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MALLIAVIN AND DIRICHLET STRUCTURES FOR

INDEPENDENT RANDOM VARIABLES

LAURENT DECREUSEFOND AND HÉLÈNE HALCONRUY

Abstract. On any denumerable product of probability spaces, we con-
struct a Malliavin gradient and then a divergence and a number opera-
tor. This yields a Dirichlet structure which can be shown to approach
the usual structures for Poisson and Brownian processes. We obtain
versions of almost all the classical functional inequalities in discrete set-
tings which show that the Efron-Stein inequality can be interpreted as
a Poincaré inequality or that Hoeffding decomposition of U -statistics
can be interpreted as a chaos decomposition. We obtain a version of
the Lyapounov central limit theorem for independent random variables
without resorting to ad-hoc couplings, thus increasing the scope of the
Stein method.

1. Introduction

There are two motivations to the present paper. After some years of de-
velopment, the Malliavin calculus has reached a certain maturity. The most
complete theories are for Gaussian processes (see for instance [22, 31]) and
Poisson point processes (see for instance [1, 27]). When looking deeply at
the main proofs, it becomes clear that the independence of increments plays
a major role in the effectiveness of the concepts. At a very formal level,
independence and stationarity of increments induce the martingale represen-
tation property which by induction entails the chaos decomposition, which
is one way to develop Malliavin calculus for Poisson [23], Lévy processes [25]
and Brownian motion. It thus motivates to investigate the simplest situation
of all with independence: that of a family of independent, non necessarily
identically distributed, random variables.

The second motivation comes from the Stein’s method1. The Stein method
which was initially developped to quantify the rate of convergence in the
Central Limit Theorem [29] and then for Poisson convergence [9], can be
decomposed in three steps (see [13]). In the first step, we have to find
a functional identity which characterizes the target distribution and solve

Key words and phrases. Dirichlet structure, Ewens distribution, log-Sobolev inequality,
Lyapounov CLT, Malliavin calculus, Stein’s method, Talagrand inequality.

1Giving an exhaustive bibliography about Stein’s method is somehow impossible (ac-
tually, MathSciNet refers more than 500 papers on this subject). The references given
here are only entry points to the items alluded to.
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2 LAURENT DECREUSEFOND AND HÉLÈNE HALCONRUY

implicitely or explicitely (as in the semi-group method) the so-called Stein’s
equation. It reduces the computation of the distance to the calculation of

sup
F∈H

(

E [L1F (X)] +E [L2F (X)]
)

,

where H is the set of test functions which depends on the distance we are
considering, L1 and L2 are two functional operators and X is a random
variable whose distribution we want to compare to the target distribution.
For instance, if the target distribution is the Gaussian law on R,

L1F (x) = xf ′(x) and L2F (x) = −f ′′(x).
If the target distribution is the Poisson law of parameter λ,

L1F (n) = n (F (n)− F (n− 1)) and L2F (n) = λ(F (n+ 1)− F (n)).

In the next step, we have to take into account how is defined X and trans-
form L1F such that it can be written as −L2F + remainder. This remainder
is what gives the rate of convergence. To make the transformation of L1F ,
several approaches appeared along the years. One of the most popular ap-
proach (see for instance [4]) is to use exchangeable pairs: Construct a copy
X ′ of X with good properties which gives another expression of L1F , suitable
to a comparison with L2F . To be more specific, for the proof of the CLT, it
is necessary to create an exchangeable pair (S, S′) with S =

∑n
i=1Xi. This

is usually done by first, choosing uniformly an index I ∈ {1, · · · , n} and
then, replacing XI with X ′ an independent copy of XI , so that the couple
(S, S′ = S −XI +X ′) is an exchangeable pair. This means that

(1) E
[

F (S′) | I = a; Xb, b 6= a
]

= E [F (S) |Xb, b 6= a] .

Actually, it is the right-hand-side of (1) which gave us some clue on how to
proceed when dealing with functionals more general than the sum of random
variables. An alternative to exchangeable pairs, is the size-biased [10] or zero
biased [16] couplings, which again conveniently transform L1F . For Gaussian
approximation, it amounts to find a distribution X∗ such that

E [L1F (X)] = E
[

F ′′(X∗)
]

.

Note that for S as above, one can choose S∗ = S′. If the distribution of X∗

is absolutely continuous with respect to that of X, with Radon derivative Λ,
we obtain

E [L1F (X)] = E
[

F ′′(X)Λ(X)
]

,

which means that we are reduced to estimate how far Λ is from the constant
random variable equal to 1. This kind of identity, where the second order
derivative is multiplied by a weight factor, is very similar to what can be
obtained via integration by parts. Actually, Nourdin and Peccati (see [20])
showed that the transformation step can be advantageously made simple
using integration by parts in the sense of Malliavin calculus. This works
well only if there exists a Malliavin gradient on the space on which X is
defined (see for instance [15]). That is to say, that up to now, this approach
is restricted to functionals of Rademacher [21], Poisson [15, 26] or Gaussian
random variables [24] or processes [11, 12]. Then, strangely enough, the first
example of applications of the Stein’s method which was the CLT, cannot
be handled through this approach. On the one hand, exchangeable pairs
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or size-biased coupling have the main drawback to have to be adapted to
each particular version of X. On the other hand, Malliavin integration by
parts are in some sense more automatic but we need to be provided with
a Malliavin structure. So, in order to prove the CLT without exchangeable
pairs or size-biased coupling, we need to construct a sort of gradient on a
space of independent random variables.

The closest situation to our investigations is that of the Rademacher space,
namely {−1, 1}N, equipped with the product probability ⊗n∈Nµk where µk
is a Bernoulli probability on {−1, 1}. The gradient on the Rademacher
space (see [21, 27]) does exist but it requires, for its very definition to be
meaningful,

DkF (X1, · · · ,Xn) = E [Xk F (X1, · · · ,Xn) |Xl, l 6= k] ,

that the random variables are real valued. In what follows, it must be made
clear that all the random variables may leave on different spaces, which are
only supposed to be Polish spaces. That means that in the definition of the
gradient, we cannot use any algebraic property of the underlying spaces.

Since Malliavin calculus is agnostic to any time reference, we do not even
assume that we have an order on the product space. It is not a major feature
since a denumerable A is by definition in bijection with the set of natural
integers and thus inherits of at least one order structure. However, this
added degree of freedom appears to be useful (see the Clark decomposition
of the number of fixed points of a random permutations in Section 4) and
bears strong resemblance with the different filtrations which can be put on
an abstract Wiener space, via the notion of resolution of the identity [30].
During the preparation of this work, we found strong reminiscences of our
gradient with the map ∆, introduced in [6, 28] for the proof of the Efron-Stein
inequality, defined by

∆kF (X1, · · · ,Xn) = E [F |X1, · · · ,Xk]−E [F |X1, · · · ,Xk−1] .

Actually, our point of view diverges from that of these works as we do not
focus on a particular inequality but rather on the intrisic properties of our
newly defined gradient.

We would like to stress the fact that our Malliavin-Dirichlet structure gives
a unified framework for many results scattered in the literature. We hope
to give new insights on why these apparently disjointed results (Efron-Stein,
exchangeable pairs, etc.) are in fact multiple sides of the same coin.

We proceed as follows. In Section 2, we define the gradient D and its
adjoint δ, which we call divergence as it appears as the sum of the par-

tial derivatives, as in R
n. We establish a Clark representation formula of

square integrable random variables and an Helmholtz decomposition of vec-
tor fields. Clark formula appears to reduce to the Hoeffding decomposition
of U -statistics when applied to such functionals. We establish a log-Sobolev
inequality, strongly reminding that obtained for Poisson process [32], to-
gether with a concentration inequality. Then, we define the number oper-
ator L = δD. It is the generator of a Markov process whose stationary
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distribution is the tensor probability we started with. We show in Section 3
that we can retrieve the classical Dirichlet-Malliavin structures for Poisson
processes and Brownian motion as limits of our structures. We borrow for
that the idea of convergence of Dirichlet structures to [8]. The construction
of random permutations in [18], which is similar in spirit to the so-called
Feller coupling (see [2]), is an interesting situation to apply our results since
this construction involves a cartesian product of distinct finite spaces. In
Section 4, we derive the chaos decomposition of the number of fixed points
of a random permutations under the Ewens distribution. To the price of an
additional complexity, it is certainly possible to find such a decomposition for
the number of k-cycles in a random permutation. We finish in Section 5 by a
quantitative version of the Lyapounov central limit theorem for independent
but not necessarily identically distributed random variables.

