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EXISTENCE OF STATIONARY SOLUTIONS
FOR SOME SYSTEMS OF INTEGRO-DIFFERENTIAL

EQUATIONS WITH SUPERDIFFUSION

VITALI VOUGALTER AND VITALY VOLPERT

ABSTRACT. In this article, we establish the existence of
solutions of a system of integro-differential equations arising
in population dynamics in the case of anomalous diffusion.
The proof of the existence of solutions is based on a fixed
point technique. Solvability conditions for elliptic operators
without the Fredholm property in unbounded domains are
used.

1. Introduction. In the present work, we address the existence of
stationary solutions of the system of integro-differential equations

∂us

∂t
= −Ds

√
−∆us +

∫
Rd

Ks(x− y)gs(u(y, t)) dy + fs(x),(1.1)

1 ≤ s ≤ N,

appearing in cell population dynamics. We believe that such a model
is relatively new. The single equation analogous to (1.1) with the
standard Laplacian in the diffusion term was studied in [29]. Herein,
the space variable x corresponds to the cell genotype, us(x, t) are
densities for different groups of cells as functions of their genotype
and time, and u(x, t) = 3D(u1(x, t), u2(x, t), . . . , uN (x, t))T . The right
side of system (1.1) describes the evolution of cell densities by means of
cell proliferation, mutations and cell influx. The anomalous diffusion
terms here correspond to the change of genotype via small random
mutations, and the nonlocal terms describe large mutations. In general,
the anomalous diffusion comprises the case of the subdiffusion when
the problem involves a fractional derivative with respect to time, and
the superdiffusion when the negative Laplacian raised to a fractional
power as in (1.1) is involved. Functions gs(u) are the rates of cell
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birth dependent upon u (density dependent proliferation), and the
functions Ks(x− y) show the proportion of newly born cells changing
their genotype from y to x. Let us assume here that they depend on
the distance between the genotypes. The last term on the right side of
(1.1) describes cell influxes for different genotypes.

The square root of minus Laplacian in system (1.1) represents a
particular example of superdiffusion actively studied in relation to
different applications in plasma physics and turbulence [7, 15], surface
diffusion [12, 13], semiconductors [14], and so on. The physical
meaning of superdiffusion is that the random process occurs with longer
jumps in comparison with normal diffusion. The moments of jump
length distribution are finite in the case of normal diffusion, but this
is not the case for superdiffusion. The operator

√
−∆ is defined via

spectral calculus. A similar problem in the presence of the standard
Laplacian in the diffusion term was recently treated [29, 30, 31]. A
single equation analogous to system (1.1) is addressed in [30].

Let us set all Ds = 1 and study the existence of solutions of the
system of equations

(1.2) −
√
−∆us +

∫
Rd

Ks(x− y)gs(u(y)) dy+ fs(x) = 0, 1 ≤ s ≤ N.

We consider the case where the linear part of operator (1.2) does
not satisfy the Fredholm property such that conventional methods of
nonlinear analysis may not be applicable. Solvability conditions for non
Fredholm operators, which is the novelty of our approach, along with
the method of contraction mappings, will be used. Possible applications
of our results are studies of nonlinear elliptic problems in unbounded
domains involving operators with the essential spectrum containing the
origin.

Let us consider the equation

(1.3) −∆u+ V (x)u− au = f,

with u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant
and the scalar potential function V (x) is either vanishing in the whole
space or converging to 0 at ∞. For a ≥ 0, the essential spectrum of
the operator A : E → F corresponding to the left side of problem (1.3)
contains the origin. As a consequence, this operator does not satisfy
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the Fredholm property. Its image is not closed, for d > 1, the dimension
of its kernel and the codimension of its image, are not finite.

