′‖∞E

[

∣

∣

∣

1

λ
(F +

r

λ
)− 〈DF,−DL−1F 〉L2(A)

∣

∣

∣

]

and from (34), we deduce that

B2 ≤ ‖ϕ′′‖∞
∑

a∈A

E
[

|DaF |2|DaL
−1F |

]

.

The proof follows from (32) and (24). �

Proof of Theorem 5.13. We have,

Da





∑

(i,j) 6=∈A

XiXj



 =
∑

j 6=a

DaXaXj =
∑

j 6=a

XaXj .
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It follows that

LF = −
n
∑

a=1

DaF = −2F hence L−1F = −1

2
F.

With our notations, the first term of the right-hand-side of (25) becomes

(36) E





∣

∣

∣

∣

∣

∣

2σ2F + 2σ4 − 2

(n− 1)2

n
∑

a=1

∑

i,j 6=a

X2
aXiXj

∣

∣

∣

∣

∣

∣



 ≤
3
∑

i=1

Ai

where

A1 =
2

n(n− 1)
E





∣

∣

∣

n
∑

a=1

∑

i6=a

(X2
aX

2
i − σ4)

∣

∣

∣



 ,

A2 =

(

2

(n− 1)2
− 2

n(n− 1)

)

E





n
∑

a=1

∑

i6=a

X2
aX

2
i



 =
2σ4

n− 1
,(37)

A3 = E





∣

∣

∣

∣

∣

∣

2σ2F − 2

n(n− 1)

∑

(i,j,a) 6=∈A

X2
aXiXj

∣

∣

∣

∣

∣

∣



 .

We can write A1 = E
[∣

∣Mn −E [Mn]
] ∣

∣ where Mn is the U-statistics of order 2
defined by

Mn =

(

n

2

)−1 n
∑

i=1

∑

j 6=i

X2
iX

2
j .

Standard computations [24, page 30] show that

var(Mn) =

(

n

2

)−1

E
[

|X2
1 − σ2|2

]2
.

Thus, by Cauchy-Schwarz inequality,

A1 ≤ c

n
E
[

|X2
1 − σ2|2

]

.

Moreover,

A3 =
2

n(n− 1)
E





∑

(i,j,a) 6=∈A

XiXj

(

X2
a − σ2

)





Hence A3 appears as the expectation of a third order, non symmetric, degenerate
U-statistics. By standard computations,

var
(

∑

(i,j,a) 6=∈A

XiXj

(

X2
a − σ2

)

)

≤ c n3σ4E
[

|X2
1 − σ2|2

]

,

hence,

(38) A3 ≤ c
σ2

√
n
E
[

|X2
1 − σ2|2

]

.
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As to the remainder term in (25), since the Xi’s are independent and centered, we
get

(39)
∑

a∈A

E
[

|DaF |2|DaL
−1F

]

=
c

n3

∑

a∈A

∑

i,j,k∈A¬a

E
[

X3
aXiXjXk

]

=
c

n3

∑

a∈A

E
[

X3
a

]

∑

i6=a

E
[

X3
i

]

≤ c

n
E
[

|X1|3
]2
.

Combine (37), (38) and (39) to obtain (26). �
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