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We present here an experimental and theoretical study of the nonlinear coupling between the two polariza-
tions of the mechanical resonances of singly clamped nanowires and nanotubes, leading to circularly polarized
oscillations. This regime exists for high amplitudes and beyond the frequency range of the “classical” Duffing
regime. Good quantitative agreement is found with a simple theoretical model based on the first nonlinear
terms of the coupling. The assumptions used in the model are quite general and thus the circular movement is
a universal response for nanocantilevers.
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I. INTRODUCTION

Nanotubes and nanowires �NNs� are presently attracting
considerable attention as resonant rods in nanoelectrome-
chanical systems �NEMS�, mainly because their extremely
small physical dimensions imply high sensitivity to external
perturbations and open perspectives for measuring extremely
weak signals. This is in addition to the general advantage of
NEMS having much higher quality factors1,2 than purely
electronic devices �see Fig. 1D in Ref. 3�. An example of the
potential of NNs in sensing is atomic mass resolution
measurements.4–6 However, the NNs high sensitivity implies
that nonlinear response with its complicated signature of
jumps and hysteresis occurs for relatively low external per-
turbations, thus limiting straightforward use of measured sig-
nals. This is a real bottleneck to the integration of NEMS
devices.

Another approach is to try to exploit the rich nonlinear-
response phenomena. Examples are using the jumps for
measuring fine frequency shifts,7 generating self-oscillations8

or single electron shuttle transport.9 A deep understanding
of both experimental and theoretical aspects of the NEMS
nonlinear behavior is critical for device integration and
fundamental studies, such as the effects of the charge
quantization.10,11 The main origin of nonlinear effects for the
doubly clamped configuration is the supplementary stress
due to global strain during oscillation.12 However the origin
of the nonlinear effects observed in the singly clamped
configuration2 is still unclear. Moreover, there appears to be
no experimental studies in the literature of nanocantilevers
exhibiting two orthogonal polarizations with coupling that
can lead to nonplanar motion.

In this paper we report experimental characterization of a
circular polarization �CP� for the mechanical eigenmodes in
the singly clamped configuration. This was observed by field
emission microscopy �FEM� which gives directly a magni-
fied image of the apex trajectory. CP takes over at higher
amplitude or frequency from the “classical” Duffing regime
with linear polarization �LP�. A semianalytical model, found
to be in excellent agreement with experiment, describes both
the LP and CP using basic elements of cylindrical NNs,
which means that this behavior is a universal third regime
beyond the linear and Duffing regimes. This nonplanar mo-

tion is a manifestation of a general phenomenon in physics
where an oscillator driven at high amplitude pumps energy
into unexcited degrees of freedom through nonlinear cou-
pling.

Such nonlinear behavior was theoretically investigated for
both singly and doubly clamped configurations13–15 and was
previously only reported, to our knowledge, on macroscopic
systems.16 There are two main reasons for this. First, this CP
is not easy to observe experimentally since the commonly
used motion detection techniques for NNs �capacitive and
magnetomotive� do not distinguish polarizations. Second, as
we will see later in this paper, in order to have CP one needs
excitation amplitudes so high that they can destroy the NN.

II. EXPERIMENTAL SETUP AND RESULTS

Our samples were multiwall carbon nanotubes �MWNTs�
and silicon carbide nanowires �SiC-NWs� individually
mounted on the apexes of etched tungsten tips by
nanomanipulation,17 inserted either into a FEM or a trans-
mission electron microscope �TEM� and excited capacitively
by ac signals Vac cos�2��act� on quadrupole anodes placed
several millimeters away from the sample �Fig. 1�. In the
TEM configuration one visualizes resonating NNs nearly
side on �Fig. 2�a��. In the FEM configuration the tip with the
NN is placed in an ultrahigh vacuum chamber and brought to
a negative voltage of a few hundreds of volts with respect to
a phosphor screen. Electrons tunnel from the NN apex and
strike the phosphor screen to form a FEM pattern �Fig. 2�b��.
When a resonance of an NN is excited the patterns enlarge
parallel to the motion18,19 and we observe an averaged image
because of our standard 25 Hz video camera. The FEM pat-
tern increase is detected with high sensitivity through an im-
age analysis method.17 In both experiments all potentials
were applied on macroscopical elements placed at least a few
millimeter away from the NN, which means we can neglect
the electric field variation with the NN displacement. The
main strength of FEM for this experiment is that it allows us
to visualize accurately the NN nonplanar motion since the
X-Y FEM image plane is perpendicular to the NN axis, com-
pared to the TEM configuration where the NN lies almost in
the image plane, thus obscuring one direction of motion.
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Lorentzian response with Q factors in the 103–104 range
was observed when scanning at low Vc �Q�2000 for the
SiC-NW in Figs. 2�b�–2�i��. An essential point is that we
always observed a splitting in resonance frequencies of a few
percent between the two LPs which greatly exceeds their
natural Lorentzian widths, due to symmetry-breaking imper-
fections. We adopt the nomenclature �nx and �ny for the
higher and lower nth mode polarizations with amplitudes Anx
and Any, respectively.

