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Abstract: Thermal radiation is a universal property for all objects with temperatures above 
0K. Every object with a specific shape and emissivity has its own thermal radiation signature; 
such signature allows the object to be detected and recognized which can be an undesirable 
situation. In this paper, we apply transformation optics theory to a thermal radiation problem 
to develop an electromagnetic illusion by controlling the thermal radiation signature of a 
given object. Starting from the fluctuation dissipation theorem where thermally fluctuating 
sources are related to the radiative losses, we demonstrate that it is possible for objects 
residing in two spaces, virtual and physical, to have the same thermal radiation signature if 
the complex permittivities and permeabilities satisfy the standard space transformations. We 
emphasize the invariance of the fluctuation electrodynamics physics under transformation, 
and show how this result allows the mimicking in thermal radiation. We illustrate the concept 
using the illusion paradigm in the two-dimensional space and a numerical calculation 
validates all predictions. Finally, we discuss limitations and extensions of the proposed 
technique. 
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1. Introduction

Transformation optics (TO) [1–5] has been an active domain of research with key 
applications such as electromagnetic cloaking, camouflage and illusion [6]. Most often 
passive objects are coated with a TO-designed cloak to generate a zero scattering cross-
section in case of perfect cloaking, or a scattering cross-section similar to that of another 
object in case of optical illusion [7–12]. The same concept was extended to heat transfer 
physics through thermal conduction in solids [13–15]. Here, we extend TO to thermal 
radiation (TR) and the technique is applied to control TR signatures emitted from arbitrary 
objects in order, for instance, to deceive a detector thanks to a countermeasure effect 
changing its shape. 

TR is an incoherent electromagnetic radiation from objects at temperature above 0K 
[16,17]. All objects thermally radiate and their TR signature (i.e., spectral and spatial 
distribution of the emission) depends on their shape and constitutive parameters. Typically, 
passive infrared surveillance is such that a thermally radiating object is detected by devices 
sensitive to wavelengths around the maximal emission. TR detection is generally operated in 
two infrared ranges (3-5µm) and (8-14µm) [18,19]. Within this framework, camouflage or 
cloak techniques are either active or passive. In the first (active) situation, the emitter is 
surrounded by controllable sources that emit in the same frequency range indicating different 
shapes and temperature [20–24]; in the second (passive) one, the TR signatures of the cloaked 
objects are cancelled so as to minimize the contrast with the environment (typically air). This 
can be achieved by covering the emitter with low-emissivity paints [25–28] or phase 
transition thermal layers [29] fabricated to keep the thermal emission close to that of the 
background, thanks to the control of their infrared reflectance. However such techniques have 
to face the challenge of time temperature increase due to such isolation [30], hence limiting 
their usage to relatively short time. Notice also that the environment may vary with time (case 
of moving objects), which is another difficulty. 

There are at least two theoretical tools to examine TR at the macroscopic level. With the 
first one TR is visualized as geometric rays which carry the radiated energy and the resulting 
pattern is governed by the Radiative Transfer Equation (RTE) [16]. This equation relies on 



mere conservation of radiative intensity along lines of sight between thermal emitter and 
observer. RTE provides a satisfactory model for TR in most far field applications. However, 
most often it ignores the phase and vector properties of TR, for which reason it is not 
optimally suitable to be integrated with TO theory. The second tool is Fluctuation 
electrodynamics (FE) introduced by Rytov [31], where TR is treated as an electromagnetic 
radiation originating from randomly thermally fluctuating electric and magnetic volumetric 
current sources [32,33]. These sources are governed by stochastic processes and their 
statistical properties are determined by the Fluctuation dissipation theorem (FDT) which 
relates the losses of a linear system to the fluctuations of its internal thermal energy [34–36]. 
FE is typically used in cases where RTE fails, for instance, in describing near field thermal 
radiation [37,38]. 