2. Malliavin calculus for independent random variables

For A a countable set, let (Ea, a ∈ A) be a family of Polish spaces. For
any a ∈ A, let Ea and Pa be respectively a σ-field and a probability measure
defined on Ea. We consider the probability space EA =

∏

a∈AEa equipped
with the product σ-field EA = ∨

a∈A
Ea and the tensor product measure P =

⊗
a∈A

Pa. The coordinate random variables are denoted by (Xa, a ∈ A). For

any B ⊂ A, XB denotes the random vector (Xa, a ∈ B), defined on EB =
∏

a∈B Ea equipped with the probability PB = ⊗
a∈B

Pa. A process U is a

measurable random variable defined on (A × EA, P(A) ⊗ EA). We denote
by L2(A × EA) the Hilbert space of processes which are square integrable
with respect to the measure

∑

a∈A εa ⊗PA (where εa is the Dirac measure
at point a):

‖U‖2L2(A×EA) =
∑

a∈A

E
[

U2
a

]

and 〈U, V 〉L2(A×EA) =
∑

a∈A

E [UaVa] .

Following the vocabulary of point processes theory [17], we have the following
definition.

Definition 2.1. For a ∈ A, the exvisible σ-field Ga is defined as Ga =
σ(Xb, b ∈ A\{a}). A process (Ua, a ∈ A) is said to be exvisible if for any
a ∈ A, the random variable Ua is exvisible, i.e. Ua ∈ Ga.

We now introduce the set of cylindrical functionals, denoted by S, which
is as usual, of key importance.

Definition 2.2. A random variable F is said to be cylindrical if there exist
a finite subset B ⊂ A and a function FB : EB −→ L2(EA) such that F =
FB ◦ rB , where rB is the restriction operator:

rB : EA −→ EB

(xa, a ∈ A) 7−→ (xa, a ∈ B).

This means that F only depends on the finite set of random variables (Xa, a ∈
B).
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It is clear that S is dense in L2(EA).

2.1. Gradient.

Definition 2.3 (Discrete gradient). For F ∈ S, DF is the process of L2(A×
EA) defined by one of the following equivalent formulations: For all a ∈ A,

DaF (XA) = F (XA)−E [F (XA) | Ga]

= F (XA)−
∫

Ea

F (XAra, xa) dPa(xa)

= F (XA)−E
′
[

F (XAra,X
′
a)
]

where X ′
a is an independent copy of Xa.

For F ∈ S, (DaF, a ∈ A) defines an element of L2(A × EA) since there
exists a finite subset B ⊂ A such that F = FB ◦ rB . Thus, for every a /∈ B,
F is Ga-measurable and then DaF = 0. This implies that

‖DF‖2L2(A×EA) = E

[

∑

a∈A

|DaF |2
]

= E

[

∑

a∈B

|DaF |2
]

<∞.

Definition 2.4. Let (ga, a ∈ A) be an orthonormal basis of l2(A). The set of
simple processes, denoted by S0(l

2(A)) is the set of random variables defined
on A× EA of the form

U =
∑

a∈B

Ua ga,

for B a finite subset of A and such that Ua belongs to S for any a ∈ B.

Theorem 2.5 (Integration by parts). Let F ∈ S. For every simple process
U ,

(2) 〈DF,U〉L2(A×EA) = E

[

F
∑

a∈A

DaUa

]

.

Proof. The process trace(DU) = (DaUa, a ∈ B) belongs to L2(A × EA):
Using the Jensen inequality, we have

(3) ‖ trace(DU)‖2L2(A×EA) = E

[

∑

a∈B

|DaUa|2
]

≤ 2
∑

a∈B

E
[

U2
a

]

<∞.

Moreover,

〈DF,U〉L2(A×EA) = E

[

∑

a∈A

(F −E [F | Ga]) Ua

]

= E

[

∑

a∈B

(F −E [F | Ga]) Ua

]

= E

[

F
∑

a∈B

(Ua −E [Ua | Ga])

]

,

since the conditional expectation is a projection in L2(EA). �

Corollary 2.6. The operator D is closable from L2(EA) into L2(A× EA).
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Proof. Let (Fn, n ≥ 1) be a sequence of random variables defined on S such
that Fn converges to 0 in L2(EA) and the sequence DFn converges to η in
L2(A × EA). Let U be a simple process. From the integration by parts
formula (2)

E

[

∑

a∈A

DaFn Ua

]

= E

[

Fn

∑

a∈A

DaUa

]

where
∑

a∈A

DaUa ∈ L2(EA) in view of (3). Then,

〈η, U〉L2(A×EA) = lim
n→∞

E

[

Fn

∑

a∈A

DaUa

]

= 0,

for any simple process U . It follows that η = 0 and then the operator D is
closable from L2(EA) to L2(A× EA). �

We denote the domain of D in L2(EA) by D, the closure of the class of
cylindrical functions with respect to the norm

‖F‖1,2 =
(

‖F‖2L2(EA) + ‖DF‖2L2(A×EA)

)
1

2

.

We could as well define p-norms corresponding to Lp integrability. However,
for the current applications, the case p = 2 is sufficient and the apparent
lack of hypercontractivity of the Ornstein-Ulhenbeck semi-group (see below
Section 2.3) lessens the probable usage of other integrability order.

As A is countable, we can choose with no loss of generality an order on
A, or equivalently say that A = N and define Fn = σ(Xk, k ≤ n), for any
n ∈ A. Define F0 = {∅, EA}.
Lemma 2.7. If there exists a sequence (Fn, n ≥ 1) of elements of D such
that 1) Fn converges to F in L2(EA) and 2) supn ‖DFn‖D is finite, then F
belongs to D and DF = limn→∞DFn in D.

Proof. Since supn ‖DFn‖D is finite, there exists a subsequence which we still
denote by (DFn, n ≥ 1) weakly convergent in L2(A × EA) to some limit
denoted by η. For k > 0, let nk be such that ‖Fm−F‖L2 < 1/k for m ≥ nk.
The Mazur’s Theorem implies that there exists a convex combination of
elements of (DFm,m ≥ nk) such that

‖
Mk
∑

i=1

αk
iDFmi

− η‖L2(A×EA) < 1/k.

Moreover, since the αk
i are positive and sums to 1,

‖
Mk
∑

i=1

αk
i Fmi

− F‖L2 ≤ 1/k.
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We have thus constructed a sequence

F k =

Mk
∑

i=1

αk
i Fmi

such that F k tends to F in L2 and DF k converges in L2(A × EA) to a
limit. By the construction of D, this means that F belongs to D and that
DF = η. �

Lemma 2.8. For any F ∈ D, F is Fk-measurable if and only if DnF = 0
for any n > k. As a consequence, DF = 0 if and only if F = E [F ].

Proof. Let k ∈ A. Assume that F ∈ Fk. Then, for every n > k, F is Gn-
measurable and DnF = 0.
Let F ∈ D such that DnF = 0 for every n > k. Then F is Gn-measurable
for any n > k. From the equality Fk = ∩

n>k
Gn, it follows that F is Fk-

measurable. �

Lemma 2.9. For any F ∈ D, for any k ≥ 1, we have

(4) Dk E [F |Fk] = E [DkF | Fk] .

Proof. For any k ≥ 1, Fk ∩ Gk = Fk−1, hence

DkE [F | Fk] = E [F |Fk]−E [F | Fk−1] = E [DkF | Fk] .

The proof is thus complete. �

Theorem 2.10 (Clark formula). For A = N and F ∈ D,

F = E [F ] +

∞
∑

k=1

Dk E [F | Fk] .

If A is finite and if there is no privileged order on A, we can write

F = E [F ] +
∑

B⊂A

(|A|
|B|

)−1 1

|B|
∑

b∈B

Db E [F |XB ] .

Proof. Let F an Fn-measurable random variable. It is clear that

F −E [F ] =

n
∑

k=1

(E [F | Fk]−E [F | Fk−1]) =

n
∑

k=1

DkE [F | Fk] .

For F ∈ D, apply this identity to Fn = E [F | Fn] to obtain

Fn −E [F ] =
n
∑

k=1

DkE [F | Fk] .

Remark that for l > k, in view of Lemma 2.8,

(5) E [Dk E [F | Fk]Dl E [F | Fl]] = E [DlDk E [F | Fk]E [F | Fl]] = 0,

since Dk E [F | Fk] is Fk-measurable. Hence, we get

E
[

|F −E [F ] |2
]

≥ E
[

|Fn −E [F ] |2
]

=

n
∑

k=1

E

[

DkE [F | Fk]
2
]

.
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Thus, the sequence (DkE [F | Fk] , k ≥ 1) belongs to l2(N) and the result
follows by a limiting procedure.

If A is finite, each bijection between A and {1, · · · , n} defines an order on
A. Hence, there are |A| ! possible filtrations. Each term of the form

DikE [F |Xi1 , · · · ,Xik ]

appears (k−1)! (|A|−k)! times since the order of Xi1 , · · · ,Xik−1
is irrelevant

to the conditioning. The result follows by summation then renormalization
of the identities obtained for each filtration. �

The chaos decomposition is usually deduced from the Clark formula by
iteration. If we apply Clark formula to E [F | Fk], we get

DkE [F | Fk] =
∞
∑

j=1

DkDjE [F | Fj∧k] = DkE [F | Fk] ,

since j > k implies DjE [F | Fk] = 0 in view of Lemma 2.8 and the same
holds when k > j since it is easily seen that DjDk = DkDj . For j = k,
simply remark that DkDk = Dk. Hence, it seems that we cannot go further
this way to find a potential chaos decomposition.

