
 Page 1 
 

Activity recognition for anomalous situations 

detection 
 

I. Hela Sfar, Amel Bouzeghoub, and  Nathan Ramoly 
CNRS Paris Saclay, Telecom SudParis, SAMOVAR, France 

surname.name@telecom-sudparis.eu 

 

Abstract -  

As the world population is growing older, more and more peoples 

are facing health issues.  For elderly, leaving alone can be tough 

and risky, typically, a fall can have serious consequences for them. 

Consequently, smart homes are becoming more and more popular. 

Such sensors enriched environment can be exploited for health-care 

applications, in particular Anomaly Detection (AD). 

Currently, most AD solutions only focus on detecting anomalies 

in the user daily activities while omitting the ones from the 

environment itself.  In this paper, we present a novel approach for 

detecting anomaly occurring in the home environment during user 

activities.. We propose an application of the Markov Logic Network 

to classify the situations to anomaly classes. Our system is 

implemented, tested and evaluated using real data obtained from the 

Hadaptic platform. Experimental results prove our approach to be 

efficient in terms of recognition rate. 

Keywords: Smart Home, Activity recognition, Anomaly detection, 

Markov Logic Network.  

 

I. INTRODUCTION 

According to a survey from the British Office for National 

Statistic 
1i 

in 2011--2030, around 53\% of elderly persons in 

nine European countries will be living independently. 

Accordingly, less carefulness and heed are provided to the 

elderly from their family members.  

This missing care may lead to several problems, since senior 

population is minded to have a more sensitive health and 

physical conditions.  

Over the past few years, technological progress in pervasive 

computing has enabled the concept of smart homes. Smart 

homes are aiming to provide an environment for assisted living 

which enables monitoring of the home contextual information 

and the resident's in-home activities. 

 

Reliable Anomaly Detection (AD) in daily in-home 

situations is the most important component of many home 

health care applications.  

In literature, an anomaly is defined as a deviation from the 

normal behavior [7, 8, 9] Research has emphasized the daily 

user activities for the normal behavior learning. The normal 

behavior is, indeed, a model of the usual user activities 

classified under features using different machine learning 

techniques [10]. The anomaly is then detected as a deviation 

from this model either by the application of logic rules defined 

by experts, or through the exploitation of methods [11]. As a 

result, the detected anomaly can be an unusual activity or 

group of activities that can be analyzed considering some 

context. However, the anomalies produced by the environment 

context during an activity occurrence are not tackled in the 

state of the art. The following scenario illustrates this 

problematic: 

 

Scenario 1: Patrick is an old poker player living alone in his 

smart home. It is Monday, 10am, after watching TV and before 

lunch, Patrick is cooking in the kitchen as usual. The vent is 

shut down and all the kitchen windows are closed. 

 

In scenario 1, Patrick risks’suffocation’ as the smoke 

induced by cooking can't be evacuated: this is an anomalous 

situation. State of the art approaches for AD are not able to 

detect such an anomaly since the anomaly is not in the activity 

(Patrick has done a usual activity) but in the environment. As a 

matter of fact, classical AD solutions mostly analyze one or 

sequences of activities and detect deviation from expected 

activities, not on the context itself. Hence, the activity is 

considered as the main cause of anomaly. Despite the context 

being considered in some AD works [12, 13], the focus 

remains on the activity and not on the context itself as Scenario 

1 shows. Moreover, in these works, the context is not enriched 

enough [7]: they only consider general contextual data such as 

day, time, etc., but not environment dependent context data, 

such as the status of the vent in Scenario 1.  

 

In order to tackle this problematic, we propose a new method 

for AD.  The proposal is aimed to detect anomalous situation 

through activities recognition. It takes as input contextual data 

then it starts by infer activities then anomalous situations.  

A situation is a combination of the environment contextual 

data with the user activity. The situation is considered 

anomalous when the contextual data can identify anomalies 

while an activity is occurring, such as the suffocation anomaly 

in Scenario 1.  

 

The rest of the paper is organized as follows: Section 2 

discusses related work. Section 3 details the activity 

recognition process. Then, Section 4 explains the anomalous 

situations detection. Section 5 reports experimental results. 

Finally, Section 7 concludes the paper. 

 

II. RELATED WORK 
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Previous proposed approaches can be classified into three 

classes of anomalies: Point, collective, and context anomalies 

[7].  