Duffing type, linearly polarized, nonlinear response was
observed for all the modes upon increasing Vc, as can be
seen for the first mode in Fig. 2 and for the second mode in
Fig. 3. The first �second� mode has a hard �soft� spring be-
havior, which means increasing �decreasing� of the eigenfre-
quency with the amplitude of oscillation and jumps at fre-
quencies higher �lower� than the mode’s Lorentzian
eigenfrequency, as shown in Figs. 2 and 3.

The key moment in our experiments occurred at even
higher Vc. We clearly observed nonplanar motion on the first
mode, as it can be seen in the FEM and TEM images in Fig.
2. This new regime takes over from the Duffing regime at the
high end of increasing frequency scans at �1x. The rest of this
paper is dedicated to the understanding and characterization
of this phenomenon.

Let us examine the data in more detail for later compari-
sons with the simulations. First, the nonplanar motion was
always excited close to �nx and not �ny. Second, when a NN
in the Duffing regime enters the nonplanar motion regime, Ay
increases more rapidly with �c than Ax. Third, the relative

phase between the x and y oscillations is always � /2. These
last two mean that the NN’s apex has an elliptic trajectory
whose eccentricity diminishes with the applied frequency un-
til it becomes circular, as shown on the experimental films.19

For one film we have applied an additional ac voltage to the
screen to visualize the motion by stroboscopy. Note that our
excitation method imposes in-phase driving for both direc-
tions, yet we observe a constant � /2 phase difference for
their response while scanning �c, which is, together with the
jumps, a clear signature of nonlinear coupling between the x
and y motion. Those features cannot be explained by two
uncoupled or linearly coupled polarizations with slightly dif-
ferent eigenfrequencies.

The same kind of nonplanar motion was also observed on
the second mode �Fig. 3�a��. When scanning the resonance at

FIG. 1. �Color online� Schematic view of our field emission
setup. The electric field generated by the VA is amplified at the NN
apex by tip effect and extracts electrons from the sample. In this
configuration the FE pattern on the screen is a magnified image of
the nanowire apex trajectory since the 25 Hz standard video camera
only gives the averaged motion.
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FIG. 2. �Color online� Elliptical response of the first eigenmode:
�a� TEM image showing time averaged response of a MWNT with
the NN end tracing out an elliptical movement. �Several defects
along the MWNT also trace out ellipses.� ��b�–�e�� FEM images
showing response of an SiC-NW �7 �m length and 50 nm diam-
eter� to increasing excitation. First we observe the linear polariza-
tion in the horizontal x direction, then the system transits to an
elliptical polarization which becomes more circular with increasing
excitation. ��f� and �g�� Experimental and ��h� and �i�� simulated
frequency responses for Ax and Ay, for increasing excitation ampli-
tude near the x polarization eigenfrequency ��1y =0.989�1x

=1.527 MHz�. The excitation forces normalized to EI /L2 were
0.35, 0.5, 0.7, and 1 for the simulated data. Ax is Lorentzian for low
excitation and hard spring nonlinear for intermediate excitation. At
high Vac and �ac one observes hard spring elliptically polarized
response with the eccentricity decreasing with �ac until circular po-
larization is almost reached, delimited in �f� and �g� by the vertical
dashed line. Excellent agreement can be seen between the measured
and the simulated data.
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high Vac and increasing frequency through both its LPs, we
first observed the Duffing “soft spring” behavior on �2y and
then a CP on �2x with a “hard spring” behavior �Fig. 3�b��. A
decreasing frequency sweep showed hysteretic behavior in
addition.