Transformation optics describe the equivalence between space deformation and 
modification of materials physical parameters. In other words, Maxwell equations and the 
associated electromagnetic field cannot “see” the difference between the curvature of the 
space by on one hand and the inhomogeneity and anisotropy of the medium on the other hand 
[5]. Such invariance of Maxwell equations allows for the equivalence between different 
systems as long as the transformed material parameters between the two spaces satisfy the 
adequate transformations. If electromagnetic sources are included, source transformation [39–
41] must also be employed. Typically, transformations are performed between different
spaces including different current densities or antennas, and modify the antenna surrounding
in order to mimic the same radiation pattern outside a predefined cloak frontier.

In this paper, we first show that FE is invariant under transformations depicted by TO, in 
the sense that the same fluctuation dissipation theorem is recovered in the physical space after 
transformation of both the physical parameters and the thermal sources. For that the thermal 
current sources are first transformed in the same manner as coherent sources according to 
source transformation, and these transformed sources are then compared to those which are 
proportional to dissipative losses in the physical space. Hence both ways of transforming the 
thermal currents are consistent and only constrained by the validity of FDT in both spaces. In 
order to keep the model relevant to the ongoing literature of near field thermal radiation [32], 
we illustrate our theoretical demonstration by considering the two-dimensional (2D) space 
where the electromagnetic radiation is the combination of Transverse Electric (TE) and 
Transverse Magnetic (TM) polarizations. To the authors’ knowledge, no other work has yet 
addressed the application of the TO theory to FE. Similar theoretical studies were 
implemented using TO in the realm of Quantum optics [42,43]in order to control spontaneous 
emission from quantum emitter, and others have treated van der Waals forces [44,45]. 

2. Transformation optics and fluctuation electrodynamics

TO theory states that in order to keep Maxwell’s equations invariant under a transformation 
between a departure (pre-transformation) space with the coordinate set {xm} and another 
arrival (post-transformation) space with the coordinate set{xm’}, the material’s parameters 
must comply with the following transformation [5]: 

' ' ' ' ' ' ' '1 1
and ,m n m n mn m n m n mn

m n m nA A µ A A µ
A A

ε ε= =  (1)

where
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'
m

m
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x
A

x

∂=
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and |A| are the elements and the determinant of the Jacobian matrix A, ε and

µ are the relative permittivity and permeability tensors respectively. Note that m’, n’, m and n 
are indices of the space coordinates, respectively used for {x’, y’, z’} and {x, y, z}. Here, we 
assume that the transformation is real (i.e.: associates real-valued coordinate systems), in 
contrast to complex valued transformations [46]. The media in both departure and arrival 
spaces are lossy so that their permittivity or permeability are complex valued functions. We 



exclude the cases of bi-anisotropic and optical active media. We consider a eiωt time harmonic 
dependence, where ω is the angular frequency and t is referring to time. It is supposed that the 
imaginary parts of permittivity and permeability tensors Im{εmn} and Im{µmn} are positive 
tensors, which is characteristic of a passive medium (no gain). If the departure space contains 
nonzero electric (J) and magnetic (K)volumetric current sources, then these current sources 
are also transformed to the arrival space as follows [39]: 

' ' ' '1 1
and .m m m m m m

m mJ A J K A K
A A

= =  (2)

FDT theory states that for any dissipative linear system with local thermodynamical 
temperature T, the spectral density of the generalized force of the system fluctuates in such a 
way to be proportional to the dissipative part of the transfer function of the system [34]. Here 
we consider the FDT of second kind [47]where TR is the electromagnetic response to the 
stochastic current sources. The spectral correlation of the volumetric electric mJ and magnetic 
currents mK embedded in the object, with relative complex permittivity tensor εmn(x,ω) and 
relative complex permeability tensor µmn(x,ω) is quantified as follows [48]: 
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mean energy of a single quantum oscillator with angular frequency ω, ignoring vacuum 
fluctuations. x1 and x2 are two different position vectors in the thermal emitter. δ indicates 
Dirac functions, KB is Boltzmann’s constant, ε0 and µ0 are the permittivity and permeability of 
the free space respectively. The star (*) indicates the complex conjugation operator. Once the 
thermally fluctuating sources have been quantified, the radiated field can be computed by 
solving Maxwell’s equations, or equivalently knowing the Green’s function for both electric 
and magnetic fields. 