For U -statistics, we can however simplify the Clark formula and retrieve
the so-called Hoeffding decomposition.

Definition 2.11. For an integer m, let h : Rm → R be a symmetric func-
tion, and X1, · · · ,Xn, n random variables supposed to be independent and
identically distributed. The U -statistics of degree m and kernel h is defined,
for any n ≥ m by

Un = U(X1, · · · ,Xn) =

(

n

m

)−1
∑

A∈([n],m)

h(XA)

where ([n],m) denotes the set of ordered subsets A ⊂ [n] = {1, · · · , n}, of
cardinal m.

More generally, for a set B, (B,m) denotes the set of subsets of B with
m elements.

If E [|h(X1, · · · ,Xm)|] is finite, we define hm = h and for 1 ≤ k ≤ m− 1,

hk(X1, · · · ,Xk) = E [h(X1, · · · ,Xm) |X1, · · · ,Xk] .

Let θ = E [h(X1, · · · ,Xm)], consider g1(X1) = h1(X1)− θ, and

gk(X1, · · · ,Xk) = hk(X1, · · · ,Xk)− θ −
k−1
∑

j=1

∑

B∈([k],j)

gj(XB),

for any 1 ≤ k ≤ m. Since the variables X1, · · · ,Xn are independent and
identically distributed, and the function h is symmetric, the equality

E [h(XA∪B) |XB ] = E [h(XC∪B) |XB ] ,

holds for any subsets A and C of [n]\B, of cardinal n− k.
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Theorem 2.12 (Hoeffding decomposition of U-statistics, [19]). For any in-
teger n, we have

(6) Un = θ +

m
∑

k=1

H(k)
n

where H
(k)
n is the U -statistics based on kernel gk, i.e. defined by

H(k)
n =

(

n

k

)−1
∑

B⊂([n],k)

gk(XB).

Proof. Take care that in the argument of h, all the sets are considered as
ordered: When we write B ∪ C, we implicitely reorder its elements, for
instance

h(X{1,3}∪{2}) = h(X1,X2,X3).

Apply the Clark formula,

Un − θ =

(

n

m

)−1
∑

A∈([n],m)

∑

B⊂A

(

m

|B|

)−1 1

|B|
∑

b∈B

DbE [h(XA) |XB ]

=

(

n

m

)−1
∑

B⊂[n]

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

A⊃B
A∈([n],m)

DbE [h(XA) |XB ]

=

(

n

m

)−1
∑

B⊂[n]

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)

DbE [h(XB∪C ) |XB ] .

It remains to prove that

(7)

m
∑

k=1

(

m

k

)

H(k)
n

=

(

n

m

)−1
∑

B⊂[n],|B|≤m

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)

DbE [h(XB∪C) |XB ] .

for any integer n. For n = 1, it is straightforward that

g1(X1) = h(X1)− θ = D1E [h(X1)|X1] .

Assume the existence of an integer n such that (7) holds for any set of
cardinal n. In particular, for any l ∈ [n+ 1]

m
∑

k=1

(

m

k

)

H
(k)
Al

=

(

n

m

)−1
∑

B⊂[Al],|B|≤m

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)

DbE [h(XB∪C ) |XB ] ,
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where Al = [n+ 1]\{l}. Let m such that m ≤ n. Then,

m
∑

k=1

(

m

k

)

H
(k)
n+1

=

m
∑

k=1

(

m

k

)(

n+ 1

k

)−1 1

n+ 1− k

n+1
∑

l=1

∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1
∑

l=1

m
∑

k=1

(

m

k

)(

n

k

)−1
∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1
∑

l=1

(

n

m

)−1

×
∑

B⊂[Al],|Al|≤m

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)

DbE [h(XB∪C ) |XB ]

=
n+ 1−m

n+ 1

(

n

m

)−1

×
∑

B⊂[n+1],|B|≤m

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)

DbE [h(XB∪C ) |XB ]

=

(

n+ 1

m

)−1

×
∑

B⊂[n+1],|B|≤m

(

m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)

DbE [h(XB∪C ) |XB ] ,

where we have used in the first line that each subset B of [n+1] of cardinal k
appears in n+1− k different subsets Al (for l ∈ [n+1]\B), and in the same
way, in the penultimate line, that each subset B ∪ C of [n+1] of cardinal m
appears in n+1−m different subsets Al (for l ∈ [n+1]\B∪C). Eventually,
the case m = n+ 1 follows from

n+1
∑

k=1

∑

B∈([n+1],k)

gk(XB) = h(X[n+1])− θ

=
∑

B⊂[n+1]

(

n+ 1

|B|

)−1 1

|B|
∑

b∈B

DbE
[

h(X[n+1]) |XB

]

,

by applying the Clark formula to h. �

As mentioned in the Introduction, it may be useful to reverse the time
arrow. Choose an order on A so that A can be seen as N. Then, let

Hn = σ{Xk, k > n}.
and for any n ∈ {0, · · · , N − 1},

HN
n = Hn ∩ FN and HN

k = F0 = {∅, EA} for k ≥ N.
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Note that HN
0 = FN and as in Lemma 2.8, F is Hk-measurable if and only

if DnF = 0 for any n ≤ k.

Theorem 2.13. For every F in D,

(8) F = E [F ] +
∑

k≥1

Dk E [F |Hk−1] .

Proof. Remark that

Dk E
[

F |HN
k−1

]

= E
[

F |HN
k−1

]

−E
[

F |HN
k−1 ∩ Gk

]

= E
[

F |HN
k−1

]

−E
[

F |HN
k

]

.

For F ∈ FN , since the successive terms collapse, we get

F −E [F ] = E
[

F |HN
0

]

−E
[

F |HN
N

]

=

N
∑

k=1

Dk E
[

F |HN
k−1

]

=

∞
∑

k=1

Dk E
[

F |HN
k−1

]

,

by the very definition of the gradient map. As in (5), we can show that for
any N ,

E
[

Dk E
[

F |HN
k−1

]

Dl E
[

F |HN
l−1

]]

= 0, for k 6= l.

Consider FN = E [F | FN ] and proceed as in the proof of Lemma 2.10 to
conclude. �

In the present context, the next result is a Poincaré type inequality as it
gives a bound for the variance of F in terms of the oscillations of F . In other
context, it turns to be called the Efron-Stein inequality [6].

Corollary 2.14 (Poincaré or Efron-Stein inequality). For any F ∈ D,

var(F ) ≤ ‖DF‖2L2(A×EA).

Proof. According to (5) and (4), we have

var(F ) = E





∣

∣

∣

∣

∣

∑

k∈A

Dk E [F |Fk]

∣

∣

∣

∣

∣

2




= E

[

∑

k∈A

∣

∣

∣
Dk E [F |Fk]

∣

∣

∣

2
]

= E

[

∑

k∈A

∣

∣

∣
E [Dk F |Fk]

∣

∣

∣

2
]

≤ E

[

∑

k∈A

E
[

|DkF |2|Fk

]

]

= E

[

∑

k∈A

|DkF |2
]

,

where the inequality follows from then Jensen inequality. �

Another corollary of the Clark formula is the following covariance identity.
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Theorem 2.15 (Covariance identity). For any F,G ∈ D,

(9) cov(F,G) = E

[

∑

k∈A

DkE [F | Fk] DkG

]

.

Proof. Let F,G ∈ D, the Clark formula entails

cov(F,G) = E [(F −E [F ])(G−E [G])]

= E





∑

k,l∈A

DkE [F | Fk] DlE [G | Fl]





= E

[

∑

k∈A

DkE [F | Fk] DkE [G | Fk]

]

= E

[

∑

k∈A

DkF DkE [G | Fk ]

]

where we have used (5) in the third equality and the identity DkDk = Dk

in the last one. �

Theorem 2.16 (Concentration inequality). Let F for which there exists an
order on A with

M = sup
X∈EA

∞
∑

k=1

|DkF (X)|E [|DkF (X)| | Fk ] <∞.

Then, for any x ≥ 0, we have

P(F −E [F ] ≥ x) ≤ exp

(

− x2

2M

)

·

Proof. Assume with no loss of generality that F is centered. Apply (9) to
θF and eθF ,

θ
∣

∣

∣
E

[

FeθF
]
∣

∣

∣
= θ

∣

∣

∣

∣

∣

E

[

∑

k∈A

DkF DkE

[

eθF | Fk

]

]∣

∣

∣

∣

∣

≤ θ
∑

k∈A

E

[

|DkF |
∣

∣

∣
DkE

[

eθF | Fk

]
∣

∣

∣

]

.

