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Index of Main Symbols

Equivalent systems and multiplicity

The paper Multiplicity hunting and approximating multiple roots of polynomial systems [START_REF] Giusti | Multiplicity hunting and approximating multiple roots of polynomial systems[END_REF] was written in a heuristic way. We achieve its numerical analysis in the present paper, by the way simplifying the procedure given previously. Definition 1. A root ζ of an analytic system f = 0 (defined in a neighbourhood of ζ) is isolated and singular if 1-there exists a neighbourhood of ζ where ζ is the only root of f = 0. 2-the Jacobian matrix Df (ζ) is not full rank.

Remark that the first assumption implies that the number of equations is larger or equal than the number of variables. Note also that this frame includes the important particular case of an analytic system obtained by localizing a polynomial system. We shall use equally the words singular or multiple for such a root. We have explained in [START_REF] Giusti | Multiplicity hunting and approximating multiple roots of polynomial systems[END_REF] how to derive a regular system (i.e admitting ζ as regular root) from a singular system at a multiple isolated root, provided the assumption that ζ is exactly known. We formalized this transformation by the notion of equivalent systems at a point ζ. More precisely let ζ be a multiple isolated root of an analytic system f (x) = (f 1 (x), . . . , f s (x)) with x in a neighbourhood of ζ in C n (note that s ≥ n). Our method computed a regular system admitting the same root ζ, and that we called equivalent. Note that this is obtained without adding new variables (important feature we underline).

The multiplicity of a root is an important numerical invariant. In the case where there is only one variable and one equation, the multiplicity of a root is exactly the number of derivatives which vanishes at the root, which is unfortunately no longer true in the multivariate situation. We have to introduce a more complicated machinery.

Let us call 1-C{x -ζ} the ring of the germs of analytic functions at ζ, i.e. the ring of convergent power series in a neighbourhood of ζ, with maximal ideal generated by x 1 -ζ 1 , . . . , x n -ζ n . 2-IC{x -ζ} the ideal induced generated by the ideal I = I(f ) :=< f 1 , . . . , f s > in C{x -ζ}.

Definition 2. The multiplicity µ(ζ) of an isolated root ζ is defined as the dimension of the quotient space C{x -ζ}/IC{x -ζ}.

Relatively to < a admissible local order in C{x -ζ}, we denote by LT (IC(x -ζ)) the ideal generated by the leading terms of all elements of IC{x -ζ}. Definition 3. A (minimal) standard basis of IC{x-ζ} is a finite set of series of IC{x-ζ} whose leading terms generate minimally LT (IC(x -ζ)).

We can prove that there is only a finite number of monomials, named standard monomials, which are not in I. The following theorem is classical in the literature about standard bases.

Theorem 1. The following are equivalent:

1-The root ζ is isolated.

2dim C{x -ζ}/IC(x -ζ) is finite.

3dim C{x -ζ}/LT (IC(x -ζ)) is finite. 4-There are only finitely many standard monomials. Furthermore, when any of these conditions is satisfied, we have µ(ζ) = dim C{x -ζ}/LT (IC(x -ζ)) = number of standard monomials.

In the particular case of a localized polynomial system, whose equation have a total degree upper bounded by some integer d, the multiplicity is upper bounded by d n .

Overview of this study

To approximate a multiple isolated root is difficult because the root can be a repulsive point for a fixed point method like the classical Newton's method (see the example given by Griewank and Osborne in [START_REF] Griewank | Analysis of Newton's method at irregular singularities[END_REF], p. 752). From a point of view of the theoretical analysis, the technical background used when the derivative has constant rank is not possible. This case is well understood and there are many papers on this subject, see for instance [START_REF] Xu | Convergence criterion of Newton's method for singular systems with constant rank derivatives[END_REF], [START_REF] Argyros | Semilocal convergence of Newton's method for singular systems with constant rank derivatives[END_REF] and references within. To overcome this drawback, the goal is to define an operator named singular Newton operator generalizing the classical Newton operator defined in the regular case. To do so we construct a finite sequence of equivalent systems named deflation sequence, where the multiplicity of the root drops strictly between two successive elements of the sequence. Hence the root is a regular root for the last system. Then we extract from it a regular square system we named deflated system. The singular Newton operator is defined as the classical Newton operator associated to this deflated system.

We now explain the main idea of the construction of the deflation sequence. Since the Jacobian matrix is rank deficient at the root, it means that there exists relations between the lines (respectively columns) of this Jacobian matrix. These relations are given by the Schur complement of the Jacobian matrix. When adding the elements of the Schur complement to the initial system (we call this operation kerneling), we obtain an equivalent system where the multiplicity of the root has dropped. In this way, a sequence of equivalent system can be defined iteratively. This will be explained in section 7.

Then we perform a local α-theory of Smale of this singular Newton operator. We first state a γ-theorem, i.e., a result which gives the radius of quadratic convergence of this singular Newton operator and next we give a condition using Rouché's theorem to prove the existence of a singular root.

The context of this study is that of square integrable analytic functions. In this way, it is possible to represent an analytic function and its derivatives thanks to an efficient kernel : the Bergman kernel. Moreover, our study is free of ε (the measure of the numerical approximation) in the following sense: Definition 4. We said that a numerical algorithm is free of ε if the input of the algorithm does not contain the variable ε.

The determination of a deflation sequence presented in the table 2 is free of ε under the assumption that the norm defined in section 5 (or an upper bound) is given. To do that we present new results to determine by algorithms free of ε:

1-The numerical rank of a matrix : this is achieved in section 4.

2-How close to zero is the evaluation map, see the section 6.

We will see that the two previous problems are applications of the α-theory.

The analysis we present here generalizes what was done by Lecerf, Salvy and the authors of the present work [START_REF] Giusti | On location and approximation of clusters of zeros: Case of embedding dimension one[END_REF]. Under the hypothesis of a square system (s = n) and a multiple root of embedding dimension one, i.e., where the the rank of Jacobian matrix drops numerically by one, we treated the case of cluster of zeroes using numerically the implicit function theorem. More precisely, there exists an analytic function ϕ(x 1 , . . . , x n-1 ) such that

ζ n = ϕ(ζ 1 , . . . , ζ n-1 ) and hence ζ n is a root of the univariate function h(x n ) = f n (ϕ(x 1 , . . . , x n-1 ), x n ).
Applying the results established in [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF] on the function h(x n ), we can deduce both the multiplicity of ζ n and a way to approximate quickly the root ζ n . Note that this work extends the case of "simple double zeroes" previously studied by Dedieu and Shub [START_REF] Dedieu | On simple double zeros and badly conditioned zeros of analytic functions of n variables[END_REF].

Related works

The case of one variable and one equation was hugely studied in the literature and the generalization of the classical Newton operator is the Schröder operator defined in page 324 of [START_REF] Schröder | Ueber unendliche viele Algorithmen zur Auflösung der Gleichungen[END_REF]. Moreover, the α-theory of this operator is done in [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF] with main references on this subject.