3. Transformational fluctuation electrodynamics

In this section, we apply the TO theory to the FE problem. Starting with a lossy object 
characterized by εmn and µmn residing in the departure space, the correlation of fluctuating 
electric and magnetic currents is provided according to (3) and (4). Hence these correlations 
are proportional of the imaginary permittivity and permeability of the departure space. Now 
transforming from the departure space into another arrival space with transformation 'm

mA , the 

arrival object’s parameters ' 'm nε  and µm’n’ are transformed according to (1). Since electric and 
magnetic currents are transformed according to (2), then, the transformation of the spectral 
correlation of the fluctuational electric current follows: 
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1 1 2 2 1 1 2 22

1
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substituting the right-hand side correlation with (3), then 
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due to its scaling property [49], the delta function is transformed as follows: 
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substituting (1) and (7) in (6) yields: 
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These last relations show that after space transformation, the current correlations in the arrival 
space are again proportional to the imaginary parts of permittivity and permeability of the 
arrival space. Hence, from Eqs. (3), (8) and (4), (9), FDT has the same form after 
transformation, that is, the source correlations resulting from the FDT theorem in the arrival 
space is identical to the transformation of the source correlations resulting from the FDT 
theorem in the departure space. We therefore conclude that FE is invariant under TO 
transformations. We also notice that such invariance requires a real-valued transformation. 

These last remarks introduce the proposed camouflage technique, which consists in 
engineering the losses of a given object and its surrounding to control its emitted TR 
signature. Notice usually that both media (materials) and sources (currents) must be 
engineered or micro-structured independently to satisfy the transformation optics and the 
mimicking effect; here the FE invariance proves that there is no need to engineer the source in 
the arrival space, which is the key property which allows the TR mimicking. 

In the next section, we illustrate the developed theory using a 2D case where the system is 
invariant along the out of plane axis. Two-dimensional electromagnetic scattering 
cloaking/camouflage was studied previously [50–55]. In this paper, we extend this analysis to 
its TR counterpart. 

4. Two dimensional TE/TM camouflages

In this section, we show how to transform a TR problem between two spaces to produce a TR 
illusion. We consider an illustrative numerical example of transformation between 2D spaces. 
As shown in Fig. 1, the departure space includes a thermally radiating circular shaped object 
(with radius r0) surrounded by a circular coating (with radius rex). It is desired that when 
thermally radiating, these cylinders mimic the TR signature of a horizontal elliptical shaped 
object (with the outer boundary defined by the radial distance ρ(x, y)) for its TE polarization, 
and simultaneously mimic the TR signature of a vertical elliptical shaped object (with the 
outer boundary defined by the radial distanceη(x, y)) for its TM polarization. The objects in 
all spaces are assumed to be embedded in a non-absorbing background medium in such a way 
that the areas surrounding the objects, including the coating, do not contribute to TR (at least 
the coating can be engineered in such a way that its thermal radiation is appreciably less than 
the target in the frequency band). Hence the radiated field within an arbitrary line of sight will 



be the superposition of the thermal radiation of the two polarizations. The departure space is 
chosen to be the physical space for both polarizations, while the virtual space for each 
polarization is chosen to be the arrival space of the corresponding assigned transformations. If 
the detector is polarization insensitive, the observer will detect both the vertical and 
horizontal elliptical shaped objects simultaneously giving the illusion - for the observer- that 
the two objects coincide. 