Recall that

DkE

[

eθF | Fk

]

= E
′
[

E

[

eθF | Fk

]

−E

[

eθF (X¬k,X
′

k
) | Fk

]]

= E

[

E
′
[

eθF − eθF (X¬k,X
′

k
)
]
∣

∣

∣
Fk

]

= E

[

eθF E
′
[

1− e−θ∆kF
]
∣

∣

∣
Fk

]

where ∆kF = F − F (X¬k,X
′
k) so that DkF = E

′ [∆kF ].

Since (x 7→ 1− e−x) is concave, we get

DkE

[

eθF | Fk

]

≤ E

[

eθF (1− e−θDkF ) | Fk

]

≤ θ E

[

eθF |DkF | | Fk

]

.
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Thus,

∣

∣

∣
E

[

FeθF
]
∣

∣

∣
≤ θ E

[

eθF
∞
∑

k=1

|DkF |E [|DkF | | Fk]

]

≤M θ E

[

eθF
]

.

By Gronwall lemma, this implies that

E

[

eθF
]

≤ exp(
θ2

2
M)·

Hence,

P(F −E [F ] ≥ x) = P(eθ(F−E[F ])) ≥ eθx) ≤ exp(−θx+
θ2

2
M).

Optimize with respect to θ gives θopt = x/M , hence the result. �

In the Gaussian case, the concentration inequality is deduced from the
logarithmic Sobolev inequality. This does not seem to be feasible in the
present context. However, we still have an LSI identity.

Theorem 2.17 (Logarithmic Sobolev inequality). Let a positive random
variable G ∈ L logL(EA). Then,

(10) E [G logG]−E [G] logE [G] ≤
∑

k∈A

E

[ |DkG|2
E [G | Gk]

]

.

Proof. We follow closely the proof of [32] for Poisson process. Let G ∈
L2(EA) be a positive random variable such that DG ∈ L2(EA×A). For any
integer N , define GN = min(max( 1

N , G), N), for any k, Lk = E [GN |Fk] and
L0 = E [GN ]. We have,

Ln logLn − L0 logL0 =

n−1
∑

k=0

Lk+1 logLk+1 − Lk logLk

=

n−1
∑

k=0

logLk(Lk+1 − Lk) +

n−1
∑

k=0

Lk+1(logLk+1 − logLk).

Note that (logLk(Lk+1 − Lk), k ≥ 0) and (Lk+1 − Lk, k ≥ 0) are martin-
gales, hence

E [Ln logLn − L0 logL0]

= E

[

n−1
∑

k=0

Lk+1 logLk+1 − Lk+1 logLk − Lk+1 + Lk

]

= E

[

n−1
∑

k=0

Lk+1 logLk+1 − Lk logLk − (logLk + 1)(Lk+1 − Lk)

]

= E

[

n−1
∑

k=0

ℓ(Lk, Lk+1 − Lk)

]

,

where the function ℓ is defined on Θ = {(x, y) ∈ R
2 : x > 0, x+ y > 0} by

ℓ(x, y) = (x+ y) log(x+ y)− x log x− (log x+ 1)y.
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Since ℓ is convex on Θ, it comes from the Jensen inequality for conditional
expectations that

n−1
∑

k=0

E [ℓ(Lk, Lk+1 − Lk)] =

n−1
∑

k=0

E [ℓ(E [Gn | Fk] ,Dk+1E [Gn | Fk+1])]

=

n
∑

k=1

E [ℓ(E [Gn | Fk−1] ,E [DkGn | Fk])]

≤
n
∑

k=1

E [E [ℓ(E [Gn | Gk] ,DkGn) | Fk]]

=

n
∑

k=1

E [ℓ(E [Gn | Gk] ,DkGn)]

=

∞
∑

k=1

E [ℓ(E [Gn | Gk] ,DkGn)] .

We know from [32] that for any integer k, ℓ(E [Gn | Gk] ,DkGn) converges
increasingly to ℓ(E [G | Gk] ,DkG) P-a.s., hence by Fatou Lemma,

E [G logG]−E [G] logE [G] ≤
∞
∑

k=1

E [ℓ(E [G | Gk] ,DkG)] .

Furthermore, for any (x, y) ∈ Θ, ℓ(x, y) ≤ |y|2/x, then,

E [G logG]−E [G] logE [G] ≤
∞
∑

k=1

E

[ |DkG|2
E [G | Gk]

]

·

The proof is thus complete. �

2.2. Divergence.

Definition 2.18 (Divergence). Let

Dom δ =
{

U ∈ L2(A× EA) :

∃ c > 0, ∀F ∈ D, |〈DF,U〉L2(A×EA)| ≤ c ‖F‖L2(EA)

}

.

For any U belonging to Dom δ, δU is the element of L2(EA) characterized
by the following identity

〈DF,U〉L2(A×EA) = E [F δU ] , for all F ∈ D.

The integration by parts formula (2) entails that for every U ∈ Dom δ,

δU =
∑

a∈A

DaUa.

Definition 2.19. The Hilbert space D(l2(A)) is the closure of S0(l
2(A)) with

respect to the norm

‖U‖2
D(l2(A)) = E

[

∑

a∈A

|Ua|2
]

+E

[

∑

a∈A

∑

b∈A

|DaUb|2
]

.
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In particular, this means that the map DU = (DaUb, a, b ∈ A) is Hilbert-
Schmidt as a map from L2(A × EA) into itself. As a consequence, for two
such maps DU and DV , the map DU ◦DV is trace-class (see [33]) with

trace(DU ◦DV ) =
∑

a,b∈A

DaUb DbVa.

Theorem 2.20. The space D(l2(A)) is included in Dom δ. For any U, V
belonging to D(l2(A)),

(11) E [δU δV ] = E [trace(DU ◦DV )] .

Proof. For U and V in S0(l
2(A)), from the integration by parts formula,

E [δU δV ] = 〈Dδ(U), V 〉L2(A×EA)

= E

[

∑

a∈A

Da(δU)Va

]

= E





∑

(a,b)∈A2

VaDaUb



−E





∑

(a,b)∈A2

VaE [DaUb | Ga]





= E





∑

(a,b)∈A2

VaDaUb



−E





∑

(a,b)∈A2

E [Va | Ga] DaUb





= E





∑

(a,b)∈A2

DbVaDaUb





= E [trace(DU ◦DV )] .

It follows that E
[

δU2
]

≤ ‖U‖2
D(l2(A)). Then, by density, D(l2(A)) ⊂ Dom δ

and Eqn. (11) holds for U and V in Dom δ. �

Theorem 2.21 (Helhmoltz decomposition). Let U ∈ D(l2(A)). There exists
a unique couple (ϕ, V ) where ϕ ∈ L2(EA) and V ∈ L2(A × EA) such that
E [ϕ] = 0, δV = 0 and

Ua = Daϕ+ Va
for any a ∈ A.

Proof. We first prove the uniqueness. Let (ϕ, V ) and (ϕ′, V ′) two convenient
couples. We have Da(ϕ − ϕ′) = V ′

a − Va for any a ∈ A and
∑

a∈ADa(V
′
a −

Va) = 0, hence

0 = E

[

(ϕ− ϕ′)
∑

a∈A

Da(V
′
a − Va)

]

= E

[

∑

a∈A

Da(ϕ− ϕ′)(V ′
a − Va)

]

= E

[

∑

a∈A

(V ′
a − Va)

2

]

.

This implies that V = V ′ and D(ϕ − ϕ′) = 0. The Clark formula (Theo-
rem 2.10) entails that 0 = E [ϕ− ϕ′] = ϕ− ϕ′.
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We now prove the existence. Since E [Daϕ | Ga] = 0, we can choose

Va = E [Ua | Ga] ,

which implies Daϕ = DaUa, and guarantees δV = 0. Choose any ordering
of the elements of A and remark that, in view of (5),

E





(

∞
∑

k=1

E [DkUk | Fk]

)2


 = E





(

∞
∑

k=1

DkE [Uk | Fk]

)2




= E

[

∞
∑

k=1

(

DkE [Uk | Fk]
)2
]

≤
∞
∑

k=1

E
[

|DkUk|2
]

≤ ‖U‖2
D(l2(A)),

hence

ϕ =
∞
∑

k=1

E [DkUk | Fk] ,

defines a square integrable random variable of null expectation, which satis-
fies the required property. �

2.3. Ornstein-Uhlenbeck semi-group and generator. Having defined
a gradient and a divergence, one may consider the Laplacian-like operator
defined by L = −δD, which is also called the number operator in the settings
of Gaussian Malliavin calculus.

Definition 2.22. The number operator, denoted by L, is defined on its do-
main

DomL =
{

F ∈ L2(EA) : E

[

∑

a∈A

|DaF |2
]

<∞
}

by

LF = −δDF = −
∑

a∈A

DaF.