The multivariate case has been studied from purely symbolic and/or numerical points of view. We will not discuss here the works with only a symbolic treatment, see for instance [START_REF] Cox | Using algebraic geometry[END_REF]. One of numerical pioneers is Rall [START_REF] Rall | Convergence of the Newton process to multiple solutions[END_REF]. He treats the particular case where the singular root satisfies the following assumption: there exists an index m, defined as the multiplicity of ζ, such that N m = {0} where

N 1 = Ker Df (ζ), N k+1 = N k ∪ Ker Df k+1 (ζ), k = 1 : m -1.
Then it is possible to construct iteratively an operator to retrieve the local quadratic convergence of the classical Newton operator. The idea of the construction of this operator consists to project iteratively the error x 0 -ζ on the kernels N k and its orthogonal N ⊥ k .

At the same time, the idea to use a variant of a Gauss-Newton's method to approximate a singular isolated root has been investigated by Shamanskii in [START_REF] Shamanskii | On the application of Newton's method in a singular case[END_REF]. But this method converges quadratically towards the singular root under very particular assumptions.

Another techniques are bordered techniques, where some assumption is done on the root. For instance, if the operator induced by the projection from Ker Df (ζ) into Ker (Df (ζ) * ) ⊥ :

π ( Ker Df (ζ) * ) ⊥ D 2 f (ζ)(z, π Ker Df (ζ) )
is invertible, then the (ζ, 0) is a regular root of a system, called bordered system, having 2n -r variables. The bordered system is constructed from the initial system and from the singular value decomposition of the Jacobian matrix. This way has been developed by Shen and Ypma in [START_REF] Shen | Newton's method for singular nonlinear equations using approximate left and right nullspaces of the jacobian[END_REF] and extends this bordered technique used by Griewank [START_REF] Griewank | On solving nonlinear equations with simple singularities or nearly singular solutions[END_REF] in the case of deficient rank one. At the beginning of the eighties a collection of papers addresses the problem of the approximation of the singular roots with similar techniques [START_REF] Reddien | On Newton's method for singular problems[END_REF], [START_REF] Reddien | Newton's method and high order singularities[END_REF], [START_REF] Decker | Newton's method at singular points. i[END_REF], [START_REF] Decker | Newton's method at singular points. ii[END_REF], [START_REF] Griewank | Newton's method for singular problems when the dimension of the null space is > 1[END_REF], [START_REF] Decker | Convergence rates for Newton's method at singular points[END_REF] [21], [START_REF] Yamamoto | Newton's method for singular problems and its application to boundary value problems[END_REF]. These methods previously cited are purely numerical methods and neither the geometry of the problem nor the notion of multiplicity are mentioned.

Ojika in [START_REF] Ojika | Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations[END_REF] proposes a similar method called deflation method to compute a regular system from the singular initial one, by mixing both symbolic and numerical calculations. This paper is an extension of an algorithm previously developed in [START_REF] Ojika | Deflation algorithm for the multiple roots of a system of nonlinear equations[END_REF]. The search of a regular system deals with Gauss forward elimination but there is no analysis of this procedure, especially no numerical determination of the rank. Note also that the attempt to classify the singular roots suffers from not being related to the concept of multiplicity. Moreover, there is no study of complexity, in the case where we study a localized polynomial system. This approach was echoed by Lecerf in [START_REF] Lecerf | Quadratic Newton iteration for systems with multiplicity[END_REF]. He was able to give a deflation algorithm which outputs a regular triangular system at a root ζ. Moreover he studied precisely the complexity of his deflation algorithm, which is in:

O n 3 (nL + n Ω )µ(ζ) 2 log(n µ(ζ))
where n is the number of variables, µ(ζ) the multiplicity, 3 ≤ Ω < 4 and L is the length of the straight line program describing the system.

Leykin, Verschelde and Zhao proposed in [START_REF] Leykin | Newton's method with deflation for isolated singularities of polynomial systems[END_REF] a similar modified deflation method, based on the following observation: if the numerical rank of the system is r, there exists an isolated solution

(ζ, δ) ∈ C n × C r+1 of the system Df (x)Bδ = 0, δ * h -1 = 0, (1) 
where B ∈ C n×(r+1) and h ∈ C r+1 are randomly chosen. The multiplicity of the root (ζ, δ) of the deflated system is lower than the multiplicity µ(ζ) of the root ζ of the initial system. Then a step of deflation consists to add the equations (1) to the initial system. The theorem is then that it is enough to perform µ(ζ) -1 steps of deflation to get a regular system. This implies that the numbers of variables and equations can double in the worst case. And unfortunately the determination of the numerical rank, based on the work of [START_REF] Fierro | UTV expansion pack: Special-purpose rank-revealing algorithms[END_REF], is not free of ε.

In the same same vein we have the papers of Dayton and Zeng [START_REF] Dayton | Computing the multiplicity structure in solving polynomial systems[END_REF] which treats the polynomial case, Dayton, Li and Zeng in the analytic case [START_REF] Dayton | Multiple zeros of nonlinear systems[END_REF] and Nan Li, Lihong Zhi [START_REF] Li | Verified error bounds for isolated singular solutions of polynomial systems[END_REF]. Particular cases were studied by Nan Li and Lihong Zhi in several papers [START_REF] Li | Computing the multiplicity structure of an isolated singular solution: Case of breadth one[END_REF], [START_REF] Li | Computing isolated singular solutions of polynomial systems: case of breadth one[END_REF]. But all these papers furnish a superficial numerical analysis of their algorithms.

The duality and the relationship with the Macaulay matrices constitute the theoretical background of Mourrain [START_REF] Mourrain | Isolated points, duality and residues[END_REF], Mantzaflais and Mourrain [START_REF] Mantzaflaris | Deflation and certified isolation of singular zeros of polynomial systems[END_REF] or more recently Hausenstein, Mourrain, Szanto in [START_REF] Hauenstein | On deflation and multiplicity structure[END_REF]. Actually, the relations between the columns (respectively the lines) represent those of the space (respectively, columns). As we shall point out, a classical fact show that all these relations can be found through the Schur complement.

Tracking the rank of a matrix

Let s ≥ n be two integers, M a s × n-matrix with complex coefficients, U ΣV * a singular value decomposition of M , and σ 1 ≥ . . . ≥ σ n its singular values.

We consider the elementary symmetric sums of the σ i 's, i.e.:

s k = 1≤i 1 <...<i k ≤n σ i 1 . . . σ i k , k = 1 : n.
In other words, the singular values are the roots of the polynomial s(λ) of degree n

s(λ) = n i=1 (λ -σ i ) = λ n + 1≤i≤n (-1) (n-i) s n-i λ i .
By convention s 0 = 1. Let us remark that this convention is natural: it allows to treat the case where all the singular values are zero, which means that the matrix M is null and its rank is zero.

More generally if the rank of M is r, the s i 's are non-zero up to the rank (i = 0 : r), and zero after. Then for k = n -r : n, the quantities s n-k are non-zero and we can introduce:

1-b k (M ) := max 0≤i≤k-1 s n-i s n-k 1 k-i . 2-g k (M ) := max k+1≤i≤n s n-i s n-k 1 i-k . 3-a k (M ) := b k (M ) g k (M ).
with the convention g n (M ) = 1.

We precise the notion of ε-rank used in the sequel. Definition 5. Let ε be a nonnegative number. A matrix M has ε-rank equal to r ε if its singular values verify

σ 1 ≥ . . . ≥ σ rε > ε ≥ σ rε+1 ≥ . . . ≥ σ n . (2) 
Observe that an upper bound for the ε-rank is the rank r itself. Let Σ ε the matrix obtained from Σ by putting σ r+1 = . . . = σ n = 0. We define

M ε = U Σ ε V * . Remark 1. If rank M ≥ r, we know that M ε is the nearest matrix of M which is of rank r.
Remark 2. The definition 5 is justified by the Eckardt-Young-Mirsky theorem which has a long story in low rank approximation theory: see [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF], [START_REF] Mirsky | Symmetric gauge functions and unitarily invariant norms[END_REF] and [START_REF] Markovsky | Low rank approximation: algorithms, implementation, applications[END_REF] for more recent developments.

