Evaluation of printed-circuit boards materials for high temperature operation

Oriol AVIÑO-SALVADO, Wissam SABBAH, Cyril BUTTAY, Hervé MOREL, Pascal BEVILACQUA

Laboratoire Ampère, Lyon, France

10/7/17

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Gate Driver for SiC MOSFET Power Module

- Relatively complex board
 - Several ICs
 - Large magnetic components
 - Not suited to power substrate (DBC)
- Need for prototyping solution
 - Easy procurement
 - Cheap
- ► Objective: eventually 200 °C
 - ► Current SiC MOSFETs limited to 175 °C

→ Use of Printed Circuit Boards

► Investigate behaviour of some PCBs at high temperature

- First tests at Ampère on PCB ageing
- Work on test protocol
- Propose a test configuration for gate driver circuits
 - Thermal cycling not investigated
 - Lab specific environment investigated (N₂ atmosphere)
- Also, investigation on solder
 - Not presented here
 - Same approach (cheap and easy solution for functionnal testing)

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Test Vehicles

- ► 6-layer PCBs, 70 µm Cu (2 oz), Ni/Au finish (6 µm/80 nm)
 - ► One set on FR-4 (Panasonic R-1755-V, T_G >170 °C)
 - ► One set on polyimide (Arlon 85N, T_G > 250 °C)
- 3 test patterns:
 - ► Surface isolation resistance (500 µm spacing)
 - 20x20 mm² capacitance
 - Daisy-chained vias (450 µm hole diameter)

Ageing conditions

- Isothermal ageing ("storage conditions", constant temperature)
- Two atmosphere compositions:
 - Air (standard, forced convection oven)
 - Low-oxygen content (N₂ supply, 0₂ content monitored to <0.1 %)

Surface Isolation Resistance:

- Continuous bias: 25 V/mm, using HT interconnects (see paper for refs)
- Weekly characterization at room temperature (Keithley 2410 SMU, 200 MΩ max)

Plane capacitance patterns

- Weekly characterization
 - (Keysight E4990 impedance analyzer, 1-2 pF repeatability)
- Fixed test setup (BNC cables and edgeboard connector).
- Resistance of the vias daisy chain
 - Weekly characterization (Keithley 2410 SMU, 10 μΩ resolution)

Source: Keithley

Surface Isolation Resistance:

- Continuous bias: 25 V/mm, using HT interconnects (see paper for refs)
- Weekly characterization at room temperature (Keithley 2410 SMU, 200 MΩ max)

Plane capacitance patterns

- Weekly characterization (Keysight E4990 impedance analyzer, 1–2 pF repeatability)
- Fixed test setup (BNC cables and edgeboard connector)
- Resistance of the vias daisy chain

Weekly characterization (Keithley 2410 SMU, 10 μΩ resolution)

Source: Keysight

Surface Isolation Resistance:

- Continuous bias: 25 V/mm, using HT interconnects (see paper for refs)
- Weekly characterization at room temperature (Keithley 2410 SMU, 200 MΩ max)

Plane capacitance patterns

- Weekly characterization (Keysight E4990 impedance analyzer, 1–2 pF repeatability)
- Fixed test setup (BNC cables and edgeboard connector)

Resistance of the vias daisy chain

• Weekly characterization (Keithley 2410 SMU, 10 $\mu\Omega$ resolution)

Source: Keysight

Physical characterization

Source: Ohaus

Source: Leica

- Weight measurement
 - Weekly characterization on a scale with 1 mg resolution
- Visual inspection
 - Weekly photographs with Leica M205C binocular
 - White balance and lighting conditions
- Cross sections
 - Preparation described in the paper

Source: Presi

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Preliminary tests

- Weight loss measured on small coupons
- No change observed before 230 °C step
- → 190 °C chosen for 1000 h storage tests

- Atmosphere composition:
 - ► Air
 - ► Oxygen-depleted (<0.1 %)
- ► Boards dried for 6 h, 120 °C in air prior to ageing.
- ► Storage temperature: **190** °C
- ► Test duration: 6 weeks (1000 h)
 - Weekly characterization at room temperature

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Capacitance variation

- No change on any board, except FR4, in air
- For FR4, in air, visible swelling around capacitor pattern (504 h)
- Blister may be caused by copper electrode, forming gas-tight area.

