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Abstract. Dynamic Time Warping (DTW) is one of the best similarity
measures for time series, and it has extensively been used in retrieval,
classification or mining applications. It is a costly measure, and apply-
ing it to numerous and/or very long times series is difficult in practice.
Recently, Shapelet Transform (ST) proved to enable accurate supervised
classification of time series. ST learns small subsequences that well dis-
criminate classes, and transforms the time series into vectors lying in
a metric space. In this paper, we adopt the ST framework in a novel
way: we focus on learning, without class label information, shapelets
such that Euclidean distances in the ST-space approximate well the true
DTW. Our approach leads to an ubiquitous representation of time series
in a metric space, where any machine learning method (supervised or
unsupervised) and indexing system can operate efficiently.

1 Introduction

Time series analysis and mining is a wide research domain becoming increasingly
popular over the last decades for tasks as diverse as classification, clustering, in-
dexing or retrieval (see [4] for a survey). One popular similarity measure to
compare time series is the Dynamic Time Warping (DTW), due to its capac-
ity to cope with time shifts and warpings.Its complexity being quadratic with
the length of time series, it is difficult to use DTW against very long time se-
ries and/or very large sets of time series. In turn, many research works have
attempted to reduce that complexity and/or have tried to run DTW onto a
very limited subset of candidate sequences [7, 9, 11, 12]. Note furthermore that
DTW is not a distance as the triangular inequality does not hold, which induces
sub-optimality when used with traditional optimizations for indexing, or with
kernel-based classfiers for instance.

Recently, a new family of approaches, based on the concept of shapelets [5,
6, 13], has been proposed for time series classification. Shapelets are time series
subsequences selected (or learned) so as to discriminate classes. Amongst these
approaches, the Shapelet Transform (ST) [6] uses shapelets as surrogates for
representing time series: each time series is projected against the set of shapelets,
resulting in a vector in which components represent the distances between the
time series and the shapelets.
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This paper proposes a different approach at shapelet learning time: we do
not try to best discriminate classes, but instead we aim at learning shapelets
that best preserve the DTW. In other words, shapelets are selected such that the
Euclidean distance between transformed time series best approximates the DTW
between raw time series. The objective function we use to learn the shapelets is
hence different from the ones of traditional works based on shapelets.

Learning shapelets to best approximate the true DTW between pairs of time
series from a training set has several nice properties. First, it becomes possible
to get a good estimation of the true DTW between any two time series by sim-
ply computing the Euclidean distance between the resulting shapelet transform
vectors. Second, shapelet transformed vectors being a good proxy for the DTW,
it becomes possible to use them, not only for supervised classification of time
series, but also for many other tasks such as time series clustering, retrieval or
indexing. This novel shapelet representation becomes quite ubiquitous as it can
feed a wide range of machine learning or indexing methods for time series.

This paper first presents how to determine shapelets such that the DTW
between all pairs of a training set is well captured in the high-dimensional space
by the resulting vectors. We then demonstrate the validity of our approach by
measuring how good surrogates are such vectors for the DTW. We also highlight
the performance of this novel representation for time series clustering.

2 Related work

A very large number of contributions aim at reducing the cost of the DTW, either
by relying on lower bounds or by applying sophisticated pruning strategies. All
this helps, only to some extent [4, 11]. This paper, however, follows an entirely
different direction as it builds on vectorial representations of time series. This
related work section hence mainly focuses on such techniques and essentially
discusses shapelet transforms for time series analysis.

Shapelets were introduced by Ye and Keogh in [13] for time series classifi-
cation where a shapelet is an existing subsequence of a time series that best
discriminate classes. Hills et al. proposed the shapelet transform in [6]. It con-
sists in transforming a time series into a vector, its components representing the
distances between the time series and shapelets determined beforehand. This
vectorial representation of time series then feeds a classifier.Instead of using ex-
isting subsequences as shapelets, Grabocka et al. in [5] propose to rather forge the
shapelets by learning the subsequences that minimize a classification loss. The
learning step relies on a gradient descent.Then, the learnt shapelets are used to
transform the time series into vectors, as proposed by Hills et al..Unsupervised
extraction of shapelets has also been proposed in the literature for clustering
purposes. In [14], Zakaria et al. extract the shapelets so that they divide the set
of time series into well separated groups. Zhang et al. [15] propose to combine
the learning of shapelets with pseudo-class labels.