For simplicity let us denote by a

k , b k , g k the corresponding values a k (M ), b k (M ), g k (M ).
Theorem 2. Let a matrix M be such that rank(M ) = r. Let m an integer be such that n -r ≤ m ≤ n, and

ε = 3a m + 1 -(3a m + 1) 2 -16a m 4g m .
If a m < 1/9 then the matrix M has ε-rank equal to n -m.

Proof. As n -r ≤ m, the quantity s n-m is not zero since it is positive. Let us consider the polynomials

p(λ) = 1 s n-m s(λ) = 1 s n-m n i=1 (λ -σ i ) = n i=0 (-1) n-i s n-i s n-m λ i and q(λ) = n i=m (-1) n-i s n-i s n-m λ i . Lemma 1. Let τ := g m |λ|.
Then for all λ such that |λ| < 1/g m , hence for all τ < 1:

|q(λ)| ≥ |λ| m 1 -2τ 1 -τ Proof. |q(λ)| = λ m + n i=m+1 (-1) n-i s n-i s n-m λ i ≥ |λ| m - n i=m+1 s n-i s n-m |λ| i ≥ |λ| m 1 - n i=m+1 s n-i s n-m |λ| i-m ≥ |λ| m   1 - i≥m+1 (g m |λ|) i-m   ≥ |λ| m 1 -2g m |λ| 1 -g m |λ| . (3) 
We first prove that 0 is the only root of q(λ) in the open ball B 0, 1 2g m . Let ν be a non-zero root of q(λ). Then we have by lemma 1

0 = q(ν) = |q(ν)| ≥ |ν| m 1 -2g m |ν| 1 -g m |ν| . Hence |ν| ≥ 1 2g m . Now consider the trinomial 2τ 2 -(3a m + 1)τ + 2a m . (4) 
If a m < 1/9, then this trinomial has two real roots τ 1 < τ 2 , since its

∆ = (3a m + 1) 2 -16a m = 9a m 2 -10a m + 1 = (9a m -1)(a m -1)
is positive. We can check explicitely that τ 1 is positive, since it boils down to a m being positive.

We prove that for |λ| satisfying

τ 1 g m ≤ |λ| < 1 2g m
, p(λ) has m roots counting with multiplicities in the open ball B(0, |λ|) (note that the range of the interval where |λ| is asked to live is positive, since τ 1 < 1/2). To do that, we verify that Rouché's inequality

|p(λ) -q(λ)| < |q(λ)| (5) 
holds on the sphere of radius |λ|. We have

|p(λ) -q(λ)| ≤ m-1 i=0 s n-i s n-m |λ| i ≤ m-1 i=0 b m-i m |λ| i ≤ |λ| m b m /|λ| 1 -b m /|λ| ≤ a m g m |λ| -a m |λ| m . (6) 
We check that τ -

a m > τ 1 -a m = -a m + 1 - √ ∆ 4 is positive if a m < 1/9.
From ( 6) and lemma 1, we see that the Rouché's inequality is satisfied if

a m τ -a m |λ| m < 1 -2τ 1 -τ |λ| m .
Since |λ|, 1-τ and τ -a m are positive, this is equivalent to the trinomial (4) being negative, which is insured by the condition a m < 1/9.

Hence under the condition a m < 1/9 the polynomial p(λ) has exactly m roots counting the multiplicities in the open ball B(0, |λ|) where

ε := τ 1 g m ≤ |λ| < 1 2g m .
Consequently we have

σ 1 ≥ . . . ≥ σ n-m > ε ≥ σ n-m+1 ≥ . . . ≥ σ n .
We are done.

Theorem 3. The algorithm of the table 1 computes the ε-rank of a matrix thanks to the theorem 2.

Remark 3. In fact this algorithm is free of ε and we call the computed ε-rank the numerical rank of the given matrix.

numerical rank 1-Input : a matrix M ∈ C s×n , s ≥ n. 2-Compute the singular values of M : σ 1 ≥ . . . ≥ σ n .
3-Let r be the rank of M , i.e. σ r+1 > 0, σ r = 0. 4-From these σ i 's, compute the quantities a k , k = n -r : n and g k defined in the section 4. 5-if there exists m ≥ n -r s.t. a m < 1/9 then 6-

ε := 3a m + 1 -(3a m + 1) 2 -16a m 4g m 7- the ε-rank of the matrix M is n -m.
from the theorem 2 8-else 9ε < σ n . The ε-rank of the matrix M is n. 10-end if 11-Output : the ε-rank of the matrix M .

Table 1

The functional framework

Let n ≥ 2, R ω ≥ 0 and ω ∈ C n . We consider the set A 2 (ω, R ω ) of the square integrable analytic functions in the open ball B(ω, R ω ), which is an Hilbert space equipped with the inner product

< f, g >= B(ω,Rω) f (z)g(z)dν(z),
where ν is the Lebesgue measure on C n , normalized so that ν(B(ω, R ω )) = R 2n ω . Next (A 2 (ω, R ω )) s has an hilbertian structure with the inner product

< f, g >= s i=1 < f i , g i > .
We denote by ||f || the associated norm.

Observe that this framework includes the case of an analytic system obtained by localizing a polynomial system. 5.1. The Bergman kernel. in [START_REF] Rudin | Function theory in the unit ball of C n[END_REF] and S.G. Krantz in [START_REF] Krantz | Geometric analysis of the Bergman kernel and metric[END_REF]. Since for each x ∈ B(ω, R ω ) and f ∈ A 2 (ω, R ω ), the evaluation map f → f (x) is a continuous linear functional eval x on A 2 , there exists from the Riesz representation theorem an element

h x ∈ A 2 such that f (x) = eval x (f ) =< f, h x > .
Set down the function ρ := x → ρ x = x -ω . Definition 6. The function (z, x) → H(z, x) := h x (z) is named the Bergman kernel. It has the reproducing property :

f (x) = B(ω,Rω) f (z) H(z, x) dν(z), ∀f ∈ A 2 (ω, R ω ).
We say that the Bergman kernel reproduces A 2 (ω, R ω ). We state some classical properties of this reproducing kernel.

Properties.

Proposition 1.

1-H(z, x) = R 2 ω (R 2 ω -< z -ω, x -ω >) n+1 2-H(x, x) = H(•, x) 2 = R 2 ω (R 2 ω -x -ω 2 ) n+1 = R 2 ω (R 2 ω -ρ 2 x ) n+1 . 3-For all f ∈ A 2 (ω, R ω ) we have |f (x) = | B(ω,Rω) f (z)H(z, x)dν(z)| ≤ f R ω (R 2 ω -ρ 2 x ) n+1 2 
Proof. See Theorem 3.1.3. page 37 in [START_REF] Rudin | Function theory in the unit ball of C n[END_REF].

The previous proposition generalizes to higher derivatives.

