
HAL Id: hal-01565117
https://hal.science/hal-01565117

Submitted on 29 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ultra Low Power Consumption for Self-Oscillating
Nanoelectromechanical Systems Constructed by

Contacting Two Nanowires
Thomas Barois, Anthony Ayari, P. Vincent, S. Perisanu, P. Poncharal, S. T.

Purcell

To cite this version:
Thomas Barois, Anthony Ayari, P. Vincent, S. Perisanu, P. Poncharal, et al.. Ultra Low Power
Consumption for Self-Oscillating Nanoelectromechanical Systems Constructed by Contacting Two
Nanowires. Nano Letters, 2013, 13 (4), pp.1451-1456. �10.1021/nl304352w�. �hal-01565117�

https://hal.science/hal-01565117
https://hal.archives-ouvertes.fr


Ultra low power consumption for self-oscillating

nanoelectromechanical systems constructed by

contacting two nanowires

T. Barois, A. Ayari,∗ P. Vincent, S. Perisanu, P. Poncharal, and S. T. Purcell

Laboratoire de Physique de la Matière Condensée et Nanostructures (UMR CNRS 5586),

Université Claude Bernard, 69622 Villeurbanne, France

E-mail: anthony.ayari@univ-lyon1.fr

Abstract

We report here the observation of a new self-oscillation mechanism in nanoelectromechan-

ical systems (NEMS). A highly resistive nanowire was positioned to form a point-contact at

a chosen vibration node of a silicon carbide nanowire resonator. Spontaneous and robust me-

chanical oscillations arise when a sufficient DC voltage is applied between the two nanowires.

An original model predicting the threshold voltage is used to estimate the piezoresistivity of

the point contact in agreement with the observations. The measured input power is in the

pW-range which is the lowest reported value for such systems. The simplicity of the contact-

ing procedure and the low-power consumption open a new route for integrable and low-loss

self-excited NEMS devices.
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Nanoelectromechanical systems (NEMS) have recently motivated much research in both fun-

damental physics and nanotechnology. For the former one can cite measuring mechanical ground

state quantum oscillations1–3 and single electron resonance tuning4,5 and for the later, mass sen-

sors with single atom resolution6 and radio receptors based on individual nanotube resonators.7–9

A well-established practical difficulty for NEMS applications is to be able to systematically find

the resonance frequencies of such high Q-factor nanoscale resonators which vary somewhat arbi-

trarily due to fabrication tolerances and device drifts. A relevant option is to use NEMS with a

self-oscillation ability for which only a DC energy supply is necessary for the spontaneous driv-

ing of the mechanical resonances. Furthermore, this approach is particularly interesting from the

point of view of power saving when the input power is small and ultimately equal to the intrinsic

mechanical losses of the resonators.

One class of self-oscillating NEMS has been developed using “external” positive feedback

obtained from electrical amplifier loops10,11 and microwave12 or optical13–17 cavity fields. A

major drawback is the large power consumption required to supply the external feedback while

often only a single or a few nanoscale objects are spontaneously driven. A second promising class

of self-oscillating NEMS uses “internal” positive feedback where the essential physical elements

are all at the nanoscale, in close proximity to the resonator. The first such NEMS consisted of self-

oscillating SiC nanowires in a field-emission configuration18. Carbon nanotubes (CNTs) can also

be used as field-emitters for millimeter-sized mechanical self-oscillators19 or in a configuration

where field-emitting nanotubes are the self-oscillating mechanical resonators.20 Self-oscillation

during charge shuttling was first observed with molecules21 and then with nano-pillars22. Some

specific transistors with either doped Si channels in depletion23 or CNT channels functioning in the

Coulomb blockade regime4 have also shown mechanical self-oscillations. Other self-oscillation

mechanisms are found with back-action mediated by thermal coupling24 or carrier excitation.25