The map L can be viewed as the generator of a symmetric Markov process
X, which is ergodic, whose stationary probability is PA. Assume first that A
is finite. Consider (Z(t), t ≥ 0) a Poisson process on the half-line of rate |A|,
and the process X(t) = (X1(t), · · · ,XN (t), t ≥ 0) which evolves according
to the following rule: At a jump time of Z,

• Choose randomly (with equiprobability) an index a ∈ A,
• Replace Xa by an independent random variable X ′

a distributed ac-
cording to Pa.

For every x ∈ EA, a ∈ A, set x¬a = (x1, · · · , xa−1, xa+1, · · · , x|A|). The
generator of the Markov process X is clearly given by

|A|
∑

a∈A

1

|A|

∫

Ea

(

F (x¬a, x
′
a)− F (x)

)

dPa(x
′
a) = −

∑

a∈A

DaF (x).

The factor |A| is due to the intensity of the Poisson process Z which jumps
at rate |A|, the factor |A|−1 is due to the uniform random choice of an index
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a ∈ A. Thus, for a finite set A, L coincides with the generator of X. To
extend this result to the case of a countable set, we apply the Hille-Yosida
theorem:

Proposition 2.23 (Hille-Yosida). A linear operator L on L2(EA) is the
generator of a strongly continuous contraction semigroup on L2(EA) if and
only if

(1) DomL is dense in L2(EA).
(2) L is dissipative i.e. for any λ > 0, F ∈ DomL,

‖λF − LF‖L2(EA) ≥ λ‖F‖L2(EA).

(3) Im(λ Id−L) dense in L2(EA).

Proof. We know that S ⊂ DomL and that S is dense in L2(EA), then so
does DomL.

Let (An, n ≥ 1) an increasing sequence of subsets of A such that ∪n≥1An =
A. For F ∈ L2(EA), let Fn = E [F | FAn ]. Since (Fn, n ≥ 1) is a square inte-
grable martingale, Fn converges to F both almost-surely and in L2(EA). For
any n ≥ 1, Fn depends only onXAn . Abusing the notation, we still denote by
Fn its restriction to EAn so that we can consider LnFn where Ln is defined as
above on EAn . Moreover, according to Lemma 2.9, DaFn = E [DaF | FAn ],
hence

λ2‖Fn‖2L2(EA) ≤ ‖λFn − LnFn‖2L2(EAn )
= E





(

λFn −
∑

a∈A

DaFn

)2




= E



E

[

λF −
∑

a∈A

DaF
∣

∣

∣
FAn

]2




n→∞−−−→ ‖λF − LF‖2L2(EA).

Therefore, point (2) is satisfied.

Since An is finite, there exists Gn ∈ L2(EAn) such that

Fn = (λ Id−Ln)Gn(XAn) = λGn(XAn)−
∑

a∈An

DaGn(XAn)

= λG̃n(XA)−
∑

a∈An

DaG̃n(XA) = λG̃n(XA)−
∑

a∈A

DaG̃n(XA),

where G̃n(XA) = Gn(XAn) depends only on the components whose index
belongs to An. This means that Fn belongs to the range of λ Id−L and we
already know it converges in L2(EA) to F . �

Definition 2.24. The Ornstein-Uhlenbeck semi-group of generator L, de-
noted (Pt)t≥0, is defined on L2(EA) by

PtF (x) = E [F (X(t)) |X(0) = x]

for any x ∈ EA.



18 LAURENT DECREUSEFOND AND HÉLÈNE HALCONRUY

From the sample-path construction of X, the next result is straightforward
for A finite and can be obtained by a limiting process for A denumerable.

Theorem 2.25 (Mehler formula). For a ∈ A, xa ∈ EA and t > 0, let
Xa(xa, t) the random variable defined by

Xa(xa, t) =

{

xa with probability (1− e−t),

X ′
a with probability e−t,

where X ′
a is a Pa-distributed random variable independent from everything

else. In other words, if P xa,t
a denotes the distribution of Xa(xa, t), P

xa,t
a is a

convex combination of εxa and Pa:

P xa,t
a = (1− e−t) εxa + e−t

Pa.

For any x ∈ EA, any t > 0,

PtF (x) =

∫

EA

F (y) ⊗
a∈A

dPxa,t
a (ya).

It follows easily that (Pt, t ≥ 0) is ergodic and stationary:

lim
t→∞

PtF (x) =

∫

EA

F dPa and X(0)
law
= Pa =⇒ X(t)

law
= Pa.

Theorem 2.26. Let F ∈ L2(EA). For every a ∈ A, x ∈ EA,

(12) DaPtF (x) = e−tPtDaF (x)

Proof. For A finite, denote by Za the Poisson process of intensity 1 which
represents the time at which the a-th component is modified in the dynamics
ofX. Let τa = inf{t ≥ 0, Za(t) 6= Za(0)} and remark that τa is exponentially
distributed with parameter 1, hence

E [F (X(t))1t≥τa |X(0) = x]

= (1− e−t)E

[
∫

Ea

F (X¬a(t), x
′
a) dPa(x

′
a)
∣

∣

∣
X(0) = x

]

= (1− e−t)E [E [F (X(t)) | Ga] |X(0) = x]

= E [E [F (X(t)) | Ga]1t≥τa |X(0) = x] .

Then,

DaPtF (x) = PtF (x)−E [PtF (x) | Ga]

= E [(F (X(t)) −E [F (X(t)) | Ga])1t<τa |X(0) = x]

+E [(F (X(t)) −E [F (X(t)) | Ga])1t≥τa |X(0) = x]

= e−tPtDaF (x).

For A infinite, let (An, n ≥ 1) an increasing sequence of finite subsets of A
such that ∪n≥1An = A. For F ∈ L2(EA), let Fn = E [F | FAn ]. Since P is a
contraction semi-group, for any t, PtFn tends to PtF in L2(EA) as n goes to
infinity. From the Mehler formula, we known that PtFn = Pn

t Fn where Pn

is the semi-group associated to An, hence

(13) DaPtFn = DaP
n
t Fn = e−tPn

t DaFn.
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Moreover,

E

[

∑

a∈An

|DaPtFn|2
]

= e−2t
∑

a∈An

E
[

|PtDaFn|2
]

≤ e−2t
∑

a∈An

E
[

|DaFn|2
]

= e−2t
∑

a∈An

E
[

|E [DaF | FAn ] |2
]

≤ e−2t
∑

a∈An

E
[

|DaF |2
]

≤ e−2t‖DF‖2D.
According to Lemma [2.7], this means that PtF belongs to D. Let n go to
infinity in (13) yields (12). �

From (12), can be deduced another covariance identity.

Theorem 2.27. For any F,G ∈ D,

(14) cov(F,G) = E

[

∑

k∈A

DkF

∫ ∞

0
e−tPtE [DkG|Fk] dt

]

.

Proof. Let F,G ∈ L2(EA).

cov(F,G) = E

[

∑

k∈A

DkE [F |Fk]DkE [G|Fk]

]

= E

[

∑

k∈A

DkE [F |Fk]

(

−
∫ ∞

0
LPtE [G|Fk] dt

)

]

=

∫ ∞

0
E

[

∑

k∈A

DkE [F |Fk]

(

∑

l∈A

DlPtE [G|Fk] dt

)]

=

∫ ∞

0
e−t

E

[

∑

k∈A

DkFPtDkE [G|Fk]

]

dt

when we have used the orthogonality of the sum, (12) and the Fk-measurability
of PtDkE [G|Fk] to get the last equality. �

3. Dirichlet structures

For the definitions and properties of Dirichlet calculus, we refer to the
first chapter of [7]. On (EA,PA), we have already implicitly built a Dirichlet
structure, i.e. a Markov process X, a semi-group P and a generator L
(see subsection 2.3). It remains to define the Dirichlet form EA such that
EA(F ) = E [F LF ] for any sufficently regular functional F .



20 LAURENT DECREUSEFOND AND HÉLÈNE HALCONRUY

Definition 3.1. For F ∈ D, define

EA(F ) = E

[

∑

a∈A

|DaF |2
]

= ‖DF‖2L2(A×EA).

The integration by parts formula means that this form is closed. Since
we do not assume any property on Ea for any a ∈ A and since we do not
seem to have a product rule formula for the gradient, we cannot assert more
properties for EA. However, following [8], we now show that we can recon-
struct the usual gradient structures on Poisson and Wiener spaces as well
choosen limits of our construction. For these two situations, we have a Polish
space W , equipped with B its borelean σ-field and a probability measure P.
There also exists a Dirichlet form E defined on a set of functionals D. Let
(EN , AN ) be a sequence of Polish spaces, all equipped with a probability
measure PN and their own Dirichlet form EN , defined on DN . Consider
maps UN from EN into W such that (UN )∗PN , the pullback measure of PN

by UN , converges in distribution to P. We assume that for any F ∈ D, the
map F ◦ UN belongs to DN . The image Dirichlet structure is defined as
follows. For any F ∈ D,

EUN (F ) = EN (F ◦ UN ).

We adapt the following definition from [8].