To the best of our knowledge, only a very recent work tackles the same
objective as ours which is to learn a mapping such that the Euclidean distance
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Fig. 1: Illustration of LDPS. Learned shapelets S1 and S2 are used to embed time
series in a 2-dimensional space (cf. bottom-left figure), in which the Euclidean
distance is a good approximation of the DTW between original time series. In
real settings, more than 2 shapelets are learned to obtain higher-dimensional
embeddings and hence richer representations.

between the transformed time series preserves at best the DTW between the
original time series. Compared to the approach we describe in this paper, Lei et
al. in [8] reach this goal with very different means, as no shapelets are involved
in their work while they are at the core of the technique we describe here. Lei
et al. learn a vectorial representation of time series such that the dot product
between these representations well preserves the similarity between the original
time series. The representations are obtained by matrix factorization. They also
propose another learning strategy based on a gradient descent that is faster,
but less accurate in preserving the original similarities. An extremely severe
drawback of their contribution is that it learns the transformed time series, and
not the transformation itself. It is therefore impossible to transform a new and
unknown time series once a database of time series has been fully transformed.
Their method can therefore not be used in the many applications where queries
are not known in advance or where the database of time series has to be updated.

In contrast, with the approach detailed below, not only each time series in
the database is transformed into a vector, but any unknown new time series that
probes or that is to add to the dataset can undergo such a transform. It is the
process of transforming the time series into a DTW-preserving high-dimensional
vector that we overall learn.

3 Learning DTW-Preserving Shapelets (LDPS)

In this section, we detail LDPS an algorithm that embeds time series into a
metric space such that the Euclidean distance in the transformed space approx-
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imates the DTW in the original time series space. An illustration of the LDPS
algorithm is schematically given in Figure 1.

3.1 Definitions and notations

We define here notions and quantities that are used in most of the papers that
deal with time series shapelets [5, 6]. Let T = {T1, . . . , TN} be a set of N time
series. We assume here that all time series in T have the same length Q, but the
method presented in this paper is also valid for time series of different lengths.
A time series Ti in T is hence composed of Q elements: Ti = Ti,1, . . . , Ti,Q. In
the following, Ti,m:L will denote the mth segment of length L of Ti: Ti,m:L =
Ti,m, . . . , Ti,m+L−1.

Definition 1. A shapelet S of length L is an ordered sequence of L values. In
the following, S will denote a set of K such shapelets: S = {S1, . . . , SK}, where
Sk = Sk,1:L for all k ∈ {1, . . . ,K}.

Definition 2. The Euclidean score between Sk and Ti,j:L is defined as

Di,k,j =
1

L

L∑
l=1

(Ti,j+l−1 − Sk,l)2. (1)

The Euclidean shapelet match between Sk and Ti is defined as

Mi,k = min
j∈{1,...,Q−L+1}

Di,k,j . (2)

The Shapelet Transform of time series has been defined in [6]. It consists in,
given a set S of K shapelets, transforming Ti into a K-dimensional vector Mi

whose components are {Mi,k}1≤k≤K (Eqn. (2)).

3.2 Loss function to be minimized

Most works dealing with shapelets first select the best set of shapelets before
doing the shapelet transformation. Best shapelets are selected to discriminate
classes. In this paper, we adopt a different approach. We aim at learning a set
of shapelets such that the Shapelet Transform preserves as well as possible the
Dynamic Time Warping measure. In other words, we would like that the Eu-
clidean distance in the transformed space approximates the DTW. We turn this
problem into the minimization of a loss function, as explained in the following.
Let S be a set of K shapelets. Let Ti1 and Ti2 be two time series in T . The
Shapelet Transform of Ti1 and Ti2 is denoted Mi1 and Mi2 respectively. The Dy-
namic Time Warping between Ti1 and Ti2 is denoted DTW (Ti1 , Ti2). The loss
L(Ti1 , Ti2) induced by the approximation of DTW (Ti1 , Ti2) by the Euclidean
distance between Mi1 and Mi2 is defined as:

L(Ti1 , Ti2) =
1

2
(DTW (Ti1 , Ti2)− β ‖Mi1 −Mi2‖2)

2
, (3)
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where β is a scale parameter that is learned by the proposed method, as explained
below. The overall loss for a dataset T of N time series is given by:

L(T ) =
2

N(N − 1)

N−1∑
i1=1

N∑
i2=i1+1

L(Ti1 , Ti2). (4)

3.3 Stochastic gradient descent

The LDPS method aims at learning, for a training set T of time series, a set S
of K shapelets and a scale parameter β that minimize the overall loss defined in
Eqn. (4). For the sake of clarity, we assume here that the shapelets of S have the
same length L, but the method can be straight-forwardly extended to shapelets
of different lengths. We adopt the stochastic gradient descent framework to learn
the K · L + 1 coefficients that lead to minimize L(T ). In this framework, the
gradients of L(Ti1 , Ti2) with respect to these coefficients need to be computed.