In this article, we present a new internal feedback mechanism that leads to self-oscillations,

demonstrated with an original device composed of two contacted nanowires. There are two partic-

ularly original aspects. Firstly, the device exploits a flexible contact at the nodes of the second or
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higher order vibration modes, a strategy that we have not seen in any previous NEMS. As a con-

sequence the fundamental vibration mode is not dominant in the dynamics as is usual. Secondly,

and more exceptionally, the contact makes use of nanoscale stiction effects,26 which are generally

frequent and usually unwanted side effects during device fabrication or manipulation. Here the

stiction between the nanowires forms a point-contact structure27 whose electromechanical prop-

erties are the key new element of this self-oscillation mechanism. The experimental observations

are supported by an electromechanical model where the self-oscillation originates from the prop-

erties of the point-contact. The threshold voltage is used to determine a dynamical value for the

piezoresistivity due to the mechanical oscillation of the point-contact. Besides the simplicity of the

contacting technique, our observations show the existence of the self-oscillation regime for nW to

pW of input power. This last value is promising as it is two orders of magnitude lower than pre-

viously reported values for self-oscillating NEMS devices. A table comparing the literature values

of the efficiency of self-oscillation mechanisms is included. Our mechanism is found to have the

highest value proving the interest for point-contact self-oscillating devices.

Two silicon carbide (SiC) nanowires were mounted on electrochemically sharpened tungsten

tips and introduced into an ultra high vacuum (UHV) chamber dedicated to nanomechanical mea-

surements. The two tungsten support tips were fixed on Attocube piezo motors for relative XYZ

positioning of the nanowires (see Fig. 1 (b)). The observation of the nanowire positions was made

using a scanning electron microscope (SEM) integrated in the UHV chamber. The longer nanowire

was the resonator (Ll = 200 µm, diameter 250 nm) while the shorter one served as a quasi immo-

bile contact (Ls = 57 µm, diameter 350 nm). The two nanowires were approximately parallel to

the SEM observation plane (XY) and the long resonator was displaced along the Z axis to place

both nanowires simultaneously in the SEM focus plane. The XY displacements could be used to

touch the apex of the long nanowire to either the tungsten support of the short nanowire or the

short nanowire itself. The resistances are measured in this configuration with typical values Rl =

1 GΩ for the long nanowire and Rs = 1 TΩ for the short nanowire.

The position of the second mode’s vibration node was determined using electrostatic driving
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before the sticking procedure (see supporting information, Fig. S1). The short nanowire was

then contacted close to the node position (79 % of the long nanowire length). The procedure for

the contacting and the sticking of the nanowires is simple. The short nanowire was first moved

close to the long nanowire. A DC voltage (∼ 20 V) was then applied between the two nanowires

inducing an electrostatic attractive force between them. Once the nanowires touched, the adhesion

forces at the contact were strong enough to maintain a rigid structure even when the bias voltage

was reduced to zero. When an increasing DC voltage was applied between the two nanowires,

the structure jumped spontaneously into mechanical self-oscillations at a specific threshold value

Vth (figure 1 (a)). Furthermore, when the DC voltage applied to the oscillating system was swept

downward, the oscillations disappeared abruptly at a lower extinction voltage, Ve <Vth. Vth and Ve

delimit a rather large hysteresis cycle. Note that no AC driving was applied. A particularity of the

oscillations was that the long nanowire underwent large amplitude vibrations while the movement

of the short one was usually indiscernible. The DC current was measured with a series ammeter

with pA resolution. During a voltage sweep, the appearance (disappearance) of the oscillations

was concomitant with a sudden increase (decrease) in the current (figure 1 (c)). This means that

the average conductivity of the structure increased when it oscillated.

The spontaneous oscillation frequency is measured by a time-resolved position detection tech-

nique in which the SEM electron beam is focalized on the long resonator near its base.28 During

spontaneous oscillations the long resonator moves periodically in and out of the focused electron

beam, thus creating a periodic secondary electron current that is measured by a scintillator. As

the resonator intercepts the beam twice during one oscillation cycle, the frequency measured from

the current signal is twice the oscillation frequency. During spontaneous oscillation, the number

of cycles as a function of time is extracted from the acquired signal (see supporting information,

Fig. S3). The number of cycles increased almost linearly with time (see the main plot in Fig. 2)

giving a self-oscillation frequency of 36436± 5 cycles per second (i.e. Hz), very close to the

eigenfrequency for the second mode of the free resonator (38 kHz).