Proposition 2. Let k ≥ 0, ω ∈ C n , x ∈ B(ω, R ω ) and u i ∈ C n , i = 1 : k. Let us introduce H k (z, x, u 1 , . . . , u k ) = (n + 1) • • • (n + k) < z -ω, u 1 > • • • < z -ω, u k > (R 2 ω -< z -ω, x -ω >) k H(z, x).
We have

1-D k f (x)(u 1 , • • • , u k ) = B(ω,Rω) f (z) H k (z, x, u 1 , • • • , u k ) dν(z). 2-D k f (x) ≤ ||f || (n + 1) • • • (n + k) R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k
(evidently if k = 0 the range where i lives is empty, and the products

(n + 1) • • • (n + k) and < z -ω, u 1 > • • • < z -ω, u k > are 1.)
To prove this we need the following Lemma 2.

H k (•, x, u 1 , . . . , u n ) ≤ (n + 1) . . . (n + k) R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k u 1 . . . u k .
Proof. We have to compute the integral of H k Hk on the ball B(ω, R ω ). This is reduced to estimate

I k = B(ω,Rω) R 2 ω (R 2 ω -< z -ω, x -ω >) n+1+k (R 2 ω -< z -ω, x -ω >) n+1+k dν(z) since H k (z, x, u 1 , . . . , u n ) ≤ (n + 1) . . . (n + k) u 1 . . . u k R 1+k ω I 1/2
k . We have

I k = B(ω,Rω) H(z, x) 1 (R 2 ω -< z -ω, x -ω >) k (R 2 ω -< z -ω, x -ω >) n+1+k dν(z) = 1 (R 2 ω -ρ 2 
x ) n+1+2k using the formula for the Bergman kernel (Proposition 1) and its reproducing property applied to the function

1 (R 2 ω -ρ 2 x ) n+1+2k
. The proof of the lemma follows.

We now prove the proposition 2.

Proof. We proceed by induction. The proposition 1 treats the case k = 0. Next, we have:

D k+1 f (x)(u 1 , . . . , u k , u k+1 ) = d dt D k f (x + tu k+1 )(u 1 , . . . , u k ) t=0 = d dt B(ω,Rω) f (z)H k (z, x + tu k+1 , u 1 , . . . , u k )dν(z) t=0 = B(ω,Rω) f (z) H k (z, x, u 1 , . . . , u k )(n + 1 + k) < z -ω, u k+1 > (R 2 ω -< z -ω, x -ω >) dν(z) = B(ω,Rω) f (z)H k+1 (z, x, u 1 , . . . , u k+1 )dν(z).
Hence the first assertion holds. For the second assertion, we write

D k f (x)(u 1 , . . . , u k ) ≤ f H k (•, x, u 1 , . . . , u k ) .
Using the lemma 2, we are done.

From the propositions 1 and 2 we deduce easily the following Proposition 3. For all k ≥ 0, x ∈ C n and f ∈ (A 2 (ω, R ω )) s we have

D k f (x) ≤ ||f || (n + 1) . . . (n + k)R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k
.

Analysis of the evaluation map

The evaluation map is defined by

eval : (f, x) → eval x (f ) = f (x) from (A 2 (ω, R ω )) s × B(ω, R ω ) to C s . Let c 0 := k≥0 (1/2) 2 k -1 (∼ 1.63...)
, and α 0 (∼ 0.13...) be the first positive root of the

trinomial (1 -4u + 2u 2 ) 2 -2u.
We study the question: when the value f (x) can be considered as small? We give a precise meaning of being small without the use of any ε.

Theorem 4. Let f = (f 1 , . . . , f s ) ∈ A 2 (ω, R ω ) s . Let x ∈ B(ω, R ω ) and x -ω = ρ x . If c 0 R ω (R 2 ω -ρ 2 x ) n+1 2 f (x) + ρ x < R ω and (n + 1)(n + 2) 2 (R 2 ω -ρ 2 x ) (n-3)/2 f R ω + (R 2 ω -ρ 2 x ) f (x) ≤ α 0 then f (x
) is small at the following sense : the Newton sequence defined by

(f 0 , x 0 ) = (f, x), (f k+1 , x k+1 ) = ((f k , x k ) -D eval (f k , x k ) † eval (f k , x k )), k ≥ 0, converges quadratically towards a certain (g, y) ∈ (A 2 (ω, R ω )) s × B(ω, R ω ) satisfying g(y) = 0. More precisely we have ( f -g + x -y 2 ) 1/2 ≤ c 0 R ω (R 2 ω -ρ 2 x ) n+1 2 f (x) .
In a straightforward way, we get the corollary Corollary 1. Let us consider x = ω in the theorem 4. If

c 0 R n-1 ω f (x) < 1 and (n + 1)(n + 2) 2 R n-2 ω ( f + R ω ) f (x) ≤ α 0 .
then f (x) is small. More precisely there exists (g, y)

∈ (A 2 (x, R ω )) s × B(x, R ω ) such that g(y) = 0 and ( f -g + x -y 2 ) 1/2 ≤ c 0 R n ω f (x) . 6.1.
Estimates about the derivatives of the evaluation map. Proposition 4.

D eval (f, x) † ≤ 1 R ω (R 2 ω -ρ 2 x ) n+1 2 .
Proof. The derivative of the evaluation map is given by

D eval (f, x)(g, y) = g(x) + Df (x)y.
Hence (g, y) ∈ ker D eval (f, x) iff g(x) + Df (x)y = 0. That is

< g i , H(•, x) > + < y, Df i (x) * >= 0, i = 1 : s.
In term of inner product in (A 2 ) s × C n we have < g, (0, . . . , 0, H(•, x), 0, . . . , 0) > + < y, Df i (x) * >= 0, i = 1 : s.

This shows that the vector space (ker D eval (f, x)) ⊥ is generated by the set of

(H(•, x)v, Df (x) * v)
where v ∈ C n . The condition

D eval (f, x)(H(•, x), Df (x) * v) = u becomes (H(x, x)I s + Df (x)Df (x) * ) v = u.
The matrix E = H(x, x)I s + Df (x)Df (x) * is the sum of a diagonal positive matrix and an hermitian matrix. By Weyl theorem (page 203 in G.W. Stewart, J.Q. Sun, Matrix Perturbation Theory, Academic Press, 1990) the eigenvalues of the matrix E are greater than those of H(x, x)I s > 0. Hence the norm of the inverse matrix E -1 satisfies

E -1 ≤ 1 H(x, x)
.

This permits to calculate D eval (f, x) † . In fact, let u, v ∈ C n be such that Ev = u. We have

D eval (f, x) † u 2 = H(•, x) 2 v 2 + Df (x)v 2 = H(x, x) v 2 + Df (x) * v 2 .
Since the matrix E -1 is hermitian, we can write

D eval (f, x) † u 2 = v * Ev = u * E -1 u ≤ E -1 u 2 . Finally D eval (f, x) † 2 ≤ E -1 ≤ 1 H(x, x) ≤ 1 R 2 ω R 2 ω -ρ 2 x n+1 .
This proves the proposition.

Proposition 5.

D k eval (f, x) ≤ (n + 1) . . . (n + k) f R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k + k(n + 1) . . . (n + k -1) R k ω (R 2 ω -ρ 2 x ) n+1 2 +k-1
.