Fig. 1. schematic of the TR illusion example discussed in section 4. The middle figure is for 
the TE/TM physical space (departure space) with a homogenous anisotropic lossy circular 

object with radius r0 [ (3 0.02)mn mn
obj iε δ= + and (1 0.02 )mn mn mz

obj iμ δ δ= + ] coated

with an inhomogeneous anisotropic circular coat with radius rex. The left figure is for the TE 
virtual space with inhomogeneous anisotropic horizontal elliptical shaped object with semi-
axes a and b embedded in a homogenous medium. The right figure is similar but for a vertical 

ellipse and for TM polarization. The region outside exr  is unity transformed for both

polarizations. The areas of all spaces between the dotted external cylinder and the virtual or 
physical objects, are lossless and do not contribute to the thermal radiation. For numerical 
calculations, L was set to be 11.1λ with matched boundary conditions at the square frames. 

Appendix (A) summarizes the differential equations for both TM and TE polarizations in 
both spaces and gives the transformation of different fields between the two spaces. As shown 
in the appendix (A), TM and TE problems are independent, which allows to mimic one object 
(horizontal or vertical ellipse) per polarization. It is therefore possible to have two 
independent transformations A and B for TM and TE polarizations respectively. We provide 
here an illustration for the TM case but the quantities for the TE case can be retrieved by 
considering the duality between both polarizations and replacing η(θ) by ρ(θ). Considering 
the TM case, the simplest form of the coordinate transformation A can be written as follows: 

( )
0

0

' and ' object transformation (0 ).r r r r
r

η θ
θ θ= = < <        (10)

Notice here that (x, y) and (r,θ) are the Cartesian and polar coordinates of the departure space, 
while (x’, y’) and (r’, θ’) are the Cartesian and polar coordinates of the arrival space. Now, to 
design the coat parameters, a transformation is done from the surrounding medium in the 
virtual space, ensuring continuity at the inner and outer boundaries of the coat (η < r < rex) as 
follows: 

( ) ( ) ( )

( ) ( )

0 ' ' .

' ' .

' .

ex
ex ex ex ex
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ex ex

r r
r r r r r and r r

rr
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θ θ

− − + → < < < < −= 
 → > >

=

     
 (11) 



Relations (10-11) are the basis for the TO transformation of the physical parameters. As a 
result, the inhomogeneous regions are the two ellipses of the virtual spaces and the cylinder 
cloak of the physical space, while the cylinder itself and the cloaks of both virtual spaces are 
homogeneous. In general, all media are anisotropic in regions exr r<  but, for simplicity, we 

assume that the circular object residing inside the TE/TM physical space of Fig. 1 (middle 
figure) has a diagonal homogenous permittivity and permeability. Consequently, the electric 
current densities that are embedded in this object and polarized in orthogonal directions are 

uncorrelated i.e.: * 0x yJ J = . Furthermore, as shown in appendix (A) and following Eq. (2),

the transverse electric current densities of the TM case are transformed as follows: 

' ' ' ' ' '1 1 1 1
and .x x x x y y y x y y

x y x yJ A J A J J A J A J
A A A A

= + = +      (12) 

Fig. 2. Numerical calculation of normalized time averaged radiated poynting vector (log scale) 
at the virtual and physical spaces of TE and TM as depicted in Fig. 1, (a) TM physical (left) 
and virtual (right) (b) TE physical (left) and virtual (right). Colored surfaces, red arrows and 
white contours indicate the modulus (log scale), direction and isoclines of the poynting vector 
respectively. The left figures consider the circular radiating cylinder given in the middle part of 
Fig. 2. These left figures give the TR pattern of the cylinder coated to mimic the TR patterns of 
vertical (Fig. 2(a)) and horizontal (Fig. 2(b)) ellipses for TE and TM polarizations (see text). 
The right figures consider the vertical and horizontal coated ellipses of Fig. 1. These right 
figures give the TR pattern of the ellipses for each polarization and these patterns must be 
compared to those of the left figures. Normalization constants are: for TM, <S>0 = 5.7 × 10-33 
W/m2, while for TE, <S>0 = 10-28 W/m2. We notice that the emitted power has the same 
distribution outside the transformation regions for both polarizations at the physical and virtual 
spaces. Slight differences between both spaces are attributed to numerical error of 
discretization. 