 Point anomalies consider each activity independently and 

decide whether it is anomalous or not regarding the normal 

behavior. For detecting point anomalies, Han and al. [13]  use 

the mean of different features for different activities and apply 

a classification method to define regular behavior. Then, it 

looks for anomalous activities based on predefined thresholds 

of deviation. In [14, 15, 16] authors learn which rooms the 

resident is in during different times of day.  

In [8, 20] the authors propose new systems of anomaly 

detection concerning mild cognitive impairment.  

In  order  to  automatically  reason  with  anomalies, they 

represent  them  in  propositional  logic. Then, according to 

expert defined rules, the anomaly is detected as an activity 

containing a deviation from the normal behavior.  

[9] is an extension of [20] in which the rules describing 

anomalies are generated automatically through a new 

classification method.  

 

Collective anomalies consider groups of activity instances 

together to determine whether the group is normal or no. To do 

so, Anderson and al [17] use an automata based approach to 

define sequence of activities as normal behaviors and learn 

those behaviors. They also support combining multiple days of 

activities to detect anomalies that occur over the time. In [12] 

authors use unsupervised pattern clustering techniques to 

identify behavior model of the resident. Later, they apply a 

supervised machine learning method to detect anomalous 

sequences of activities.  

 

Contextual anomalies consider activities under some context. 

Holmes [7] is a typical approach combining point, context, and 

collective anomalies detection.  The considered context in this 

paper is the day of week. Holmes starts by constructing a 

hierarchical normal behavior. At its bottom level are the 

several regular behaviors classified per day. Then, these latter 

are gathered to model the temporal correlations between 

activities. After training, the anomalous activities are detected 

by computing their distance from the normal behavior.  

 

Based on the papers we reviewed, all works focus on detecting 

anomalous user activities. They do not consider more global 

anomalies (e.g. anomalous situations) that involve the 

environment itself. 

 

III. ACTIVITY RECOGNITION 

 

After receiving contextual data with uncertainty values that 

can be produced by  the FSCEP system [2, 3] , the activity 

recognition process   is composed of two layers: the 

Knowledge based layer and the Data driven layer.   The 

knowledge based layer then represents semantically the 

incoming sensor data together with their uncertainty values. 

Afterwards, it infers actions and events from the modeled 

sensor data  and computes their uncertainty's values.  

The obtained actions and the computed uncertainty values 

are sent to the data driven layer. The layer is responsible 

for: (1) classification of the actions into features, (2) 

classification of the features and actions into activities. In 

the following, further explanation of each layer is provided. 

A. Knowledge Layer 

After the modeling of sensor data together with their 

uncertainty values in ontology, it becomes possible to infer 

events and actions through ontological reasoning.  In the 

following we show through two examples how to infer events 

and actions.  

γ se1, se2 ϵ {Sensors} ; t1, t2 ϵ {Time}, and p ϵ {Person} 

(p hasLocomotion [a Uncertainty; uncertaintyLevel n1; 

relatedObject SitOn; relatedTime t1; accordingTo se1] 

˄ 

 (p hasObject [ a Uncertainty; uncertaintyLevel n2; 

relatedObject Chair; relatedTime t2; accordingTo se2]) 

→  ev(SitOnChair, max(t1,t2), min(n1, n2)) \\ 

 

Eample1: Inference of  Event with label SitOnChair 

 

As we can see, the premise of this rule contains 2 clauses. Each 

one is a RDF triple representing an uncertain sensor data.  The 

first clause means “the resident p is observed to have the 

locomotion SitOn at time t1 with uncertaintyLevel n$1 

according to the sensor se2"  while the second clause translates 

the information "the resident p is observed to get the object 

Chair at time t2 with uncertaintyLevel n2  according to the 

sensor  se2". The final timestamp of the event is the maximum 

between the timestamp of the two sensor data because the 

event is occurred with the occurrence of the last required 

sensor data.  The uncertainty value of the event is the minimum 

between the two uncertainty values of the sensor data. This is 

obtained thanks the application of the possibility logic [6].  

ev(SitOnChair, t1, n1) ˄ ev(PresenceAtKitchenTable, t2, 

n2) ˄ (t1 ≥ t2) ˄ ((t1-t2) ≤ 5s ) 

→ ac(SitOnChairAtKitchenTable, t1, min(n1, n2)) 

Example2:  Inference of action with label 

SitOnChairAtKitechenTable 

  

The previous rules are examples of rules that are managed by 

the system. However, a set of required rules are defined by 

experts according to the semantic of the activities to be 

monitored and the types of sensors in the smart environment. 