III. MODELING AND DISCUSSION

The motion of the singly clamped cylindrical rod in the
linear regime is a textbook problem20 and it consists of a
sequence of eigenmodes, each one having two perpendicular
LPs at the same frequency. The nonlinear and nonplanar mo-
tion of the singly clamped rods were also investigated13 but
we found no clear indication of the existence of CP. We will
now give a simple description of the physics we observe by
taking into account the influence of first nonlinear order
terms. In the beginning we will not consider the frequency
difference between �nx and �ny, the damping and the excita-
tion. We will include afterward all those aspects into a nu-
merical model to describe the experimental results.

The kinetic and the potential energies of a singly clamped
rod in pure flexion are given by20

K =
�CL3

2
�

0

1

�ẋ2 + ẏ2 + ż2�ds , �1�

P =
EI

2L
�

0

1

�x�2 + y�2 + z�2�ds �2�

with L the rod’s length, C its surface area, I the area moment
of inertia, E the Young’s modulus, and � the density. x�s , t�,
y�s , t�, and z�s , t� are the coordinates at the position s along
the rod at time t and the “dots” �“primes”� represent t�s�
derivatives. All the lengths are normalized to L and z is the
direction of the unbent rod.

The condition for a constant length rod is x�2+y�2+z�2

=1 and this generates all the nonlinear terms since Eqs. �1�
and �2� have only quadratic terms and thus only generate
linear response in the equations of motion.

If we put x�s , t�=X�t�f�s� and y�s , t�=Y�t�f�s� with X�t�
and Y�t� generalized coordinates, f�s� the linear shape of the
mode20 and we keep the first non linear terms �fourth order
for the energy� we get

K =
�CL3

2
�m1�Ẋ2 + Ẏ2� + m2�XẊ + YẎ�2� , �3�

P =
EI

2L
�k1�X2 + Y2� + k2�X2 + Y2�2� �4�

with constants m1, m2, k1, and k2 given in Ref. 21.
By solving the Lagrangian equations using Eqs. �3� and

�4� and normalizing the time to ��CL4 /EI we get

Ẅ +
k1 + 2k2�X2 + Y2� + m2�Ẋ2 + Ẏ2�

m1 + m2�X2 + Y2�
W = 0, �5�

where W is either of X or Y.
If we consider just the X LP we get the Duffing nonlinear

regime, with a dependence frequency amplitude,

�2 =
k1

m1
�1 +

A2

2
	3k2

k1
−

m2

m1

� . �6�

The first eigenmode has a hard spring behavior, character-
ized by a moderate increase in the eigenfrequency with the
amplitude since 3k2 /k1=1.2267 and m2 /m1=1.1492. For the
higher modes 3k2 /k1�m2 /m1 �10.36 compared to 36.18 for
the second mode�, giving an important soft spring behavior,
as previously predicted in Ref. 13 and observed experimen-
tally on a large number of samples �see Figs. 2 and 3�. The
relative importance of the nonlinear terms on the second
mode explains why we have never observed Lorenzian re-
sponse on higher order modes. The A��� dependence in Eq.
�6� can be linearly expanded around a mode’s eigenfre-
quency to obtain the slope of the Duffing regime �zone of
Fig. 2�c� in Fig. 2�f��.

We write now Eq. �5� in polar coordinates X=R cos 	 and
Y =R sin 	 for studying CP, which gives angular momentum
R2	̇ conservation and

m1�R̈ − R	̇2� + m2R�Ṙ2 + RR̈� + k1R + 2k2R3 = 0. �7�

Those two equations admit a solution with constant
�= 	̇ and constant R, related by