Similarly, the z-component of the magnetic current is transformed as: 

' .z
z

K
K

A
= (13)

We calculated the harmonic time averaged Poynting vector of the emitted field and COMSOL 
Multiphysics was used for the numerical implementation. In Appendix (B) the analytical 
expressions of this radiated pointing vector are derived in terms of the Green functions of the 
differential equation for each polarization, while appendix (C) summarizes the way the setup 
of the numerical calculations was held. As shown in Figs. 2(a) and 2(b), for each polarization 
the emitted power has the same pattern outside the cloak both in the physical and virtual 
spaces, which proves that the coat has allowed a successful mimicking as predicted. The 
imaginary part of the parameters was chosen such that the emitted radiation for both 
polarizations have distinct patterns. The parameters involved in the physical space object are: 

3 0.02 , 3 0.02 , 1and 1 0.02xx yy zz xx yy zzi i iε ε ε μ μ μ= = + = + = = = +      (14) 

hence the permittivity is isotropic but the permeability is not. Notice that εxx, εyy and µzz are 
involved in the TE problem, while µxx, µyy and εzz are involved in the TM problem. The radial 
distance for the horizontal and vertical ellipses are respectively: 

( ) ( ) ( ) ( )
1

2 2 2
cos sin

and .
2b a

θ θ πη θ ρ θ η θ
−

       = + = ±            
    (15) 

Slight differences can be seen and must be attributed to numerical error of discretization. The 
external coating radius is rex = (4/3) λ, the physical space object radius is r0 = (1/9) λ, while 
the semi-axis of the virtual space objects is a = (10/9) λ and b = (1/3) λ. Calculation is 
performed for the near field. Such a calculation can be scaled to any arbitrary wavelength, 
considering material’s dispersion. The choice of the dimensions (small size of the radiating 
objects) results from our limited computational power, but similar results would be obtained 
for micrometer wavelengths and meter objects. To conclude this section, since the Poynting 
vector of the thermal radiation in the physical and virtual spaces are identical for both 
polarizations outside the transformation region, then the developed theory is confirmed within 
our hypothesis framework. 

5. Conclusion and perspectives

We have introduced and validated a Transformation Optics (TO) based technique to 
manipulate the Thermal Radiation (TR) signature for camouflage or illusion purposes. We 
showed that Fluctuation Electrodynamics (FE) is invariant under TO, so that by engineering 
the parameters of the materials in the physical space, one can get the same TR signature than 
another one emitted in the virtual space. The concept was illustrated by a numerical example 
employing a 2D space transformation. For this example, we used a double mimicking 
procedure (one per polarization) which is the extension of a previous double cloaking 
procedure [55]. 

Although the proposed tool seems promising, limitations must be emphasized. For 
instance, realizing TO based designs remains a substantial challenge since the resultant 
parameters after transformation are nonhomogeneous tensorial parameters. One way to 
simplify the design is to incorporate non-tensorial TO [56]. Otherwise homogenization 
techniques must be addressed, but the dispersion laws of the physical parameters should also 
be controlled for the TR illusion to work in a wide spectral range. 

Furthermore, according to Eqs. (3-4) and (8-9), another limitation lies on the fact that the 
objects have the same temperature in both virtual and physical spaces; such difficulty could 



conceptually be overcome by manipulating the chemical potential of photons with an electric 
potential applied on a semiconductor medium to shift its effective temperature [57,58]. 