Several experimental evidence of the self-oscillation are to be noticed. Firstly, the existence of a
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DC threshold voltage suggests that the driving power of the vibration comes from the DC electrical

source. Secondly, the stability of the frequency shown in Fig. 2 is typical of self-oscillators. As

mentioned above, the number of cycle Π(t) increases almost linearly with time (Π(t) ∼< f > t).

The fine evolution of the number of cycles is obtained when the average linear dependence is

removed and thus defining the phase difference (cycles) ∆Π(t) = Π(t)− < f > t where < f >

is the average frequency. This phase difference ∆Π(t) fluctuates somewhat (see inserted plot in

Fig. 2), meaning that the relative frequency d∆Π(t)/dt is drifting on a timescale larger than 1 ms.

Finally the frequency increases with applied voltage (see supporting information, Fig. S4) meaning

that this device acts as voltage-controlled oscillator (VCO).

A possible cause of the self-oscillations could have been the interaction of the resonator with

the SEM column electron beam.29 To examine this possibility the IV characteristics were mea-

sured both with and without SEM imaging (see supporting information, Fig. S2). The same

self-oscillations were observed in both cases meaning that the electron beam is not the physical

source. As well, the DC threshold voltage was quite reproducible meaning that the beam had no

or little influence on the resonator movement.

We propose that the self-oscillation regime originates from the internal environment of the

contacted nanowires under a DC bias voltage where the nanoscale electromechanical properties of

the point-contact play a crucial role. A simplified model is proposed for the description of the self-

oscillation mechanism where only one mechanical degree of freedom is considered. The contact

is assumed to be precisely at the vibration node which means that only the long resonator is likely

to oscillate. Thus, the equation of motion for the vibration mode is:

mẍ+Γẋ+ kx = Fe(VDC,x, ẋ) (1)

where x is the amplitude at the apex of the long resonator, m is the effective mass of the vibration

mode, Γ the intrinsic damping, k the mechanical equivalent spring constant and Fe(VDC,x, ẋ) the

electrostatic forcing. This forcing term comes from the electrostatic interaction between the two
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nanowires as the DC voltage introduces electrical charges on each nanowire. The dependencies in

x and ẋ in Fe comes from the fact that the vibration of the long nanowire affects the values for

the contact resistance and the coupling capacitance of the two nanowires thus affecting the charge

distribution. Using a Taylor expansion for Fe(VDC,x, ẋ), the equation of motion (Eq. 1) can be

written as

mẍ+Γeẋ+ kex = 0 (2)

where the effective spring coefficient ke = k + ∂Fe/∂x and the effective damping coefficient

Γe = Γ + ∂Fe/∂ ẋ are introduced because of the electromechanical coupling. Fe is given in

the supporting information as a function of the physical parameters of the nanowires. The self-

oscillation threshold voltage Vth is obtained when the effective damping Γe becomes zero:

Γe = Γ+
RtC′/8+R′/(2Rt)τ

1+ω02τ2 C′Vth
2 = 0 (3)

where Rt is the total resistance of the contacted nanowires, C the capacitance between them and

τ = RtC (see supporting information Fig. S5). The prime denotes a derivative with respect to x.

The angular frequency ω0 =
√

k/m of the mechanical mode is considered because the frequency

shift due to the electromechanical coupling is small δω/ω0 = (∂Fe/∂x)/2k = 0.02 %.