Resistance of Vias

- As with capacitor patter, change only observed for FR4, in air
- Swelling of FR4 board causes increase in via resistance
- Occurs 1 week later than for capacitor (672 h)

16/27

- Large weight loss for FR4, in air, after 672 h
- ► Noticeable weight loss (1 %) for polyimide, in air
- Negligible weight loss in N₂, for polyimide and FR4

Visual inspection - 190 °C storage

Visual inspection – FR4 board, 190 ℃ air storage

FR4, Nitrogen FR4 Air

200

400

600

Time [h]

800

ire

1000

19/27

strong weight loss

Visual inspection – FR4 board, 190 ℃ air storage

Initial 3 weeks (504 h) 4 weeks(672 h) 6 weeks (1008 h)

- Via metal (Ni/Au on Cu) remains unchanged up to 3 weeks
- Corrosion marks appear after 4 weeks
- Correlated with PCB weight loss

Visual inspection – others

Polyimide, air storage, intial - 6 weeks

Polyimide, N2 storage, intial - 6 weeks

FR4, N₂ storage, intial - 6 weeks

- For polyimide:
 - In air, darkening of solder resist
 - No other noticeable change
 - In nitrogen, no visual change
- for FR4:
 - No visual change
 - No corrosion of Au finish

Surface Isolation Resistance (SIR)

- Two SIR pattern biased and characterized per board:
 - One with Ni/Au finish
 - One with Ni/Au finish and screen-printed SAC
- All patterns exceed 200 MΩ (limit of test system) except FR4 in air
 - \blacktriangleright For FR4 in air, SIR drops to $\approx 1 M \Omega$ after 4 weeks
 - Same behaviour for Au and SAC-finished patterns
 - Eventually, swelling so large that testing becomes impossible

For samples stored in N₂:

- No noticeable change (polyimide and FR4)
- For samples stored in air:
 - Darkening occurs immediately (FR4 and polyimide):
 - No further degradation of polyimide (except continuous weight loss, 1 % over 1000 h)
 - Strong degradation of FR4 after 3 weeks:

- For samples stored in N₂:
 - No noticeable change (polyimide and FR4)
- For samples stored in air:
 - Darkening occurs immediately (FR4 and polyimide):
 - ➔ Degradation of solder resist
 - No further degradation of polyimide (except continuous weight loss, 1 % over 1000 h)
 - Strong degradation of FR4 after 3 weeks:
 - 3 weeks: swelling, first where large copper patterns trap gases 4 weeks: swelling propagates, large weight loss 5-6 weeks: corrosion of Au finish

- For samples stored in N₂:
 - No noticeable change (polyimide and FR4)
- For samples stored in air:
 - Darkening occurs immediately (FR4 and polyimide):
 - ➔ Degradation of solder resist
 - No further degradation of polyimide (except continuous weight loss, 1 % over 1000 h)
 - Strong degradation of FR4 after 3 weeks:
 - 3 weeks: swelling, first where large copper patterns trap gases
 4 weeks: swelling propagates, large weight loss
 5-6 weeks: corrosion of Au finish

- For samples stored in N₂:
 - No noticeable change (polyimide and FR4)
- For samples stored in air:
 - Darkening occurs immediately (FR4 and polyimide):
 - ➔ Degradation of solder resist
 - No further degradation of polyimide (except continuous weight loss, 1 % over 1000 h)
 - Strong degradation of FR4 after 3 weeks:
 - 3 weeks: swelling, first where large copper patterns trap gases
 - 4 weeks: swelling propagates, large weight loss
 - 5-6 weeks: corrosion of Au finish

Experimental Protocol

Definition of the test conditions

Test results

Conclusions

Simple tests were found to be valuable:

- ► Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)
- Electrical tests did not bring much information, but are required:

▶ SIR

Resistance of vias

Capacitance measurement caused early swelling

- Swelling was visible anyway
- Copper pattern of test vehicles must be representative
- Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much
- No mechanical tests performed, no metal delamination observed.