The transformations that we used were single valued so that every point in the virtual 
space was mapped to a unique image in the physical space. Notice that multi-valued 
transformations were typically used in the context of overlapping illusion optics [12] and anti-
cloaks [9,10] where the image has a larger scattering cross section than that of the virtual 
space; they were also used for shifting transformations where the image is “seen” at different 
locations [11], [41] and size [8] than those of the original object. We restricted the frame to 
lossy media with positive imaginary parts for permittivity and permeability, and the 
temperature was assumed positive. To achieve multivalued transformation, such assumptions 
must be relaxed. For example, a negative real permittivity was employed to produce anti-
cloaks [9]. To implement TR analog of the anti-cloak, a negative imaginary permittivity 
(permeability) media (gain media) is required. However, the self-correlation of current 
densities must always be a positive quantity, for which reason a modified version of FDT 
must be used [59,60]. It was mentioned in [60] that a population inverted two level system 
gain media exhibits a negative effective temperature such that Planck distribution is negative. 
Negative Planck distribution can be also achieved by controlling the photonic chemical 
potential [57,58]. Finally, Thermal radiation illusion of objects with graded temperature is 
possible by simultaneous transformation of thermal conductivities [61] and electromagnetic 
constitutive parameters. 

Appendix A: two dimensional TE/TM formulations 

Starting with Maxwell’s equations and assuming invariance along z-axis, the TR problem is 
decomposed into two independent problems that are the TM polarization (Magnetic field is 
polarized in the z-direction) and the TE polarization (Electric field is polarized in the z-
direction). Here we adopt a notation similar to that used in [55], where TM and TE 
polarizations were transformed using independent transformations A and B respectively. Let 
us rewrite all the tensorial quantities in terms of transverse (x and y) components and z-
components as follows: 
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E and H are the electric and the magnetic fields respectively. Single underlining indicates 
vectors while double underlining indicates matrices, subscript T indicates transverse 
components and m, n = {x, y, z}. Following the typical procedure of transforming Maxwell’s 
equations for each polarization, the differential equation for TM virtual space will be as 
follows: 

( ) ( ) ( )1 12
0 0 .z zz z T zT T

H z k H z J i K zε μ ε ωε− −∇× ∇× − = ∇× +
  

   (16) 

Notice that   indicates inner tensor product. The differential equation for the physical space 
at the same TM polarization 

( ) ( ) ( )' 1 ' 1 '' ' ' 2 ' ' '
0 0 .z zz z T zT T

H z k H z J i K zε μ ε ωε− −∇ × ∇ × − = ∇ × +
  

   (17)

The quantities are transformed for this TM polarization as follows: 



'' ' ' ' ' ' ' ' '1 1
, , , , and .m n m n mn m m mzz z

T Tzz z T m n T T m T z z

K
K A A J A J E A E H H

A A A A

τμμ ε ε −= = = = = =     (18)

Note that A is the matrix form for the TM transformation and τ indicates its transpose. 
Similarly, for the TE virtual space we have: 

( ) ( ) ( )1 12
0 0 .Tz zz z z

T T
E z k E z K i J zμ ε μ ωε− −∇× ∇× − = −∇× +
  

   (19) 

and for the TE physical space: 

( ) ( ) ( )' 1 ' 1 '' ' ' 2 ' ' ' '
0 0 .Tz zz z z

T T
E z k E z K i J zμ ε μ ωμ− −∇ × ∇ × − = −∇ × +
  

   (20)

The quantities are transformed for this TE polarization as follows: 

'' ' ' ' ' ' ' ' '1 1
, , , , and .m n m n mn m m mzz z

T Tzz T m n T T m T z z z

J
B B K B K J H B H E E

B B B B

τεε μ μ −= = = = = =      

notice here that B is the matrix form of the TE transformation. It is important to mention that 
for both polarizations, the z-polarized fields (Ez - Hz) are invariant under transformation. 