If we denote Ŷi1,i2 = ‖Mi1 −Mi2‖2 and ∆i1,i2,k = Mi1,k −Mi2,k, we get:

∂Li1,i2
∂β

= Ŷi1,i2

(
βŶi1,i2 −DTW (Ti1 , Ti2)

)
(5)

∂Li1,i2
∂Sk,l

=
∂Li1,i2
∂Ŷi1,i2

∂Ŷi1,i2
∂∆i1,i2,k

(
∂Mi1,k

∂Sk,l
− ∂Mi2,k

∂Sk,l

)
∀k, l. (6)

Straight-forward derivations give:

∂Li1,i2
∂Ŷi1,i2

= β
(
βŶi1,i2 −DTW (Ti1 , Ti2)

)
(7)

∂Ŷi1,i2
∂∆i1,i2,k

=
∆i1,i2,k

‖Mi1 −Mi2‖2
∀Mi1 6= Mi2 (8)

∂Mi,k

∂Sk,l
=
∑
j

∂Mi,k

∂Di,k,j

∂Di,k,j

∂Sk,l
. (9)

In practice, we extend the formula provided in Eqn. (8) in the case where

Mi1 = Mi2 by:
∂Ŷi1,i2

∂∆i1,i2,k
= 0. We observe experimentally that this case is suffi-

ciently rare not to impair the convergence process.
In our implementation, we do not use soft-minimum approximation as done

in [5] for the computation of Mi,k. Indeed, we observe that authors of [5] tend to
use an α parameter so large (in absolute value) that they almost end up with a
hard minimum computation. We then consider the limit case when α→ −∞ of
the soft-minimum formula to get back to a hard-minimum setup, which gives:

∂Mi,k

∂Di,k,j
= δj,j∗,

where j∗ is the argmin of Eqn. (2). Finally, for the computation of
∂Di,k,j

∂Sk,l
,

derivations from [5] can be used:
∂Di,k,j

∂Sk,l
= 2

L (Sk,l − Ti,j+l−1).

These gradients are used to update the coefficients at each iteration of the
algorithm with a learning rate of α, like for any gradient descent algorithm.
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Fig. 2: Heat map of our loss function L with respect to shapelet coefficients for
SwedishLeaf dataset. For visualization purposes, we consider a single shapelet
with a single value assigned to the first 25 coefficients (x-axis) and another value
for the remaining 25 coefficients (y-axis). Best viewed in color.

3.4 Model initialization

The loss function presented in Eqn. (4) is not convex, as illustrated in Figure 2.
It is therefore of prime importance to ensure proper initialization of the model
parameters for the optimization process not to get stuck in highly suboptimal
local minima. In our setting, k-means clustering is used to generate the set of
initial shapelets. Once the initial shapelets fixed, an initial value βinit is selected
for β by randomly sampling a set P of 100 time series pairs and computing the
corresponding optimal least square solution to the monodimensional regression
problem that relates distances between Shapelet Transforms to DTW between
original time series.We could, theoretically, update β the same way at each iter-
ation, but this update rule has O(|P|) complexity, which contradicts our will to
use stochastic gradient descent to ensure a fast update of the model.

3.5 Convolutional variant of LDPS

The Shapelet Transform on which we rely in this paper is very similar in spirit to
what is learned by Convolutional Neural Networks. More precisely, the shapelet
match presented in Definition 2 is very similar to a convolutional layer in a Neu-
ral Network. The computed Shapelet Transform corresponds to the output of a
single-layer convolutional neural network with infinite max pooling in which the
convolution operation would be replaced by a sliding window distance computa-
tion (and hence, the max pooling would be replaced by a min pooling). In this
comparison, convolution filters are the equivalent of shapelets. We can then con-
sider a unified framework in which both approaches can be used and compared
experimentally. To do so, we introduce the convolutional shapelet match between
a shapelet and a time series, which consists in using the following definition in
place of Definition 2 (and its related Equations (1) and (2)):
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Definition 3. The convolutional score between Sk and Ti,j:L is defined as

Di,k,j =
1

L
〈Sk, Ti,j:L〉 =

1

L

L∑
l=1

Sk,l · Ti,j+l−1. (10)

The convolutional shapelet match between Sk and Ti is defined as

Mi,k = max
j∈{1,...,Q−L+1}

Di,k,j . (11)

As a consequence, the computation of
∂Di,k,j

∂Sk,l
for this convolutional variant of

our model differs from the one presented above, and we get:
∂Di,k,j

∂Sk,l
= 1

L Ti,j+l−1.