�2 =
k1

m1
	1 +

2k2

k1
R2
 . �8�

This CP exists close to the mode’s eigenfrequency and has
a hard spring behavior regardless of the nonlinear behavior
of the mode it comes from since k2 /k1 is always positive. In
fact, for this constant R polarization, no soft spring nonlinear
term comes from the kinetic energy since the shape of the
wire is preserved during the oscillation. This is exactly the
behavior we observe experimentally, as it can clearly be seen
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FIG. 3. �Color online� Elliptical response of the second eigen-
mode. �a� TEM image showing time averaged response. �b� Experi-

mental FEM and �c� simulated response defined as Ar=�Ax
2+Ay

2 for
increasing �—� and decreasing �- -� frequency for scans that span
�2x and �2y. One observes linearly polarized soft spring, nonlinear
response for the lower frequency y polarization and elliptically po-
larized, hard spring response for the higher frequency x polariza-
tion. The shape of the experimental response is slightly altered by
the size of our phosphor screen, which was not wide enough to
contain the whole FEM pattern during the high amplitude oscilla-
tion, i.e., the apparent saturation is partly an artifact.
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in Figs. 2 and 3. As for the LP nonlinear regime, we can use
the first-order expansion of R��� in Eq. �8� to obtain the
slope of the CP nonlinear regime �see zones d and e in
Fig. 2�f��.

We can now add to Eq. �5� a 
Ẇ dissipation term, an
FW cos �t driving, and a k1Y �k1X. 
, k1Y /k1X, and FY /FX
were adjusted to match the experimental values for the first
�second� mode of the quality factor Q=2000�Q�3000�,
of the eigenfrequency shift S= ��1x−�1y� /�1x=1.1%
�S�0.5–0.7 %�, and of the Lorentzian �almost Lorentzian�
response amplitude ratio for the LPs �1��0.5�. Results of
the numerical simulation are in excellent agreement with ex-
perimental data, as shown in Figs. 2 and 3 and in the simu-
lated film.19 For example, in the case of CP, this numerical
model clearly describes the appearance of ellipses only
around �nx and never around �ny together with the decreasing
of the eccentricity with �c in addition to the � /2 constant
phase between the X and Y oscillations and the hard spring
behavior independent of the mode, which were already ex-
plained by the analytical model.

The reason why we can clearly observe this CP is that it
survives in a large frequency range where the LP Duffing
regime vanishes or becomes unstable. In both nonlinear re-
gimes the frequency at which the jumps occur is determined
by the external driving and by the dissipation while the am-
plitude of oscillation is only determined by the nonlinear
terms in the equation of motion and is almost independent of
the external driving, as we can see in Figs. 2�f�–2�i�. Simu-
lations for the first mode gave a range of frequency much
larger for the CP than for the LPs for high driving, as we can
see in Fig. 4�a�. This behavior is consistent with experimen-
tal observations presented in Fig. 2. For the second mode, the
soft spring LP Duffing regime does not overlap with the hard
spring CP.

Together with the excitation frequency, two other critical
parameters for the existence of nonplanar modes are the driv-
ing amplitude F and the eigenfrequency shift S. We present
in Fig. 4�b� a phase diagram showing the zone of nonplanar
motion existence in the S-F plane. We can see that for S
�1% we need an excitation F�0.5 and thus, using Fig. 2,
A1x /L�0.17 for the nonplanar motion to appear on the first
mode.

This high threshold for CP excitation is one reason why
this mode has never been reported for NN resonances �to our
knowledge�, despite the considerable work done in this
subject.12,22–25 In our own experiments, even if we reproduc-
ibly saw the CP on at least ten samples, they did not repre-
sent more than 20% of the studied samples. We commonly
have S�1.5% and thus, according to Fig. 4�b�, we need

A1x /L�20% to obtain CP on the first mode. Such important
oscillation amplitudes can completely unglue or destroy the
NN sample and thus severely limit the possibility to observe
CP. We can decrease this threshold amplitude by fabricating
NNs with less geometrical defects and thus smaller S but this
is beyond the scope of this paper.

IV. CONCLUSION

We have presented experimental evidence for the exis-
tence of a nonlinear mechanical circular polarization for the
modes of singly clamped NNs. A theoretical model including
nonlinear terms up to the fourth order in the Lagrangian
gives excellent agreement with experimental observations.
The � /2 dephasing between the x and y oscillations in this
nonplanar motion is independent of the relative phase or am-
plitude of the x and y driving, as circularly polarized re-
sponse can be obtained with linearly polarized driving. This
circular polarization should be observed for high quality
NNs and it represents a third mechanical regime beyond the
linear and the Duffing linearly polarized responses for all
regular polygon section rods because their linear polariza-
tions are degenerate. We are currently analyzing the potential
application to NEMS gyroscopes.
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