Simple tests were found to be valuable:

- Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)

► Electrical tests did not bring much information, but are required:

- ► SIR
- Resistance of vias
- Capacitance measurement caused early swelling
 - Swelling was visible anyway
 - Copper pattern of test vehicles must be representative
 - Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much
- No mechanical tests performed, no metal delamination observed

Simple tests were found to be valuable:

- Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)

Electrical tests did not bring much information, but are required:

- SIR
- Resistance of vias

Capacitance measurement caused early swelling

- Swelling was visible anyway
- Copper pattern of test vehicles must be representative
- Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much
- No mechanical tests performed, no metal delamination observed.

Simple tests were found to be valuable:

- Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)

Electrical tests did not bring much information, but are required:

- SIR
- Resistance of vias

Capacitance measurement caused early swelling

- Swelling was visible anyway
- Copper pattern of test vehicles must be representative
- Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much
- No mechanical tests performed, no metal delamination observed.

Simple tests were found to be valuable:

- Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)

Electrical tests did not bring much information, but are required:

- SIR
- Resistance of vias

Capacitance measurement caused early swelling

- Swelling was visible anyway
- Copper pattern of test vehicles must be representative
- Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much

No mechanical tests performed, no metal delamination observed

Simple tests were found to be valuable:

- Weight loss (even off-line, with a standard scale)
- Visual inspection (with reproducible image capture settings)

Electrical tests did not bring much information, but are required:

- SIR
- Resistance of vias

Capacitance measurement caused early swelling

- Swelling was visible anyway
- Copper pattern of test vehicles must be representative
- Plain copper planes probably not recommended (meshed pattern better)
- No problem found with weekly tests at room temperature
- Edgeboard connector fine, except when board swelled too much
- ► No mechanical tests performed, no metal delamination observed.

► As expected, FR4 (*T_g* > 170 °C) more sensitive to temperature than polyimide (*T_g* > 250 °C)

- Solder resist degrades rapidly at 190 °C
 But this does not seem to cause much harm
- Atmosphere has a great influence
 - In air, even polyimide degrades, albeit slower than FR4
 - In nitrogen, no change observed
 - Interesting for functionnal testing purposes (cheaper PCBs)
 - Thermal cycling not considered here
- Solder to be investigated
 - SAC attach investigation at 190 °C failed
 - (Pb contamination caused early failure)
 - SAC attach at 175 °C worked fine after 1000 h

- ► As expected, FR4 (*T_g* > 170 °C) more sensitive to temperature than polyimide (*T_g* > 250 °C)
- ► Solder resist degrades rapidly at 190 °C
 - But this does not seem to cause much harm
- Atmosphere has a great influence
 - In air, even polyimide degrades, albeit slower than FR4.
 - In nitrogen, no change observed.
 - Interesting for functionnal testing purposes (cheaper PCBs)
 - Thermal cycling not considered here
- Solder to be investigated
 - SAC attach investigation at 190 °C failed
 - (Pb contamination caused early failure)
 - SAC attach at 175 °C worked fine after 1000 h

- ► As expected, FR4 (*T_g* > 170 °C) more sensitive to temperature than polyimide (*T_g* > 250 °C)
- ► Solder resist degrades rapidly at 190 °C
 - But this does not seem to cause much harm
- Atmosphere has a great influence
 - In air, even polyimide degrades, albeit slower than FR4
 - In nitrogen, no change observed
 - Interesting for functionnal testing purposes (cheaper PCBs)
 - Thermal cycling not considered here
- Solder to be investigated
 - SAC attach investigation at 190 °C failed
 - (Pb contamination caused early failure)
 - SAC attach at 175 °C worked fine after 1000 h

- ► As expected, FR4 (*T_g* > 170 °C) more sensitive to temperature than polyimide (*T_g* > 250 °C)
- ► Solder resist degrades rapidly at 190 °C
 - But this does not seem to cause much harm
- Atmosphere has a great influence
 - In air, even polyimide degrades, albeit slower than FR4
 - In nitrogen, no change observed
 - Interesting for functionnal testing purposes (cheaper PCBs)
 - Thermal cycling not considered here
- Solder to be investigated
 - SAC attach investigation at 190 °C failed (Pb contamination caused early failure)
 - ► SAC attach at 175 °C worked fine after 1000 h

Thank you for your attention

cyril.buttay@insa-lyon.fr

This work was funded by the CORAC (French Research Council for Civil Aeronautics) as part of the GENOME-PREMICES initiative.

27/27