In the following, we will refer to this convolutional variant of our model as
LDPS-C, while the Euclidean one will be denoted LDPS-E.

Extending this analogy between neural networks and Shapelet models, our
proposition can be seen as a siamese architecture [2] for Shapelets, i.e. two
time series are provided as inputs to the same Shapelet model and distance
between the corresponding outputs is used as a proxy for time series similarity.
However, LDPS models are learned to minimize discrepancy between a target
metric and the obtained distance whereas, in [2], the idea is to threshold the
obtained distance for classification purposes.

3.6 Summary of the LDPS algorithm

A summary of the learning phase of the LDPS algorithm, i.e. the learning of
KL + 1 coefficients (the set S of shapelets and the parameter β) is given in
Algorithm 1. After this phase, the shapelet set S can be used to transform
any time series into a vector of dimension K. The complexity of the shapelet
transform (once the shapelets learned) is O(NLK), where N is the number of
time series to transform.

Input : A set T of time series
The number K and length L of shapelets
The learning rate α for the gradient descent algorithm

Output: A set S of K shapelets of length L
The scale coefficient β

1 Initialize S and β according to Section 3.4
2 for i← 1 to niter do
3 Randomly pick two time series T1 and T2 from T
4 Compute the DTW between T1 and T2

5 Compute the gradients of S and β from Eqs. (5) to (9)
6 Update S and β (using their gradients and the learning rate α)

7 end

Algorithm 1: Learning phase of LDPS
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4 Experimental results

In this section, we present experiments to evaluate the performance of our
method. We first study the quality of DTW reconstruction reached by LDPS
and then compare it to state-of-the-art competitors for a clustering task.

Experimental setup Following the principles of reproducible research, the
Python code used in these experiments (including both variants of our model)
is made publicly available for download1.

Unless otherwise stated, each of our models makes use of shapelets of different
lengths to better learn scale-specific patterns. Shapelet lengths L are set to 15%,
30% and 45% of time series lengths. Inspired by [5], we use a number K of
shapelets for each length equal to K = 10 · log (Q− L). Finally, as our method
is stochastic, for each experiment, 5 different models are fitted. All models are
fitted for 500,000 stochastic gradient descent steps, and we use the AdaGrad [3]
algorithm to adapt the learning rate during the convergence process. Datasets
used for the experiments are publicly available [1].

Comparison between LDPS-E and LDPS-C We analyze in this section
the difference between LDPS-E and LDPS-C in terms of performance.

In practice, we observe that there does not seem to exist a consistently better
variant on all datasets. Figure 3 presents model losses (i.e. mean squared DTW
reconstruction error) as a function of the number of iterations. It shows that,
for this criterion, LDPS-C outperform LDPS-E for Synthetic Control data set,
while the opposite observation holds true when considering SwedishLeaf data
set. Similar conclusions can be drawn when considering clustering performance
as presented in Table 1.

Quality of DTW approximation Figure 4a presents the fit between DTW
values and their approximations through the LDPS-E algorithm. Each dot in
this figure corresponds to a pair of training time series. We can see that fully fit-
ted model drastically improves the quality of DTW approximation over partially
fitted ones. Another important point is to observe that all distance magnitudes
are reproduced with similar accuracy, meaning that our method is able to repro-
duce both similarities and dissimilarities between time series. Finally, we observe
in Figure 4b that there is no strong bias towards overestimation (resp. underes-
timation) observed for the fully fitted model, which indicates that the learned
scale parameter β is reasonable.

Time series clustering with LDPS As LDPS embeds time series in a Eu-
clidean space, it can be used for various machine learning tasks, including unsu-
pervised ones, since class labels are not required to fit our models. We evaluate

1 https://github.com/rtavenar/LDPS/
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Fig. 3: Compared convergence of LDPS-E and LDPS-E on two different datasets.
Shaded areas illustrate the loss span between best and worse models and dashed
lines correspond to the median loss model for each variant. Best viewed in color.
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Fig. 4: Left: LDPS-E against exact DTW on dataset SwedishLeaf. r is the Pear-
son correlation coefficient. Right: Histogram of the difference between the exact
DTW and the corresponding LDPS-E values.

in this section the quality of the clustering induced by LDPS. LDPS can be
used for clustering by feeding a standard Euclidean k-means algorithm with the
transformed time series.