Proof. We have 1) , y (1) , . . . , g (k) , y 1) , . . . , y (j) , . . . , y (k) ),

D k eval (f, x)(g ( 
(k) ) = D k f (x)(y (1) , . . . , y (k) ) + k j=1 D k-1 g (j) (x)(y ( 
where y (j) signifies that this term does not appear. Then using the proposition 2 we find that D k eval (f, x)(g (1) , y (1) , . . . , g (k) , y (k) )

≤ D k f (x)(y (1) , . . . , y (k) ) + k j=1 D k-1 g (j) (x)(y (1) , . . . , y (j) , . . . , y (k) )

≤ (n + 1) . . . (n + k) f R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k
y (1) . . . y (k)

+ k j=1 (n + 1) . . . (n + k -1) g (j) R k ω (R 2 ω -ρ 2 x ) n+1 2 +k-1
y (1) . . . y (j) . . . y (k) .

We bound y (j) and g (j) by (g (j) , y (j) ) . We obtain 1) , y (1) , . . . , g (k) , y (k) )

D k eval (f, x)(g ( 
≤ (n + 1) . . . (n + k) f R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k + k(n + 1) . . . (n + k -1) g (j) R k ω (R 2 ω -ρ 2 x ) n+1 2 +k-1
||(g (1) , y (1) ) . . . (g (k) , y (k) ) .

Finally Theorem 5. Let f an analytic map from E to F two Hilbert spaces be given. Let x ∈ C n . We suppose that Df (x) is surjective. We introduce the quantities

D k eval (f, x) ≤ (n + 1) . . . (n + k) f R 1+k ω (R 2 ω -ρ 2 x ) n+1 2 +k + k(n + 1) . . . (n + k -1) R k ω (R 2 ω -ρ 2 x ) n+1 
1-β(f, x) = Df (x) † f (x) . 2-γ(f, x) = sup k≥2 1 k! Df (x) † D k f (x) 1 k-1 . 3-α(f, x) = β(f, x)γ(f, x).
Let α 0 and c 0 be the constants introduced in this section. If α(f, x) ≤ α 0 then there exists a zero ζ of f in the ball B(x 0 , c 0 β(f, x 0 )) and the Newton sequence

x 0 = x, x k+1 = x k -Df (x k ) † f (x k ), k ≥ 0,
converges quadratically towards ζ.

We are now ready to prove the theorem 4.

Proof. The proof consists to verify the condition α( eval , (f, x)) ≤ α 0 . Using the propositions 4 and 5, we are able to bound the quantity γ( eval , (f, x)). We obtain

γ( eval , (f, x)) ≤ sup k≥2 1 k! D eval (f, x) † D k eval (f, x) 1 k-1 ≤ sup k≥2 n + k k f R k ω (R 2 ω -ρ 2 x ) k + n + k -1 k -1 R k-1 ω (R 2 ω -ρ 2 x ) k-1 1 k-1 . We know that n + k k = n + k k n + k -1 k -1 . Moreover the function k → n + k k 1 k-1 decreases. Hence n + k k 1 k-1 ≤ (n + 1)(n + 2) 2
. Then we get the following point estimate

γ( eval , (f, x)) ≤ (n + 1)(n + 2)R ω 2(R 2 ω -ρ 2 x ) f R ω (R 2 ω -ρ 2 x ) + 1 . (7) 
In the same way the quantity α( eval , (f, x)) can be bounded by

α( eval , (f, x)) ≤ γ( eval , (f, x)) β( eval , (f, x)) ≤ γ( eval , (f, x)) D eval (f, x) † f (x)
Using the inequalities of propositions 4 and ( 7) we get

α( eval , (f, x)) ≤ (n + 1)(n + 2) 2 (R 2 ω -ρ 2 x ) (n-3)/2 f R ω + (R 2 ω -ρ 2 x ) f (x) . (8) The condition (n + 1)(n + 2) 2 (R 2 ω -ρ 2 x ) (n-3)/2 f R ω + (R 2 ω -ρ 2 x ) f (x) ≤ α 0 implies evidently α( eval (f, x)) ≤ α 0 .
Hence the theorem 5 applies. The Newton sequence

(f 0 , x 0 ) = (f, x), (f k+1 , x k+1 ) = ((f k , x k ) -D eval (f k , x k ) † eval (f k , x k ), k ≥ 0, is convergent towards a certain (g, y) ∈ B((f, x), c 0 β( eval , (f, x)) ⊂ (A 2 (ω, R ω ) s × C n .
That is to say

( f -g 2 + x -y 2 ) 1 2 ≤ c 0 β( eval , (f, x)) ≤ c 0 D eval (f, x) † f (x) ≤ c 0 R ω (R 2 ω -ρ 2 x ) n+1 2 f (x) .
This implies that y ∈ B(ω, R ω ) since we have

y -ω ≤ y -x + ρ x ≤ c 0 R ω (R 2 ω -ρ 2 x ) n+1 2 f (x) + ρ x < R ω .
from assumption.

We are done.

Kerneling and singular Newton operator

It consists to prepare the system by dividing the generators into two families. The invariant leading to this partition is the rank r of the Jacobian matrix Df (ζ) which is not maximal since ζ is singular. Without loss of generality we can assume that the first r generators have linearly independent affine parts. Since the notion of Schur complement is intensively used in the sequel, we remember its definition. We also note by vec (•) the operator which transforms a matrix into a line vector by concatenating its lines. Definition 8. Let ε ≥ 0, 0 ≤ r < n and f = (f 1 , . . . , f s ) ∈ C{x -x 0 } s . Let us suppose D 1:r f 1:r (x 0 ) has an ε-rank equal to r. We define the kerneling operator

K : f → (f 1 , . . . , f r , vec( Schur (Df (x)))) ∈ C{x -x 0 } r+(n-r) (s-r) .
We say that K(f ) is an ε-kerneling of f if we have

K(f ) ≤ ε. ( 9 
)
We say that the kerneling is exact when ε = 0.

Definition 9. (Deflation sequence). Let ε ≥ 0, x 0 ∈ C n and f = (f 1 , . . . , f s ) ∈ C{x -x 0 } s . The sequence F 0 = f F k+1 = K(F k ), k ≥ 0.
is named the deflation sequence.

The thickness is the index where the ε-rank of DF (x 0 ) is equal to n, and not before. We name deflation system dfl (f ) of f a system of rank n extracted from F .

We adopt the term thickness which is the translation of the french word épaisseur introduced by Ensalem in [START_REF] Emsalem | Géométrie des points épais[END_REF] rather than the term depth more recently used by Mourrain, Matzaflaris in [START_REF] Mantzaflaris | Deflation and certified isolation of singular zeros of polynomial systems[END_REF] or Dayton, Li, Zeng [START_REF] Dayton | Computing the multiplicity structure in solving polynomial systems[END_REF], [START_REF] Dayton | Multiple zeros of nonlinear systems[END_REF]. We shall see in section 8 that the thickness is finite. • Theorem 6. Let x 0 ∈ C n and f ∈ A 2 (x 0 , R ω ). Then the algorithm described in the table 2 proves the existence of a deflation sequence where the tests verifying the inequalities 5 and 8 are performed respectively thanks to the theorem 2 and the corollary 1.