The instability threshold relation 3 is used to determine an experimental value for R′ which can

be considered as a piezoresistive coefficient associated to the mechanical vibration. The experi-

mental values are Rt = 1 TΩ, ω0 = 2π×38500 rad.s−1, Q = 5000, the later two being measured

with forced oscillations without contact and VDC = 0 V. The effective mass m = 5× 10−15 kg is

calculated from the long resonator density, length and radius. The non-contacted configuration is

also used to measure28 typical values for the long nanowire capacitance (C = 1 fF) and its first

derivative (C′ = 1 pF.m−1). For an experimental threshold voltage Vth = 20 V, the self-oscillation

condition gives R′ = −1.2× 1016 Ω.m−1. This value is in good agreement with the electrical

measurement from Fig. 1 (c) where the order of magnitude for the resistance variation due to the

mechanical vibration corresponds to ∆RDC/∆x=−2.4×1016 Ω.m−1. This value is calculated con-
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sidering that the self-oscillation threshold is associated with a current jump ∆I giving a resistance

variation of ∆RDC =−VDC∆I/IDC
2 =−1.2×1011 Ω for a typical vibration amplitude ∆x = 5 µm.

In-depth studies outside the scope of this article would be necessary to understand the resistance

variation at a microscopic level. There are two difficulties in comparing with published studies on

point-contacts. Firstly our surfaces are not characterized. Secondly, and more specifically, here the

contact is varied by torques between the nanowires while studies that combine force and electrical

measurements are generally for vertical forces between surfaces. Nevertheless under certain as-

sumptions one can make order of magnitude comparisons with point-contact studies between met-

als. These are known to show nonlinear current-voltage and current-position characteristics. At

the contact position, the typical current variation30 for a small change in surface-surface distance

δ ∼ 0.1 Å is ∆I ∼ 1 nA which gives ∆R/δ ∼ 3×1017 Ω.m−1. For the contacted nanowires, the me-

chanical oscillation x is likely to modulate the nanowire-nanowire distance δ at the point-contact

(see supporting information, inserted view in Fig. S6). For simplicity, the scaling law between

δ and x is considered and corresponds geometrically to the ratio between the nanowires typical

diameter d and the free length for the long nanowire δ = (d/[(1−79%)Ll])x. With d = 200 nm,

δ = 4.8×10−3x one finds ∆R/x = 1.4×1015 Ω.m−1 which is compatible with the piezoresistance

value R′ obtained before.

The self-oscillation is observed only when a vibration node of the long resonator is close to or

at the position of the contact because then the short nanowire does not need to move, which would

add strong supplementary rigidity and block the vibrations. As well, the short nanowire vibration

would involve a supplementary damping partly due to ohmic losses through the large resistance

of the short nanowire28. The node at the contact also insures a maximal pivoting movement of

the point-contact while a collective displacement of the nanowires would have no effect on the

point-contact deformation.

The necessity to contact at a vibration node might appear to be a serious experimental diffi-

culty. An important property of our method is the possibility to adjust the vibration node position

with an induced mechanical longitudinal tension T due to the displacement in the X direction of
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the short nanowire. This is particularly interesting when the contact is not precisely at 79 % of the

long resonator length corresponding to the vibration node without mechanical tension (T = 0). A

modeling of the mechanical coupling for the contacted nanowires is used to define the contact posi-

tions and mechanical tensions for which a vibration node is at the contact position (see supporting

information). The results are shown for the second mode (solid line) and the third mode (dashed

line) in Fig. 3. The node of the second mode can be made to correspond to any contact position

from 78 % to 100 % of the long resonator length, providing that the appropriate mechanical ten-

sion is applied. The experimental data points correspond to self-oscillation observations using an

image analysis for the determination of the contacting position and the mechanical tension value.

The mechanical tension T induced in the long resonator is calculated from the static deflection δr

and the spring coefficient k of the short nanowire.