Other rules can be inferred through an ontological inference 

engine according to the axioms defined in the ontology. 

The deduced actions are then communicated to the data driven  

Layer. 

 

B. Data driven Layer 

 

After receiving the set of sensors, this layer is in charge, firstly, 

to extract features in order to gather the actions according 

features. This process is simple performed by the application of 

the features extraction method that is proposed in [21]. One 

advantage of this method is to compute a weight for each 

feature. In this work this weight serves as the uncertainty value 
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of the feature. Afterwards, the features and their actions are 

classified into activities thanks to the applications of the 

Dempster Shafer Theory (DS) [22]. 

In the following we explain how this theory is applied in our 

work: 

 

  
Figure 1: DS Theory model for activity classification 

 

In order to classify activities, we propose a new model for the 

application of the DS theory  to classify actions and features 

into activities. DS has proven to provide decent results in 

comparison to other machine learning techniques such as J48 

Decision Tree [23].  Usually the Directed Acyclic Graph 

(DAG) is used to represent the source evidences, their 

hypothesis, the mass functions,  the activities, and to support 

the distribution and the fusion of evidences. In the DAG, 

evidence sources represent the root nodes at the base of the 

diagram. Evidence source readings are mapped to one or more 

hypothesis. Each one in turn will be mapped to one or more 

activities. In this work, as depicted in Figure1 the DAG is used 

where each evidence source is a sequence of actions Si  which 

are in the feature vector. Then the hypotheses are the features. 

The mass function value is the number of the feature’s 

occurrence whiles the activity execution. These mass function 

values are discounted by being multiplied with the feature 

weight value after normalization. This product reflects an 

uncertainty value about the production of the feature (its 

weight value) and about the classification of the features into 

activities (mass value). The finale value of uncertainty is 

propagated to activities thanks to the DS’s rule of combination 

[22]. This final value forms the uncertainty value of the 

matching activity. 

 

IV. ANOMALOUS SITUATIONS DETECTION 

 

The activities that are produced in the previous stage and 

additional contextual data are given as input for the anomalous 

situations detection. . Based on this input, situations are build 

according to a times window (win).  Hence, a situation is a set 

of contextual data and an activity that are occurred inwin.  

Then the Markov Logic network (MLN) [5] is triggered in 

order to classify the situation to anomalous situation classes. In 

the following more details are given about MLN for situation 

classification. 

A. MLN  for anomalous situation classification 

 

MLN is a machine learning method that allows handling   

uncertainty, imperfection, and contradictory knowledge. 

Technically, a MLN is a finite set of pairs (Fi; ;wi ); 1 ≤ i ≤n, 

where each Fi is function-free first-order logic 

and wi  ϵ R is its weight. Together with a finite set of constants 

C = {c1...cn} it defines the ground MLN, i.e., the MLN in 

which logic rules do not contain any free variable. Hence, a 

MLN defines a log-linear probability distribution over 

Herbrand interpretations (possible worlds): 

 
Equation 1 

 

 

Where F is the set of rules in the MLN, ni(x)$ is the number of 

true groundings of Fi  in the possible world x, wi is the weight 

of Fi, and Z is the normalizing constant. 

 

The MLN model is a non-oriented graph where nodes are 

predicates and an edge between two nodes means that the two 

predicates are found in at least one logic rule in the set F. 

Figure 2 is an example of an MLN representing the three 

following rules: 

 

  Let F = {( F1, w1), (F2, w2), (F3, w3)} the set of rules in the 

MLN model where: 

 

 F1: γ act ϵ Activity,  ᴲ x ϵ  ElectricDevice,  ᴲ l1, l2 ϵ  

Location  

  State(x, "ObjectIn", wstate) ˄ State(x, "Hot+", wstate) ˄ 

LocatedIn(x, l1, wloc) ˄  OccuresIn(act, l2, woccures) ˄ 

Different(l1, L2, wdiff) →Prediction( act, FireElectricity, pred) 

 F2: γ act ϵ Activity , ᴲ x ϵ  Entrée,  ᴲl1 ϵ Location 

   Similar(act, "Sleeping", wsim) ˄ OccuresIn(act, l1, 

woccures) ˄ State("Weather", "Cold", wstate) ˄ Access (x, l1, 

waccess) ˄ State(x, "Open", wstate) → Prediction( <x;  

hasBinaryProperties; [ <Open; hasValue; w_{Open}>] > 

Discomfort, ppred)  