Definition 10. The classical Newton operator associated to the deflation system df l(f ) of ε-rank n is named the singular Newton operator of the initial system f . Rather than to compute the deflation sequence introduced in the definition 9, it is sufficient to start from a truncated deflation sequence. To do that we need the following definition.

deflation sequence and deflated system 1-Input :

x 0 ∈ C n , f ∈ A 2 (x 0 , R x 0 ) 2- dfl (f ) = {∅} 3-F := f . 4-η := 2α 0 (n + 1)(n + 2)(R x 0 + F )R n-2 x 0 5-if F (x 0 ≤ η then test justified by corollary 1 6- r := numerical rank (DF (x 0 )) 7- if r < n then 8- F := K(F ) 9-
go to 2 10-else 11-dfl (f ) a deflated system of numerical rank n extracted from F 12-end if 13-end if 14-Output : dfl (f ).

Table 2 Definition 11. Let p ≥ 1. We note by T r x 0 ,p (F ) the truncated series at the order p of the analytic function F at x 0 . We name the truncated deflation sequence at the order p at x 0 the sequence :

T 0 = T r x 0 ,p (f ) T k+1 = T r x 0 ,p-k-1 (K (T k ) ) , 0 ≤ k ≤ p.
To define the singular Newton operator it is sufficient to know the thickness of the deflation sequence of the definition 9. From this knowledge the determination of the singular Newton operator will use the truncated deflation sequence at the order of the thickness, say , i.e. that is to say that the rank of F is full. Proposition 6. Let η > 0 and x 0 ∈ C n . Let the thickness of the deflation sequence of the definition 9. Let us consider the truncated deflation sequence (T k ) k≥0 at the order + 1 at x 0 of the definition 11. Then the singular Newton operator associated to f is equal to the Newton operator associated to T .

Proof. Since T 0 is the truncated series at the order of F 0 , from construction it is easy to see that for all k = 0 : , T k is the truncated series of F k at the order p -k. The conclusion of the proposition follows.

The multiplicity drops through kerneling

This section is devoted to prove that the deflation sequence remains constant after a finite index. This will be achieved trough the following proposition :

singular Newton 1-Input : x 0 ∈ C n , f ∈ A 2 (x 0 , R x 0 ) 2- dfl (f ) = deflated system(f ). 3-Output : If dfl (f ) = ∅ then N dfl (f ) (x 0 ) else x 0 .
Table 3 Theorem 7. Let us suppose that the rank of Df (ζ) is equal to r and that

Df (x) := A(x) B(x) C(x) D(x)
where A(ζ) ∈ C r×r is invertible. Then the multiplicity of ζ as root of K(f ) is strictly lower than the multiplicity of ζ as root of f .

Proof. If r = 0 then the system K(f ) consists of all partial derivatives

∇f (x) := ∂f i (x) ∂x j , 1 ≤ j ≤ n, 1 ≤ i ≤ s .
Then, the conclusion follows from the lemma 3.

If r > 0 the system K(f ) consists of f 1 , . . . , f r augmented by the elements of the schur complement D(x) -C(x) A(x) -1 B(x). From the proposition 7, the relations between the lines are (C(x), D(x)) -C(x)A(x) -1 (A(x), B(x)) = 0. It is easy to see that the system K(F ) = 0 is equivalent to the following

  f 1 , . . . , f r , ∇f i (x) - r j=1 λ ij (x)∇f j (x) = 0, i = r + 1 : s   = 0, (10) 
with (λ ij (x)) := C(x)A(x) -1 T . From the implicit function theorem, we know that there exists a local isomorphism Φ such that x 1:r -ζ 1:r = f 1:r • Φ. By substitution of x 1:r -ζ 1:r in f = 0 we obtain the system

(x 1 -ζ 1 , . . . , x r -ζ r , f r+1:s • Φ) = 0. (11) 
We remark that the multiplicity of the root ζ has not changed. The ideal generated by f r+1:s • Φ only contains the monomials x i -ζ i , i = r + 1 : n. On the another hand the multiplicity of ζ as root of system [START_REF] Emsalem | Géométrie des points épais[END_REF] has not changed : it is also the multiplicity of ζ r+1:n as root of system f r+1:s • Φ. Moreover, the multiplicity of ζ as root of the system (10) is equal to the multiplicity of ζ r+1:n as root of the system ∇(f r+1:s • Φ). We now apply the lemma 3 to the system f r+1:s • Φ to deduce that the multiplicity drops. We are done.

Proposition 7. Let M = A B C D ∈ C s×n of rank r where A ∈ C r×r is invertible.
Then the relations between the lines (respectively the columns) of M are given by

(C, D) -CA -1 (A, B) = 0, (respectively B D - A C A -1 B = 0).
Proof. The proposition follows from the equivalence: This is a consequence of a fundamental property of local orderings: the valuation of a sum is larger than the valuation of any of the summands.

(C, D) -CA -1 (A, B) = 0 and B D - A C A -1 B = 0 iff D -CA -1 B = 0.
In the case where the construction of a standard basis of IC{x -ζ} starts from a given set of polynomial generators, the goal can be achieved e.g. through the original Mora's tangent cone algorithm, by successive S-polynomials (and reductions which are particular cases of them). The valuation can only increase through these operations, which forbids to reduce S(f, g) by f (or g by the way).

Lemma 3. Let ∇f (x) := ∂f i (x) ∂x j , 1 ≤ j ≤ n, 1 ≤ i ≤ s . Let us suppose that ζ is
an isolated root of f and ∇f . Then the multiplicity of ζ as root of ∇f is strictly lower than the multiplicity of ζ as root of f = 0.

Proof. Let us take one of the f k 's, say f i , of minimal valuation at ζ. This valuation is greater than 2. There exists an index j such that the leading term ∂f i (x) ∂x j is not in the ideal generated by f . The conclusion follows.

Lemma 4. Let p the valuation of f at ζ. Let us consider the following system In this section we consider as previously ω ∈ C n and the set A 2 (ω, R ω ). For x ∈ B(ω, R ω ) we introduce the quantities

D p-1 f (x) : = ∂ |α| f i (x) ∂x α , |α| = p -1, 1 ≤ i ≤ s .
β(f, x) = Df (x) -1 f (x) (12) 
κ x = max 1, R ω (n + 1) R 2 ω -ρ 2 x (13) γ(f, x) = max 1, f Df (x) -1 R ω κ x (R 2 ω -ρ 2 x ) n+1 2 (14) 
α(f, x) = β(f, x) κ x ( 15 
)
Theorem 8. (α-Theorem). Let R ω > 0, x 0 ∈ B(ω, R ω ), and f = (f 1 , . . . , f n ) ∈ (A 2 (ω, R ω )) n .
Let us note α, β, γ, κ for α(f, x 0 ), β(f, x 0 ), γ(f, x 0 ), κ x 0 respectively defined in ( 15), ( 12), ( 14) and ( 13).

Let us suppose that

α < 2γ + 1 -(2γ + 1) 2 -1.
Then for all θ > 0 such that B(x 0 , θ) ⊂ B(ω, R ω ) and

α + 1 -(α + 1) 2 -4α(γ + 1) 2(γ + 1) < u := κθ < 1 γ + 1
f has only one root in the ball B(x 0 , θ).

Before proving this theorem we need the following proposition.

Proposition 8. For all f ∈ A 2 (ζ, R ω ) s we have ∀k ≥ 0, 1 k! D k f (x 0 ) ≤ ||f || (n + 1) k R 1+k ω R 2 ω -ρ 2 x 0 n+1 2 +k
.

Proof. It is enough to use the inequality

(n + 1) . . . (n + k) k! ≤ (n + 1) k
in the proposition 3.