Definition 3.2. With the previous notations, we say that ((UN )∗PN , N ≥
1) converges as a Dirichlet distribution whenever for any F ∈ Lip∩D,

lim
N→∞

EUN (F ) = E(F ).

3.1. Poisson point process. Let Y be a compact Polish space and NY be
the set of weighted configurations, i.e. the set of locally finite, integer valued
measures on Y. Such a measure is of the form

ω =
∞
∑

n=1

pn εζn ,

where (ζn, n ≥ 1) is a set of distinct points in Y with no accumulation point,
(pn, n ≥ 1) any sequence of positive integers. The topology on NY is defined
by the semi-norms

pf (ω) =

∣

∣

∣

∣

∣

∞
∑

n=1

pn f(ζn)

∣

∣

∣

∣

∣

,

when f runs through the set of continuous functions on Y. It is known (see
for instance [17]) that NY is then a Polish space for this topology. For some
finite measure M on Y, we put on NY, the probability measure P such that
the canonical process is a Poisson point process of control measure M, which
we consider without loss of generality, to have total mass M(Y) = 1.

On NY, it is customary to consider the difference gradient (see [14, 23, 27]):
For any x ∈ Y, any ω ∈ NY,

DxF (ω) = F (ω + εx)− F (ω).
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Set

DP =

{

F : NY → R such that E

[
∫

Y

|DxF |2 dM(y)

]

<∞
}

and for any F∈ DP ,

E(F ) = E

[
∫

Y

|DxF |2 dM(y)

]

.(15)

To see the Poisson point process as a Dirichlet limit, the idea is to partition
the set Y into N parts, CN

1 , · · · , CN
N such that M(CN

k ) = pNk and then for

each k ∈ {1, · · · , N}, take a point ζNk into CN
k so that the Poisson point

process ω on Y with intensity measure M is approximated by

ωN =
N
∑

k=1

ω(CN
k ) εζN

k
.

We denote by PN the distribution of ωN . By computing its Laplace trans-
form, it is clear that PN converges in distribution to P. It remains to see
this convergence holds in the Dirichlet sense for the sequence of Dirichlet
structures induced by our approach for independent random variables.

Let (ζNk , k = 1, · · · , N) (respectively (pNk , k = 1, · · · , N)) be a triangular
array of points in Y (respectively of non-negative numbers) such that the
following two properties hold: 1) the pNk ’s tends to 0 uniformly:

(16) pN = sup
k≤N

pNk = O(
1

N
);

2) the ζNk ’s are sufficently well spread so that we have convergence of Rie-
mann sums: For any continuous and M-integrable function f : Y → R, we
have

(17)

N
∑

k=1

f(ζNk ) pNk
N→∞−−−−→

∫

f(x) dM(x).

Take f = 1 implies that
∑

k p
N
k tends to 1 as N goes to infinity.

For any N and any k ∈ {1, · · · , N}, let µNk be the Poisson distribution on

N, of parameter pNk . In this situation, let EN = N
N with µN = ⊗N

k=1µ
N
k .

That means we have independent random variables MN
1 , · · · ,MN

N , where

MN
k follows a Poisson distribution of parameter pNk for any k ∈ {1, · · · , N}.

We turn these independent random variables into a point process by the map
UN defined as

UN : NN −→ NY

(m1, · · · ,mN ) 7−→
N
∑

k=1

mk εζN
k
.
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Lemma 3.3. For any F ∈ DP ,

(18) EUN (F )

=
N
∑

m=1

∞
∑

ℓ=0

E





(

∞
∑

τ=0

(

F (ωN
(m) + ℓεζNm )− F (ωN

(m) + τεζNm )
)

µNm(τ)

)2


µNm(ℓ),

where ωN
(m) =

∑

k 6=mM
N
k εζNk

.

Proof. According its very definition,

EUN (F ) =
N
∑

m=1

E





(

F (ωN
(m) +MN

m εζNm )−
∞
∑

τ=0

F (ωN
(m) + τεζNm )µNm(τ)

)2


 .

The result follows by conditioning with respect to MN
m , whose law is µNm. �

Since the vague topology on NY is metrizable, one could define Lipschitz
functions with respect to this distance. However, this turns out to be not
sufficient for the convergence to hold.

Definition 3.4. A function F NY → R is said to be TV − Lip if F is
continuous for the vague topology and if for any ω, η ∈ NY,

|F (ω)− F (η)| ≤ distTV(ω, η),

where distTV represents the distance in total variation between two point
measures, i.e. the number of distinct points counted with multiplicity.

Theorem 3.5. For any F ∈ TV− Lip∩DP , with the notations of Lemma [3.3]
and (15),

EUN (F )
N→∞−−−−→ E(F ).

Proof. Starting from (18), the terms with τ = 0 can be decomposed as

e−2pNm

N
∑

m=1

E

[

(

F (ωN
(m) + εζNm )− F (ωN

(m))
)2
]

µNm(1) +RN
0 .

Since F belongs to TV − Lip,

RN
0 ≤

N
∑

m=1

∞
∑

ℓ=2

l2µNm(l) ≤ c1N(pN )2E
[

(Poisson(pN ) + 2)2
]

≤ c2N(pN )2,

where the c1 and c2 are irrelevant constants. As NpN is bounded, RN
0 goes

to 0 as N grows to infinity. For the very same reasons, the sum of the terms
of (18) with τ ≥ 1 converge to 0, thus

lim
N→∞

EUN (F ) = lim
N→∞

N
∑

m=1

e−2pNm E

[

(

F (ωN
(m) + εζNm )− F (ωN

(m))
)2
]

pNm.
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Consider now the space N
ζ
Y
= NY × {ζNk , k = 1, · · · , N} with the product

topology and probability measure P̃N = PN ⊗∑k p
N
m εζN

k
. Let

ψ : NY × {ζNk , k :=, · · · , N} −→ E

(ω, ζ) 7−→
(

F (ω − (ω(ζ)− 1)εζ)− F (ω − ω(ζ)εζ)
)2
.

Then, we can write

N
∑

m=1

E

[

(

F (ωN
(m) + εζNm )− F (ωN

(m))
)2
]

pNm =

∫

N
ζ
Y

ψ(ω, η) dP̃N (ω, ζ).

Under P̃N , the random variables ω and ζ are independent. Equation (17)
means that the marginal distribution of ζ tends to M (assumed to be a
probability measure at the very beginning of this construction). Moreover,

we already know that PN converges in distribution to P. Hence, P̃N tends
to P⊗M as N goes to infinity. Since F is in TV − Lip, ψ is continuous and
bounded, hence the result. �

3.2. Donsker theorem. For details on Gaussian Malliavin calculus, we
refer to [22, 31]. We now consider P as the Wiener measure on W =
C0([0, 1];R). Let (hk, k ≥ 1) be an orthonormal basis of the Cameron-Martin
space H,

H = {f : [0, 1] → R, ∃ḟ ∈ L2 with f(t) =

∫ t

0
ḟ(s) ds} and ‖f‖H = ‖ḟ‖L2 .

A function F : W → R is said to be cylindrical if it is of the form

F = f(δBv1, · · · , δBvn),
where v1, · · · , vn belong to H, δBv is the Wiener integral of v and f belongs
to the Schwartz space S(Rn). For h ∈ H,

∇hF (w) =

n
∑

k=1

∂f

∂xk
(δBv1, · · · , δBvn)hk.

The map ∇ is closable from L2(W ;R) to L2(W ;H). Thus, it is meaningful
to define DB as the closure of cylindrical functions for the norm

‖F‖1,2 = ‖F‖2 + ‖∇F‖L2(W ;H).

Definition 3.6. A function F : W → R is said to be H-C1 if

• for almost all ω ∈ W , h 7−→ F (ω + h) is a continuous function on
H,

• for almost all ω ∈W , h 7−→ F (ω+ h) is continuously Fréchet differ-
entiable and this Fréchet derivative is continuous from H into R⊗H.

We still denote by ∇F the element of H such that

d

dτ
F (ω + τh)

∣

∣

∣

∣

τ=0

= 〈∇F (ω), h〉H .
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For N ≥ 1, let

eNk (t) =
√
N 1[(k−1)/N, k/N)(t) and hNk (t) =

∫ t

0
eNk (s) ds.

The family (hNk , k ≥ 1) is then orthonormal in H. For (Mk, k ≥ 1) a
sequence of independent identically distributed random variables, centered
with unit variance, the random walk

ωN (t) =

N
∑

k=1

Mk h
N
k (t), for all t ∈ [0, 1],

is known to converge in distribution in W to P. Let EN = R
N equipped

with the product measure PN = ⊗N
k=1ν where ν is the standard Gaussian

measure on R. We define the map UN as follows:

UN : EN −→W

m = (m1, · · · ,mN ) 7−→
N
∑

k=1

mk h
N
k .