 F3:  γ  act ϵ  Activity,  ᴲ  x ϵ  Entree , ᴲ l1 ϵ Location 

 Requirement (act, "Vent", wreq) ˄ OccuresIn(act, l1, 

woccures) ˄ Access(x, l1, waccess) ˄ 

  State(x, "Close", wstate) ˄ State("Vent", "Shutdown", wstate) 

→ Prediction(act,  <x;  hasBinaryProperties; [ < Colse; 

hasValue; wclose>] >, Suffocation, ppred) 

 

The three rules allow the prediction of three anomaly situation 

classes: FireElectricity, Discomfort, and Suffocation as 

depicted in Figure2.  The left part of the rules contains 

predicates representing the input contextual data from the 

FSEP system and the activities produced from the previous 

step.  For instance the predicate State(x, "ObjectIn", wstate)  is 

used to express the input state of the ElectricDevice x. This 

information about the state of x is given with an uncertainty 

value that is wstate in the predicate. 
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Figure 2: MLN representing the three rules in the set F  

 

 However, in the right part of the rules always the predicate 

Prediction that classifies the situation (activity and contextual 

data) to an anomaly situation class. The weight of this 

predicate is initially unknown and is computed ate the end of 

the process. 

After the modeling of the MLN model, Ground MLN is 

created for the rules in the set F. In the Ground MLN all 

variables are replaced with all possible constants. In the MLN 

model the values of rules weights (wi)  must be given as input. 

However, in this work we propose a new metric to compute the 

rules weights based on the weights of theirs predicates:  

 
Equation 2 

 

Where satPij  is a predicate in the rule Fi and satisfies Fi. and 

wsatPij is its weight. ni is the number of predicates in Fi.  

 

At this stage, the MLN model is created, the ground MLN also, 

and the rules weights are computed. Hence, it becomes 

possible to compute the weights of predicate Prediction in the 

right part of the rules. To do so, we simply apply this equation: 

 

 
Equation 3 

 

Where Constantk is the set of constants in the Ground MLN 

that are in the predicates which have edge with the predicate 

Predcitionk.  P(x=const) is computed by the application of the 

formula in equation1}. The final classification of a given 

situation is the anomaly situation class that has the maximum 

weight value in the corresponding predicate Prediction. 

 

V. EXPERIMENTAL EVALUATION 

 

In order to evaluate the proposal, we developed a prototype of 

it. We have extensively evaluated the proposed method with a 

dataset acquired out of more of 2 hours of elderly-like routine 

in the Hadaptic platform
3ii

. The smart lab is equipped with 

motion sensors, beacons, switches, thermometers and more.  

The system was integrated with a FSCEP implementation, for 

data acquisition. For this evaluation, a set of logic rules has 

been defined for three anomalies classes: Intrusion, 

Suffocation, and ElectricityFire. Before execution, the system 

requires the preliminary step in which the value of parameter 

win, that corresponds to the time window duration of situation, 

is experimentally chosen. Therefore, we have tested the 

method with different values of win ϵ  [60s...300s]. The 

constant Z, in equation 1 was set to 10. 

 

 
Figure 3: Precision, recall, and correctness of anomalies 

detection for different time window win  

 

The system was evaluated by comparing its output against 

expected results. For each time window, the precision and 

recall of the system was computed. Furthermore, we computed 

the correctness, which is simply the rate of correct (expected) 

answers of the system. Figure3 shows the obtained result. 

As we can see in Figure 3, the system has a high precision for 

all time windows. This means our system rarely detect 

untimely events, this is an important feature for the comfort of 

the user. However, as depicted by the recall, it sometimes 

misses anomalies, but relatively rarely for time window shorter 

than 4 minutes. On the overall, we can see that correctness 

decreases with the size of the time window. This can be 

explained by the increase of data volume and the time window 

overlapping multiple activities. This activities overlapping 

sometimes leads the system to make wrong decisions.  As a 

conclusion, with a suited time window (2 min), the system is 

highly efficient to recognize anomalous situations. 

 

VI. CONCLUSION AND PERSPECTIVES 

 

In this paper, we proposed a new method for AD particularly 

for anomalous situation detection. Unlike previous AD 

methods, the system is able to detect anomalies through 

contextual data during the user activity occurrence.  To do so, 

it applies the MLN as a machine learning method and proposes 

a new metric for rules weights computation. . Our experiments 

underline the viability of the proposal and its high precision 
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level. Proposing an extension of this system handling dynamic 

time-windows is one of the future directions. 
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