We are now ready to begin the proof of the theorem.

Proof. We let Df (x 0 ) -1 f (x) = Df (x 0 ) -1 f (x 0 ) + g(x) with g(x) = x -x 0 + k≥2 1 k! Df (x 0 ) -1 D k f (x 0 )(x -x 0 ) k .
of the previous expression ( 17) is strictly negative. Then it is easy to see that under the condition α := βκ < 2γ + 1 -(2γ + 1) 2 -1 the trinomial (γ + 1)u 2 -(α + 1)u + α has two roots equal to α + 1 ± (α + 1) 2 -4α(γ + 1) 2(γ + 1)

. Hence for all θ such that α + 1 -(α + 1) 2 -4α(γ + 1) 2(γ + 1)

< u := κθ < 1 γ + 1
we have (γ + 1)u 2 -(α + 1)u + α < 0. Then the inequality ( 17) is satisfied and the system f has only one root in the ball B(x 0 , θ). The theorem follows.

A new γ-theorem

Let f = (f 1 , . . . , f n ) be an analytic system which is regular at a root ζ . The radius of the ball in which the Newton sequence converges quadratically towards a regular root ζ is controlled by the following quantity

γ(f, ζ) = sup k≥2 1 k! Df (ζ) -1 D k f (ζ) 1 k-1
.

More precisely we have the following result named γ-theorem. Theorem 9. (γ-Theorem of [START_REF] Blum | Complexity and Real Computation[END_REF]). Let f (x) an analytic system and ζ a regular root of f (x).

Let R ω = 3 - √ 7 2γ(f, ζ)
. Then for all x 0 ∈ B(ζ, R ω ) the Newton sequence

x k+1 = x k -Df (x k ) -1 f (x k ), k ≥ 0, converges quadratically towards ζ.
Taking in account the Bergman kernel to reproduce the analytic functions we are going to prove a new version of γ-theorem for analytical regular systems.

Theorem 10. (γ-Theorem). Let ζ a regular root of an analytic system f = (f 1 , . . . , f n ) ∈ A 2 (ω, R ω ) n . Let us note γ and κ for γ(f, ζ) and κ ζ respectively defined in ( 14), [START_REF] Giusti | Multiplicity hunting and approximating multiple roots of polynomial systems[END_REF]. Then, for all x be such that

u := κ x -ζ < 2γ + 1 -4γ 2 + 3γ γ + 1 the Newton sequence x 0 = x, x k+1 = N f (x k ), k ≥ 0, converges quadratically towards ζ. More precisely x k -ζ| ≤ 1 2 2 k -1 x -ζ , k ≥ 0.
Proof. We use the proposition 9 below to prove by induction the result. The scheme of the proof is classical and can be found for instance in [START_REF] Blum | Complexity and Real Computation[END_REF] page 158. The assumption u

< 2γ + 1 -4γ 2 + 3γ γ + 1 implies that γu (1 + γ)(1 -u) 2 -γ ≤ 1 2
, that is a sufficient condition for the quadratic convergence of the Newton sequence with ratio 1 2 .

Proposition 9. With the notations of the theorem 10 we have:

1-For all x satisfying u < 1 - γ 1 + γ , Df (x) is invertible. Moreover we have Df (x) -1 Df (ζ) ≤ (1 -u) 2 (1 + γ) (1 -u) 2 -γ . 2-Df (ζ) -1 (Df (x)(x -ζ) -f (x)) ≤ γu 2 (1 -u) 2 . 3-N f (x) -ζ ≤ γu 2 (1 + γ) (1 -u) 2 -γ .
Proof.

1-We write

Df (ζ) -1 Df (x) -I = k≥1 k + 1 k Df (ζ) -1 D k+1 f (ζ) (k + 1)! (x -ζ) k .
Using proposition 8,

1 (k + 1)! D k+1 f (ζ) Df (ζ) -1 ≤ ||f || Df (ζ) -1 (n + 1) k+1 R 2+k ω R 2 ω -ρ 2 x 0 n+1 2 +k+1 ≤ f Df (ζ) -1 R ω κ k+1 R 2 ω -ρ 2 ζ n+1 2 ≤ γκ k , we have Df (ζ) -1 Df (x) -I ≤ γ k≥1 k + 1 k (κ ||x -ζ ) k ≤ γ 1 (1 -u) 2 -1 with u = κ x-ζ .
From this point estimate and thanks the classical Von Neumann lemma, see for instance [START_REF] Kato | Perturbation theory for linear operators[END_REF] page 30, the item 1 follows easily.

2-We have

Df (x)(x -ζ) -f (x) = k≥2 (k -1) 1 k! D k f (ζ)(x -ζ) k .
Hence, using more the proposition 8 we get from a straightforward calculation

Df (ζ) -1 (Df (x)(x -ζ) -f (x)) ≤ γ k≥2 (k -1) (κ x -ζ ) k ≤ γu 2 (1 -u) 2 .
This proves the item 2. 3-We write

N f (x) -ζ = Df (x) -1 Df (ζ) Df (ζ) -1 (Df (x)(x -ζ) -f (x)).
Using the items 1 and 2, we get the result.

From the theorem 10 we can state :

Theorem 11. (γ-theorem). Let f ∈ A 2 (ω, R ω ) s and ζ ∈ B(ω, R ω ) such that f (ζ) = 0.
Let us suppose there exists a index be such that 1-For all 0 ≥ k < each element

F k = K(F k-1 ) satisfies F k (ζ) = 0 and rank(DF k (ζ)) < n. 2-
The assumptions of γ-theorem 10 hold for the system F at ζ. Then, for all x be such that

u := κ x -ζ < 2γ + 1 -4γ 2 + 3γ
γ + 1 the Newton sequence, computed thanks to the Table 3,

x 0 = x, x k+1 = N dfl (f ) (x k ), k ≥ 0, converges quadratically towards ζ.
Also an existence result of a singular solution follows from the theorem 8.

Theorem 12. Let f ∈ A 2 (ω, R ω ) s and x 0 ∈ B(ω, R ω ). Let us suppose that there exists a deflation sequence (F k ) 0≤k≤ of thickness at x 0 . More precisely 1-For all 0 ≥ k < each element

F k = K(F k-1 ) satisfies 1.1-F k (x 0 ) ≤ η k := 2α 0 (n + 1)(n + 2)(R x 0 + F k )R n-2 x 0 .
1.2-DF k (x 0 ) has a ε k numerical rank stictly less than n where ε k is the ε number of the line 6 of the Table 1.

2-

The assumptions of α-theorem 8 hold for the system F l at x 0 . Then f has only one root in the ball B(x 0 , θ) where θ is defined in α-theorem 8.

Example

Let us give an example to illustrate the exact and numerical algorithm, by considering f (x, y) = (f 1 (x, y), f 2 (x, y)) with f 1 (x, y) = x 3 /3 + y 2 x + x 2 + 2yx + y 2 , f 2 (x, y) = x 2 y -y 2 x + x 2 + 2yx + y 2 .

The root (0, 0) has multiplicity 6.

11.1. Exact computations. We have Df (x, y) =

x 2 + y 2 + 2x + 2y 2xy + 2x + 2y 2xy -y 2 + 2x + 2y x 2 -2xy + 2x + 2y .