Before going into clustering results, we address the issue of unsupervised
model selection. The question we are asking here is the following: Is there a way
to select a model that is likely to lead to a good clustering without using any
a priori ground truth information? Figure 5 depicts the relationship between
clustering quality, evaluated in terms of Normalized Mutual Information (NMI)
score and model loss. The NMI score measures the coherence between the true
labels of time series and the estimated cluster indices. In this figure, each dot
corresponds to a partially fitted model. Dots that have high losses correspond to
small numbers of iterations and the loss decreases when the number of iterations
increases, as observed previously in Figure 3. An important point here is that we
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Fig. 5: Clustering quality as a function of model loss for dataset SwedishLeaf.

can observe a strong negative correlation between the loss associated to a model
and clustering quality obtained with this model. This seems to indicate that the
value of the loss can be used as a model selection criterion without using any
ground truth information. For a given data set, several models can be learned
(different initialization and variants of LDPS). The one leading to the smallest
loss will be selected. This model selection criterion is applied in the clustering
results presented below.

We conducted experiments on 15 datasets from the UEA & UCR reposi-
tory [1]. Selected datasets cover a wide range of time series lengths, with varied
numbers of classes and dataset sizes. For all these datasets, training and test
sets are gathered, as we do not tackle the usual classification task in this piece
of work. Performance of LDPS are compared with the following competitive
methods. SPIRAL is the method proposed in [8] that has the same objective as
LDPS but using a different approach to learn the transformation. It is combined
with a k-means algorithm for clustering purposes. Reported results for SPIRAL
have been obtained using the code made available by the authors2. k-Shape is a
time series clustering algorithm proposed in [10] based on the cross-correlation
measure. Reported results for k-Shape have been obtained using the dtwclust

library of the R software, in which k-Shape is implemented. U-Shape corresponds
to the clustering method using unsupervised shapelets presented in [14], and for
which the code is available on a dedicated webpage3. For the sake of fair compar-
isons, we use the same shapelet lengths for this competitor and LDPS. All these
competitor methods have been shown to be very efficient for time series cluster-
ing. Table 1 presents NMI scores for LDPS and competitive methods. Presented
scores are medians obtained over 20 clustering runs for each method. Per-dataset
performance as well as average ranks reported in this Table show the benefit of
using LDPS models for this task, as they tend to get higher clustering perfor-
mance. Moreover, one should note that contrary to k-Shape, our method is not
specifically designed for clustering and could be used for many other machine
learning tasks. Also, when compared to SPIRAL, LDPS has the key property

2 https://github.com/cecilialeiqi/SPIRAL
3 https://sites.google.com/site/ushapelet/
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that it learns a transformation for time series that can later be applied to new
data, which SPIRAL cannot do, hence strongly limiting its application scope.

Datasets LDPS-E LDPS-C SPIRAL U-Shape k-Shape

CBF 0.83 0.71 0.39 0.61 0.76
CricketX 0.34 0.35 0.30 0.37 0.38

ElectricDevices 0.34 0.35 0.35 0.31 0.25
FaceAll 0.63 0.60 0.63 0.53 0.60

FaceFour 0.63 0.63 0.60 1.00 0.48
FiftyWords 0.68 0.64 0.68 0.56 0.66
Lightning2 0.13 0.12 0.08 0.05 0.11
Lightning7 0.53 0.55 0.48 0.50 0.54
OSULeaf 0.42 0.34 0.26 0.33 0.42

StarLightCurves 0.68 0.68 0.61 0.51 0.60
SwedishLeaf 0.70 0.63 0.64 0.59 0.56

SyntheticControl 0.97 0.98 0.81 0.83 0.72
Trace 0.75 0.75 0.50 0.73 0.75

TwoPatterns 0.69 0.86 0.11 0.32 0.30
UWaveGestureLibraryX 0.44 0.43 0.47 0.31 0.45

Average rank 2.13 2.33 3.40 3.87 3.20

Table 1: Comparison of Normalized Mutual Information (NMI) scores. Best per-
formance is marked as bold. When the difference cannot be considered significant
using a Mann-Whitney rank test with p = 5%, several models are bolded.

5 Conclusion

In this paper, we present LDPS, an algorithm that aims at embedding time series
into an Euclidean space, in which distances approximate the Dynamic Time
Warping measure between raw time series. The embedding we design is based on
the Shapelet Transform, that maps time series into high-dimensional vectors. The
originality of our approach is that we learn shapelets using a stochastic gradient
descent so that they best preserve the DTW between time series pairs. We
show that the original DTW can be accurately captured by Euclidean distances
in the transformed space. Clustering performance using this novel time series
representation outperforms competitive methods designed specifically for this
task. An interesting property of LDPS is that it leads to an ubiquitous time
series representation that can feed a wide range of machine learning or indexing
methods. As a future work, we will in particular aim at designing time series
indexing schemes based on LDPS. As time series are embedded in a metric
space, we can benefit from efficient indexing systems designed specifically in
such spaces.
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