We can then restate the Donsker theorem by saying that (UN )∗PN converges
to P. It follows from our definition that:

Lemma 3.7. For any F ∈ L2(W ;R),

EUN (F ) =
N
∑

k=1

E

[

(

F (ωN )−E
′
[

F (ωN
(k) +M ′

k h
N
k )
])2
]

,

where ωN
(k) = ωN − Mk h

N
k and M ′

k is an independent copy of Mk. The

expectation is taken on the product space R
N+1 equipped with the measure

PN ⊗ ν.

The definition of Lipschitz function we use here is the following:

Definition 3.8. A function F : W → R is said to be Lipschitz if it is H-C1

and for almost all ω ∈W ,

|〈∇F, h〉| ≤ ‖ḣ‖L1 .

In particular since eNk ≥ 0, this implies that

|〈∇F, hNk 〉| ≤ hNk (1) − hNk (0) =
1√
N

·

For F ∈ DB ∩H-C1, we have

(19) F (ω + h)− F (ω) = 〈∇F (ω), h〉H + ‖ḣ‖L1 ε(ω, h),

where ε(ω, h) is bounded and goes to 0 in L2, uniformly with as ‖ḣ‖L1 tends
to 0.

Theorem 3.9. For any F ∈ DB ∩H-C1,

EUN (F )
N→∞−−−−→ E

[

‖∇F‖2H
]

= E(F ).



MALLIAVIN-DIRICHLET STRUCTURES FOR INDEPENDENT R.V. 25

Proof. For F ∈ DB ∩H-C1, in view of (19), we have

F (ωN )− F (ωN
(k) +M ′

k h
N
k )

= (Mk −M ′
k) 〈∇F (ωN

(k)), h
N
k 〉H +

|Mk −M ′
k|√

N
ε(ωN

(k), h
N
k ).

Hence,

N
∑

k=1

E

[

(

F (ωN )−E
′
[

F (ωN
(k) +M ′

k h
N
k )
])2
]

=

N
∑

k=1

E

[

(

Mk 〈∇F (ωN
(k)), h

N
k 〉H +E

′

[ |Mk −M ′
k|√

N
ε(ωN

(k), h
N
k )

]

)2
]

=

N
∑

k=1

E

[

〈∇F (ωN
(k)), h

N
k 〉2H

]

+ Rem,

and

Rem ≤ c

N

N
∑

k=1

E

[

ε(ωN
(k), h

N
k )2
]

N→∞−−−−→ 0,

by the Césaro theorem. It follows that EUN (F ) has the same limit as

N
∑

k=1

E

[

〈∇F (ωN
(k)), h

N
k 〉2H

]

.

As N goes to infinity, we add more and more terms to the random walk, so
that the influence of one particular term becomes negligible. The following
result is well known [8, Proposition 3]: For any k, for any bounded ψ and ϕ,

E
[

ψ(Mk)ϕ(ω
N )
] N→∞−−−−→ E [ψ(Mk)]E [ϕ(ω)] .

Since ‖∇F‖H belongs to L∞ and ‖hNk ‖∞ tends to 0, this entails that for any
k,

lim
N→∞

E

[

〈∇F (ωN
(k)), h

N
k 〉2H

]

= lim
N→∞

E
[

〈∇F (ωN ), hNk 〉2H
]

= lim
N→∞

E
[

‖πVN
∇F (ωN )‖2H

]

,

where πVN
is the orthogonal projection in H onto span{hNk , k = 1, · · · , N}.

We conclude by dominated convergence. �

4. Applications to permutations

For every integerN , denote by SN the space of permutations on {1, · · · , N}.
We always identify SN as the subgroup of SN+1 stabilizing the element
N + 1. For every k ∈ {1, · · · , N}, define Jk = {1, · · · , k} and

J = J1 ×J2 × · · · × JN .

The coordinate map from J to Jk is denoted by Ik. Following [18], we have

Theorem 4.1. There exists a natural bijection Γ between J and SN .
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Proof. To a sequence (i1, · · · , iN ) where ik ∈ Jk, we associate the permuta-
tion

Γ(i1, · · · , iN ) = (N, iN ) ◦ (N − 1, iN−1) . . . ◦ (2, i2).
where (i, j) denotes the transposition between the two elements i and j.

To an element σN ∈ SN , we associate iN = σN (N). Then, N is a fixed
point of σN−1 = (N, iN ) ◦σN , hence it can be identified as an element σN−1

of SN−1. Then, iN−1 = σN−1(N − 1) and so on for decreasing indices.

It is then clear that Γ is one-to-one and onto. �

In [18], Γ is described by the following rule: Start with permutation σ1 =
(1), if at the N -th step of the algorithm, we have iN = N then the current
permutation is extended by leaving N fixed, otherwise, N is inserted in σN−1

just before iN in the cycle of this element. This construction is reminiscent
of the Chinese restaurant process (see [2]) where iN is placed immediatly
after N . An alternative construction of permutations is known as the Feller
coupling (see [2]). In our notations, it is given by

σ1 = (1); σN = σN−1 ◦ (σ−1
N−1(iN ), N).

Definition 4.2 (Ewens distribution). For some t ∈ R
+, for any k, consider

the measure Pk defined on Jk by

Pk({j}) =



















1

t+ k − 1
if j 6= k,

t

t+ k − 1
for j = k.

Under the distribution P = ⊗kPk, the random variables (Ik, k = 1, · · · , N)
are independent with law given by P(Ik = j) = Pk({j}), for any k.

The Ewens distribution of parameter t on SN , denoted by P
t, is the pull-

back of P by the map Γ.

A moment of thought shows that a new cycle begins in the first construc-
tion for each index where ik = k. Moreover, it can be shown that

Theorem 4.3 (see [18]). For any σ ∈ SN ,

P
t({σ}) = tcyc(σ)

(t+ 1)(t+ 2)× · · · × (t+N − 1)
,

where cyc(σ) is the number of cycles of σ.

For any F , a measurable function on SN , we have the following diagram
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(I, ⊗N
k=1Pk)

(SN , P
t) R

Γ F̃ = F ◦ Γ

F

We denote by i = (i1, · · · , iN ) a generic element of J and by σ = Γ(i).

Let C1(σ) denote the number of fixed points of the permutation σ and

C̃1 = C1 ◦ Γ. For any k ∈ JN , the random variable Uk(σ) is the indicator

of the event (k is a fixed point of σ) and let ŨN
k = Uk ◦ Γ. The Clark

formula with reverse filtration shows that we can write ŨN
k as a sum of

centered orthogonal random variables as in the Hoeffding decomposition of
U-statistics (see Theorem 2.12).

Theorem 4.4. For any k ∈ {1, · · · , N},

(20) Ũk = 1(Ik=k)1(Im 6=k, m∈{k+1,··· ,N}).

and under P
t, ŨN

k is Bernoulli distributed with parameter tpkαk, where for
any k ∈ {1, · · · , N},

pk =
1

t+ k − 1
and αk =

N
∏

j=k+1

j − 1

t+ j − 1
·

Moreover,

ŨN
k = tpkαk +

(

1(Ik=k) − tpk

)

N
∏

m=k+1

1(Im 6=k)

− tpk

N−k−1
∑

j=1

t+ k − 1

t+ k + j − 2

(

1(Ik+j=k) − pk+j

)

N−k
∏

l=j+1

1(Ik+l 6=k).

Proof. By the previous construction, for

i = (i1, · · · , iN ) ∈ (Ik = k) ∩
N
⋂

m=k+1

(Im 6= k),

the permutation σ = Γ(i) admits k as a fixed point. Hence,
{

(Ik = k) ∩
N
⋂

m=k+1

(Im 6= k)

}

⊂ (ŨN
k = 1).

As both events have cardinal (N − 1)!, they do coincide. The values of pk
and αk are easily computed since the random variables (Im, k ≤ m ≤ N)
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are independent. According to Theorem 2.13,

ŨN
k = E

[

ŨN
k

]

+

N
∑

l=1

DlE

[

Ũk |Hl−1

]

= E

[

ŨN
k

]

+

N
∑

l=1

E

[

ŨN
k |Hl−1

]

−E

[

ŨN
k |Hl

]

.

Since ŨN
k ∈ Hk−1, DlE

[

Ũk |Hl−1

]

= 0 for l < k. For l = k, we get

E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik, Ik+1, · · ·
]

−E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

=
(

1(Ik=k) −Pk({k})
)

N
∏

m=k+1

1(Im 6=k).

For l = k + 1,

E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

−E

[

1(Ik=k)

N
∏

m=k+1

1(Im 6=k) | Ik+2, Ik+3, · · ·
]

= tpk

(

1(Ik+1 6=k) −Pk+1({k}c)
)

N
∏

m=k+2

1(Im 6=k)

= −tpk
(

1(Ik+1=k) −Pk+1({k})
)

N
∏

m=k+2

1(Im 6=k).