The rank of the Jacobian matrix is 0 at (0, 0). Hence kerneling consists just to add to the input system the gradients of f 1 and f 2 : 

F 1 = K(f ) = (

 

Then we can easily check that the system F 2 = (f 1 , vec( Schur (DF 1 (x, y)) is a regular system equivalent at (0, 0) to f . Let us remark also the truncated system of F 2 up to the order 1 namely (x + y, x -y, 2x -3y, x) is a regular system equivalent at (0, 0) to f . 11.2. Numerical computations. We give the behaviour of the deflation sequence.

1-The initial point (x 0 , y 0 ) = (-0.01, 0.02).

2-The system :

f = 1/3 x 3 + y 2 x + x 2 + 2 xy + y 2 x 2 y -y 2 x + x 2 + 2 xy + y 2

3-The ball B(x 0 , R x 0 ) := B(x 0 , 1/4) 4-Truncated expansion series of the system F 0 = f (x + x 0 , y + y 0 ) up to the order 3.

F 0 = 0.0000957 + 0.0205 x + 0.0196 y + 0.990 x 2 + 2.04 xy + 0.99 y 2 + 0.333 x 3 + y 2 x 0.000106 + 0.0205 y + 0.0192 x + 1.94 xy + 1.02 x 2 + 1.01y 2 + x 2 y -y 2 x 5-Evaluation of F 0 at (0, 0) : (0.0000956666667, 0.000106).

6-We successively have F 0 = 8 × 10 -4 , η = 2α 0 12(R x 0 + F 0 )R n-2 x 0 = 0.086 > F 0 (0, 0) = 0.000106.

7-Jacobian of F 0 at (0, 0): DF 0 (0, 0) = 0.02050000000 0.0196 0.0196 0.0205 . The singular values of this jacobian are 0.039 and 0.0011. This jacobian has a ε 0 = 0.086-rank equal to 0. 8-Kerneling of F 0 at (0, 0) : 9-Evaluation of F 1 at (0, 0) : F 1 (0, 0) = (0.0205, 0.0196, 0.0192, 0.0205). We have F 1 = 0.1 and η = 2α 0 12(R x 0 + F 1 )R n-2 x 0 = 0.062 > F 1 (0, 0) = 0.034. 10-Jacobian matrix of F 1 and its evaluation at (0, 0): 

F 1 = K(F 0 ) =     0.
DF 1 (x, y) =       1.
     
The singular values of DF 1 (0, 0) are 5.6 and 0.1 and its ε 1 = 0.21-rank is one. 11-Kerneling of DF 1 (x, y). We compute the truncated series at the order one in (0, 0) of each element of the Schur complement of DF 1 (x, y) associated to 1.98 + 2.0 x. We obtain

F 2 := K(F 1 ) =    
0.0205 + 1.98 x + 2.04 y -0.12 + 4.12 x -4.12 y -0.16 + 4.12x -6.12y 0.021 -2.04x + 0.1y     12-Regular system from F 2 at (0, 0). The singular values of DF 2 (0, 0) are 9.46 and 3.32 and DF 2 (0, 0) has ε 2 = 3.32-rank equal to 2. 13-If we consider df l(f ) = 0.0205 + 1.98 x + 2.04 y -0.121 + 4.123 x -4.121 y we find that the iterate of (x 0 , y 0 ) = (-0.01, 0.02) is by the singular Newton operator is (-0.0001017, 0.00034). This illustrates the manifestation of a quadratic convergence.

2 +k- 1 . 6 . 2 .

 162 Proof of the theorem 4. The proof uses the theorem 128 page 121 in J.-P. Dedieu, Points fixes, zéros et la méthode de Newton. Springer, 2006.

Definition 7 .

 7 The Schur complement of a matrix M = A B C D of rank r > 0 associated to an invertible submatrix A of rank r is by definition Schur (M ) := D -CA -1 B. If r = 0 we define Schur (M ) := M .

Definition 12 .

 12 Since the rank of matrix M is equal to r, this is classically equivalent to Schur (M ) = 0. The valuation of an analytic system f = (f 1 , . . . , f s ) at ζ is the minimum of the valuation of f i 's at ζ. Remark 4. A generator of IC{x -ζ} of minimal valuation among others generators can always be taken as one of the generator of a (minimal) standard basis.

Let us assume that p ≥ 2 9 .

 29 and that the rank of D p f (ζ) is equal to r. Then the multiplicity of ζ as root of D p-1 f (x) = 0 is strictly lower than the multiplicity of ζ as root of f = 0. More precisely the multiplicity of the root ζ drops by at least p r . Proof. Since the valuation p ≥ 2 then f (x) = k≥p 1 k! D k f (ζ)(x -ζ) k with D p f (ζ) = 0. The monomials of LT (f ) are of type (x -ζ) α with |α| ≥ p ≥ 2. Hence the number of standard monomials of C{x -ζ}/LT (f ) is bounded below by p n . Since the rank of the derivative of D p-1 f (x) at ζ is r > 0, we can suppose without loss in generality that x 1 -ζ 1 , . . . , x r -ζ r are in the ideal LT (D p-1 f (x)). Consequently the number of standard monomials dropped by at least p r . Quantitative version of Rouchés theorem in the regular case

  x 2 + y 2 + 2x + 2y, 2xy + 2x + 2y, 2xy -y 2 + 2x + 2y, x 2 -2xy + 2x + 2y). is one, as the rank of the Jacobian of F 1 at (0, 0).The Schur complement of DF 1 (x, y) associated to 2x + 2 is 2y + x 2 -y 2 2x -3y + x 2 -xy -y 2 -x -x 2 -xy + y 2 .

	The four last lines of Jacobian matrix of K(f ) are:
		2x + 2		2y + 2	
	  	2y + 2 2y + 2	2x + 2 2x -2y + 2	   .
	2x -2y + 2		-2x + 2
		2 2		
	The rank at 0, 0 of the matrix  Schur (DF 1 (x, y)) =    2 2   2 2 2 2 x + 1 2	 	2x -

  0205 + 1.98 x + 2.04 y + 1.0 x 2 + y 2 0.0196 + 2.04 x + 1.98 y + 2.0 xy 0.0192 + 1.94y + 2.04x + 2xy -y 2 0.0205 + 1.94 x + 2.02 y + x 2 -2xy

	
	  

We first remark that for all x ∈ C n such that x -x 0 = θ we have

The Rouché's theorem states that the analytic functions Df (x 0 ) -1 f (x) and g(x) have the same number of roots, each one counting with the respective multiplicity, in the ball B(x 0 , θ) if the inequality

holds for all x ∈ ∂B(x 0 , θ). Let us first prove that x 0 is the only root of g(x) in the ball B x 0 , 1 κ(γ + 1)

. In fact let y = x 0 be a root of g(x) in the ball

. From the assumption we know that 1 κ(γ + 1) ≥ θ. In this case we conclude that y / ∈ B(x 0 , θ). Otherwise v < 1. We deduce from the inequality (16) that

From the assumption on θ, we then deduce that the distance between two distinct roots is bounded from below by

We then have proved that x 0 is the only one root of g(x) in the ball B x 0 ,

Always from the inequality ( 16) we deduce that the inequality

implies Df (x 0 ) -1 f (x) -g(x) < g(x) on the boundary of the ball B(x 0 , θ). Since α = βκ, this is satisfied if the numerator

We show below quadratic convergence obtained thanks to the algorithm singular Newton.

[