Appendix B: ensemble averaged poynting vectors 

In this appendix we show the analytical basis for the numerical procedure given in appendix 
(C) and that was used to solve Eqs. (16-17) and Eqs. (19-20). We first consider the TM virtual
space of Eq. (16) and start with the definition of the ensemble averaged time average
Poynting vector given as:

{ }*1
4 Re .

2
S E H= × × (21)

the scalar product of this vector with the local normal of a surface gives the elementary flux 
carried through this surface. The factor (4) is introduced to take into account the fact that only 
positive frequencies are considered in the ensemble average operator [62]. The magnetic field 

zH  can be calculated using the Green functions of the operator shown in Eq. (16) as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 1 1 2 2 2 3 3 3, , , .HH HE x HE y

z zz z zx T zy TH r G r r K r d r G r r J r d r G r r J r d r= + +   (22)

similarly, for the cartesian components of the transverse electric field, 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

4 4 4 5 5 5 6 6 6, , , .EH EE x EE y

n nz z nx T ny TE r G r r K r d r G r r J r d r G r r J r d r= + +   (23)

where HH
zzG , HE

zxG and HE
zyG  are the magnetic field Green functions of Eq. (16) due to the out 

of plane magnetic current density zK and the transverse components of the electric current 

density x
TJ and y

TJ  respectively. In a similar manner EH
nzG , EE

nxG and EE
nyG  are the transverse 

electric field components Green functions due to the latter current sources respectively, with n 
= {x, y}. r is the position vector of the observation point and {r1..., r6} are position vectors 
inside the thermal emitter volume. Substituting (22-23) in Eq. (21), the ensemble averaged 
Poynting vector will be as follows: 

{ } { }* *2 Re 2 Re .TM TM TM
y z x z x yS x E H y E H x S y S= − = +

   
 (24) 



substituting again with Eqs. (3) and (4) yields, 
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notice here that we used the property * 0m n
TJ K = since the medium is non-chiral. Similarly,

for the y-component, 

( ) ( ) { } ( )
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the TE polarization of Eq. (19) can be treated in a similar way, that is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 1 1 2 2 2 3 3 3, , , .EE EH x EH y

z zz z zx T zy TE r G r r J r d r G r r K r d r G r r K r d r= + +   (27)

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
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n nz z nx T zy TH r G r r J r d r G r r K r d r G r r K r d r= + +   (28)

this yields the Poynting vector as: 

{ } { }* *2 Re 2 Re .TE TE TE
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and similarly, for the y-component: 
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note that calculations can be repeated for the TE and TM physical spaces. All Green functions 
were numerically determined. Finally, we notice in all cases that the Poynting flux only 
depends on the currents correlation, which allows to finalize its calculation without any 
knowledge of phase currents. 

Appendix C: numerical implementation 

In this appendix, we briefly summarize the numerical procedures that we used to perform the 
final calculation. Due to the stochastic nature of thermal radiation, we took account only for 
the time averaged Poynting vector of the emitted field <S> defined in Eqs. (21, 24 and 29). In 
order to perform the calculation of <S>in the physical space, a triangular mesh was created 
such that it spans the thermally radiating object; then we calculated the location of each unit 
cell and its area iaΔ  indexed with i = 1…, L, where L is the total number of cells. For the 

virtual space, instead of creating another mesh, the simplest implementation is to transform 
the mesh created for the emitter in the physical space in such a way that the area of the unit 



cell after transformation becomes '
i ia a AΔ = Δ . The summation in (24, 26, 30 and 31) is done 

while sweeping over the centroids of the cells such that for each loop, a point current source 
is in a centroid. To evaluate the Green functions defined in (22, 23, 27 and 28), we have used 
COMSOL Multiphysics with general PDE modules for full wave simulations as follows: 

( ) .c u au fγ∇ ⋅ − ∇ + + =

This module was used to solve the TM differential Eqs. (16-17) and the TE differential Eqs. 
(19-20). For the TM case of Eq. (16): 
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while for the TE case of Eq. (19) 
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