The subsequent terms are handled similarly and the result follows. �

Since

C̃1 =
N
∑

k=1

ŨN
k ,

we retrieve the result of [3]:

E

[

C̃1

]

=
tN

t+N − 1
·

and the chaos decomposition of C̃1 can be easily deduced from the previous
theorem.
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Theorem 4.5. We can write

C̃1 = t

(

1− t− 1

N + t− 1

)

+
N
∑

l=1

DlŨ
N
l +

N
∑

l=2

t

t+ l − 2
Dl

(

l−1
∑

k=1

N
∏

m=l

1(Im 6=k)

)

= t

(

1− t− 1

N + t− 1

)

+

N
∑

l=1

(1(Il=l) −
t

t+ l − 1
)

N
∏

m=l+1

1(Im 6=l)

−
N−1
∑

l=2

t

t+ l − 2

l−1
∑

k=1

(

1(Il=k) −
1

t+ l − 1

) N
∏

m=l+1

1(Im 6=k).

Proof. By the very definition of C̃1, we have

(21) C̃1 = E

[

C̃1

]

+

N
∑

k=1

N
∑

l=k

DlE

[

ŨN
k |Hl−1

]

.

For k = l, E
[

ŨN
k |Hl−1

]

= ŨN
k and for l > k,

E

[

ŨN
k |Hl−1

]

=
t

t+ k − 1

(

1− 1

t+ k

)

. . .

(

1− 1

t+ l − 2

) N
∏

m=l

1(Im 6=k)

=
t

t+ l − 2

N
∏

m=l

1(Im 6=k).

It is straightforward that l > k,

Dl

(

N
∏

m=l

1(Im 6=k)

)

=

(

1(Il 6=k) − (1− 1

t+ l − 1
)

) N
∏

m=l+1

1(Im 6=k)

= −
(

1(Il=k) −
1

t+ l − 1

) N
∏

m=l+1

1(Im 6=k).

The result then follows by direct computations. �

This decomposition can be used to compute the variance of C̃1.

Theorem 4.6. For any t ∈ R, we get

var[C̃1] =
Nt

t+N − 1

(

t

t+N − 1
+ 1− 2t2

N

N
∑

k=1

1

t+ k − 1

)

·

Proof. Recall that for j 6= l, DlE

[

ŨN
k |Hl−1

]

and DjE

[

ŨN
m |Hj−1

]

are or-

thogonal in L2. In view of (21), according to the integration by parts formula,
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we have

var [C̃1] =

N
∑

k=1

N
∑

m=1

N
∑

l=k

N
∑

j=m

E

[

DlE

[

ŨN
k |Hl−1

]

DjE

[

ŨN
m |Hj−1

]]

=
N
∑

k=1

N
∑

m=1

N
∑

l=k∨m

E

[

DlE

[

ŨN
k |Hl−1

]

DlE

[

ŨN
m |Hl−1

]]

= 2

N
∑

k=1

N
∑

m=k+1

N
∑

l=m

E

[

UN
k DlE

[

ŨN
m |Hl−1

]]

+E

[

N
∑

k=1

N
∑

l=k

ŨN
k DlE

[

ŨN
k |Hl−1

]

]

.

Then, for l ≥ m > k,

E

[

UN
k DlE

[

ŨN
m |Hl−1

]]

= − t

t+ l − 2
E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Il=m) −
1

t+ l − 1

) N
∏

j=l+1

1(Ij 6=m)





= − tPk({k})
t+ l − 2

(

Pl({m}) − 1

t+ l − 1

)

E





l−1
∏

p=k+1

1(Ip 6=k)



E





N
∏

p=l+1

1(Ip /∈{k,m})





= 0,

since, for any l ≥ m > k

E
[

1(Il=m)1(Il 6=k)

]

= E
[

1(Il=m)

]

= Pl({m}) = 1

t+ l − 1
.

Furthermore, for l > k,

E

[

ŨN
k DlE

[

ŨN
k |Hl−1

]]

= − t

t+ l − 2
E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Il=k) −
1

t+ l − 1

) N
∏

p=l+1

1(Ip 6=k)





=
t

(t+ l − 1)(t+ l − 2)
Pk({k})E





N
∏

p=k+1

1(Ip 6=k)





=
t2

(t+ l − 1)(t+ l − 2)(t+N − 1)
,
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as
∏N

p=k+1 1(Ip 6=k)1(Il=k) = 0, for l > k. Finally, for l = k, we get

E

[

ŨN
k DlE

[

ŨN
k |Hl−1

]]

= E



1(Ik=k)

N
∏

p=k+1

1(Ip 6=k)

(

1(Ik=k) −
t

t+ k − 1

) N
∏

p=k+1

1(Ip 6=k)





=

(

t

t+ k − 1
− t2

(t+ k − 1)2

)

t+ k − 1

t+N − 1

=
t(k − 1)

(t+ k − 1)(t+N − 1)
·

It follows that

var [C̃1]

=
t2

t+N − 1

N
∑

k=1

N
∑

l=k+1

1

(t+ l − 1)(t+ l − 2)
+

t

t+N − 1

N
∑

k=1

k − 1

t+ k − 1

=
t

t+N − 1

(

Nt

t+N − 1
+N − 2t2

N
∑

k=1

1

t+ k − 1

)

,

so that we retrieve

var [C̃1] −−−−→
N→∞

t,

as can be expected from the Poisson limit. �

5. Lyapounov Central Limit Theorem

To the best of our knowledge, there is no quantitative version of the Lya-
pounov CLT [5] for independent but not identically distributed random vari-
ables. The main reason being that the usual coupling mentioned in the in-
troduction is no longer effective when the random variables do not have the
same distribution. We now show how to use our framework to get such a
theorem.

The Wasserstein (or Kolmogorov-Rubinstein) distance between µ and ν,
two probability measures on R is defined by

dist(µ, ν) = sup
F∈Lip1

∫

R

F dµ−
∫

F dν.

The Stein’s method [4, Lemma 2.3] says that when µ is the standard Gaussian
measure,

dist(µ, ν) = sup
F∈L

∫

R

(

xF (x)− F ′(x)
)

dν(x),

where L is the set of C2 functions such that ‖F ′′‖∞ ≤ 2.
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Theorem 5.1. Let (Xn, n ≥ 1) be a sequence of thrice integrable, indepen-
dent random variables. Denote

σ2n = var(Xn), s
2
n =

n
∑

j=1

σ2j and Yn =
1

sn

n
∑

j=1

(Xj −E [Xj ]) .

Then,

dist (Yn, N (0, 1)) ≤ 6

s3n

n
∑

j=1

E
[

|Xj −E [Xj ] |3
]

.

Proof. With no loss of generality, we assume that E [Xn] = 0 for any n ≥ 1.
For the sake of notation, we introduce

Y ¬k
n =

1

sn

n
∑

j=1
j 6=k

Xj = Yn − Xk

sn
·

For any j, Xj is centered and independent from Gj hence DjXj = Xj . Then,

E [Yn F (Yn)] =
1

sn

n
∑

j=1

E [DjXj F (Yn)]

=
1

sn

n
∑

j=1

E [Xj DjF (Yn)]

=
1

sn

n
∑

j=1

E

[

Xj

(

F (Y ¬j
n +

Xj

sn
)− F (Y ¬j

n +
X ′

j

sn
)

)]

,

where X ′
j is an independent copy of Xj and the expectation is computed

on the product space. The Taylor expansion with integral remainder can be
interpreted as

E [Yn F (Yn)] =
1

s2n

n
∑

j=1

E
[

Xj(Xj −X ′
j) F

′(Y ¬j
n )
]

+
1

2s3n

n
∑

j=1

E

[

Xj(Xj −X ′
j)

2 F ′′
(

Y ¬j
n +

Xj

sn
+Θ(

Xj

sn
−
X ′

j

sn
)
)

]

:= A1 +A2,

where Θ is a [0, 1]-uniformly distributed random variable independent of the
other variables. Since ‖F ′′‖∞ ≤ 2, it is easily seen that

A2 ≤
1

s3n

n
∑

j=1

E
[

|Xj |(Xj −X ′
j)

2
]

≤ 4

s3n

n
∑

j=1

E
[

|Xj |3
]

.

Furthermore,

A1 =
1

s2n

n
∑

j=1

σ2j E
[

F ′(Yn¬j)
]

.



MALLIAVIN-DIRICHLET STRUCTURES FOR INDEPENDENT R.V. 33

Thus, since F ′ ∈ L is 2-Lipschitz continuous,

|A1 −E
[

F ′(Yn)
]

| = 1

s2n

∣

∣

∣

∣

∣

∣

n
∑

j=1

σ2j

(

E
[

F ′(Y ¬j
n )− F ′(Yn)

]

)

∣

∣

∣

∣

∣

∣

≤ 2

s3n

n
∑

j=1

σ2j E [|Xj |] ≤
2

s3n

n
∑

j=1

E
[

|Xj |3
]

.

In brief,
∣

∣E
[

Yn F (Yn)− F ′(Yn)
]
∣

∣ ≤ 6

s3n

n
∑

j=1

E
[

|Xj |3
]

,

and the result follows. �
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