The lowest threshold voltage was measured in the buckling region discussed in Fig. 3 and its

caption to be VDC = 2 V with IDC = 0.5 pA, meaning that the input power of the DC source was

Pin = 1 pW. This value is remarkably low, particularly for a first demonstration of the phenomena

and is the lowest reported value leading to a self-oscillating NEMS (see Fig. 4, horizontal axis). As

expected, the input power is larger for self-oscillating NEMS with macroscopic external coupling

such as amplifiers (Feng, Villanueva, Ramos) or optical (Metzger, Barton) and microwave (Teufel)

cavities for which the input power is typically around 1 µW to 1 mW. For nanoscale feedback

self-oscillators, solid state devices also require large input power because of large currents drawn

through their low resistances (Grogg, Steeneken) while for optical carrier excitation appreciable

laser beam power is used (Okamoto). The field-emitting self-oscillators (Ayari, Weldon) have

much lower current but suffer from large extraction voltages. At first sight a low input power can

be expected for ideal charge shuttle self-oscillators because just below the threshold there are no

current and no dissipative losses. However the only experimentally operating device (Kim) showed

additional losses due to parasitic field-emission.

The input power is compared to the mechanical power losses as a more relevant way to rate

the efficiency of the different self-oscillation mechanisms (Fig. 4, vertical axis). In general any
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self-oscillation mechanism acting on a passive resonator can be seen as an active compensation of

the intrinsic mechanical losses. Considering these mechanical losses as inevitable, the efficiency

η of the self-oscillation mechanism is introduced as the ratio between the intrinsic mechanical

power losses during a cycle and the input power, η = Pdiss/Pin. For an optimal self-oscillation

mechanism (η = 1), the input power exactly equals the mechanical losses meaning that the minimal

power is injected to overcome the intrinsic dissipation. During self-oscillation for a quasi-harmonic

vibration, the intrinsic mechanical power losses are given by Pdiss = mω0/Q< ẋ >rms
2, where

< ẋ >rms is the root mean square velocity for vibration cycle with typical amplitude A, m the

effective mass, Γ = ω0/Q the intrinsic damping. For the contacted nanowires, the self-oscillation

frequency is measured with the position detection technique (ω/2π = 17.4 kHz). This value is

smaller than the non contacted value (38.5 kHz) because the buckling instability lowers the stiffness

of the resonator. The quality factor (Q = 5000) is measured without a DC voltage to avoid the

self-oscillation regime. For an amplitude A ∼ 3 µm, the power losses are found to be Pdiss =

mω0/Qω2A2/2 = 13 fW which means that the efficiency of our self-oscillation mechanism is

η = 1.3%. Though modest, this value is larger than the estimated efficiencies of any other reported

self-oscillating NEMS devices (Fig. 4). Our self-oscillator shows the lowest input power and the

best efficiency because of the large resistances that prevent dissipative currents and also because

the point-contacts have large piezoresistivity which is the origin of the self-oscillation mechanism.

In conclusion, two nanowires simply brought into contact have been used to demonstrate the

existence of a new self-oscillation mechanism for NEMS devices. The self-oscillation is caused by

an electromechanical coupling under bias voltage where the large piezoresistance R′ at the contact

is the origin of a negative damping term that overcomes the natural damping at the threshold

voltage. By varying the position of the contact point and the static mechanical stress, the self-

oscillation was observed for an input power as small as 1 pW which is much smaller than the

power consumption of any other self-oscillation mechanism in NEMS devices. Furthermore, the

self-oscillation regime exists for relatively low applied voltages, i.e. typically 10 Volts, not far from

CMOS. It should also be noted that the derived devices can have very small footprints because the
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elements are all at the nanoscale and the frequency can be selected over a wide range by simply

choosing the nanowire dimensions. The easy fabrication, low power consumption, low operating

voltages, small footprint and frequency variability together mean that these self oscillating NEMS

are serious candidates for integration into portable devices.

Figure 1: (a) SEM observation of a spontaneous mechanical oscillation of contacted SiC
nanowires. The image pixels are numerically inverted which means that the dark regions cor-
respond to a larger collection of secondary electrons. The inserted image is a 3× zoom of the
contacted region. VDC = 27 V, IDC = 30 pA. Scale bar 50 µm. (b) Schematic representation of the
experimental setup. A DC voltage is applied between the supports of the nanowires and generates
the self-oscillation of the long resonator. The DC current is measured with a series ammeter. (c) DC
current-voltage measurement during a self-oscillation hysteresis cycle (Ve = 24 V, Vth = 33,5 V).
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Figure 2: Time evolution of the self-oscillator number of cycles (Π(t) in the text) recorded with the
focused beam detection technique. The linear slope is the average self-oscillation frequency (<f>
= 36.4 kHz). (insert) Evolution of the relative number of cycles with time (∆Π(t)). This plot is
obtained from the main plot after subtraction of the linear time dependence (∆Π(t) = Π(t)−< f >
t). The acquisition time (200 ms) for the data in the inserted plot corresponds to 7500 oscillation
cycles where the relative number of cycles fluctuates with a typical amplitude of one cycle.
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Figure 3: 2D map where the x-axis is the position of the contact on the long resonator (as a
ratio of the length) and the y-axis is the mechanical longitudinal tension T induced in the long
resonator by the lateral displacement of the short nanowire. When the contact is made near the
end of the long resonator, a strong negative tension leads to a buckling instability (grey area). The
continuous and dashed lines are numerical computations corresponding to contacting positions and
mechanical tensions for which a mechanical vibration node matched the contacting position. The
experimental data points represent 6 observed self-oscillating states. For each point, the contact
position on the long resonator and the deflection of the short nanowire δr are determined by image
analysis. The mechanical tension is taken from the relation T = kδr, where k = 6.3 mN.m−1 is the
spring coefficient for the short nanowire deflection.

Figure 4: Efficiency of self-oscillation mechanisms, η = Pdiss/Pin, as a function of the input power
Pin. Pdiss is the power dissipation by the intrinsic mechanical losses. The values for the expression
of Pdiss and Pin are displayed in table 1. The dashed line corresponds to an efficiency 1 (0 in
logarithmic axis) for which all the driving power would compensate the mechanical losses.
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Table 1: Power dissipation by the intrinsic mechanical losses (Pdiss) and input power (Pin) for
reported MEMS/NEMS self-oscillators. The power dissipated by the mechanical motion is calcu-
lated for each device using Pdiss = Γ< ẋ >rms

2, with the damping coefficient Γ = 2πm f/Q and the
RMS velocity for a quasi harmonic oscillation < ẋ >rms= 2π f A/

√
2 ( f : oscillator frequency, Q :

quality factor, m : effective mass, A : typical amplitude during self-oscillation).

f Q m(kg) A Pin Pdiss Ref.
17.4 kHz 5000 5×10−15 3 µm 1 pW 23 fW This work
428 MHz 2500 5.8×10−17 1 nm 10 mW 225 pW Feng10

14.3 MHz 1220 1.3×10−14 10 nm 1 mW 396 pW Villanueva11

1.5 MHz 300000 6.2×10−15 100 nm 900 nW 87 fW Teufel12

7.3 kHz 2000 3.8×10−12 1 µm 130 µW 92 fW Metzger (1)13

8.7 kHz 1800 3.3×10−12 35 nm 9 µW 0.18 fW Metzger (2)15

5 MHz 500 1×10−16 10 nm 2.6 mW 310 fW Barton16

39.4 kHz 2.5 5.3×10−11 2 µm 5 mW 640 nW Ramos17

42 kHz 4000 1.2×10−14 10 µm 17 nW 2.8 pW Ayari18

4 MHz 1260 5×10−19 1 µm 100 µW 3.2 pW Weldon20

10.5 MHz 500 4.1×10−19 30 nm 80 fW 110 fW Kim22

3.6 MHz 600 3.1×10−13 60 nm 70 µW 11 nW Grogg23

1.26 MHz 10000 4.1×10−12 100 nm 1.1 mW 1 nW Steeneken24

239 kHz 6500 3.5×10−12 2 µm 12 µW 37 pW Okamoto25
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