In this paper, we study some properties of operators of this kind.
Recall that elliptic equations with non Fredholm operators were ex-
tensively treated in recent years. Approaches in weighted Sobolev and
Hölder spaces were developed [2, 3, 4, 5, 6]. Schrödinger-type oper-
ators without the Fredholm property were studied via the methods of
spectral and scattering theory [16, 17, 21, 22, 23]. The Laplacian op-
erator with drift, from the point of view of non Fredholm operators, was
treated in [26] and linearized Cahn-Hilliard problems in [24, 27]. Ar-
ticles [25, 28] were devoted to the studies of nonlinear, non Fredholm,
elliptic problems. Significant applications to the theory of reaction-
diffusion equations were developed [9, 10]. Non Fredholm operators
also appear when studying wave systems with an infinite number of
localized traveling waves, see [1]. In particular, in the case of a = 0,
the operator A is Fredholm in some properly chosen weighted spaces,
see [2, 3, 4, 5, 6]. However, the situation where a ̸= 0 is significantly
different, and the approach developed in these articles cannot be ap-
plied. Front propagation problems with superdiffusion were extensively
treated in recent years, see e.g., [18, 19].

We set Ks(x) = εsHs(x) with εs ≥ 0,

ε := max
1≤s≤N

εs,

and we suppose that the next assumption holds.

Assumption 1.1. Let 1 ≤ s ≤ N be such that fs(x) : R3 → R,
fs(x) ∈ L1(R3) and ∇fs(x) ∈ L2(R3). Furthermore, fs(x) is nonzero
for a certain s. Assume also that Hs(x) : R3 → R is such that
Hs(x) ∈ L1(R3) and ∇Hs(x) ∈ L2(R3). Moreover,

H2 : =

N∑
s=1

∥Hs∥2L1(R3) > 0

and

Q2 : =

N∑
s=1

∥∇Hs∥2L2(R3) > 0.
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We choose space dimension d = 3, which is related to the solvability
conditions for the linear Poisson equation (3.1) stated in Lemma 3.1.
The results obtained below can be generalized to d > 3. From the
point of view of applications the space dimension is not limited to
d = 3 because the space variable is correspondent to cell genotype but
not to the usual physical space.

By virtue of the standard Sobolev inequality, see e.g., [11, page 183],
under Assumption 1.1, we have

fs(x) ∈ L2(R3), 1 ≤ s ≤ N.

We use the Sobolev space of vector functions

H2(R3,RN ) := {u(x) : R3 −→ RN |
us(x) ∈ L2(R3),∆us ∈ L2(R3), 1 ≤ s ≤ N},

equipped with the norm
(1.4)

∥u∥2H2(R3,RN ) :=
N∑
s=1

∥us∥2H2(R3) =
N∑
s=1

{∥us∥2L2(R3) + ∥∆us∥2L2(R3)}.

Also,

∥u∥2L2(R3,RN ) :=
N∑
s=1

∥us∥2L2(R3).

The Sobolev embedding implies

(1.5) ∥ϕ∥L∞(R3) ≤ ce∥ϕ∥H2(R3),

where ce > 0 is the constant of the embedding. The hat symbol will
denote the standard Fourier transform such that

(1.6) ϕ̂(p) =
1

(2π)3/2

∫
R3

ϕ(x)e−ipxdx.

When all nonnegative parameters εs = 0, we obtain the linear Poisson
equations

(1.7)
√
−∆us = fs(x), 1 ≤ s ≤ N.

By virtue of Lemma 3.1, along with Assumption 1.1, problem (1.7)
has a unique solution u0,s(x) ∈ H1(R3) such that no orthogonality
conditions are required. Lemma 3.1 gives us that, in dimensions d < 3,
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we need specific orthogonality relations for the solvability of (1.7) in
H1(Rd). (We will not study the problem in dimensions d > 3 to avoid
extra technicalities because the proof will be based on similar ideas, see
Lemma 3.1.) By means of Assumption 1.1, using that

∥∆us∥2L2(R3) = ∥∇fs(x)∥2L2(R3)

we derive for the unique solution u0,s(x) of (1.7) that u0,s(x) ∈ H2(R3)
such that

u0(x) = (u0,1(x), u0,2(x), . . . , u0,N (x))T ∈ H2(R3,RN ).

We look for the resulting solution of the nonlinear system of equa-
tions (1.2) as

(1.8) u(x) = u0(x) + up(x),

with
up(x) = (up,1(x), up,2(x), . . . , up,N (x))T .

In a straightforward manner, we derive the perturbative system of
equations

(1.9)
√
−∆up,s = εs

∫
R3

Hs(x− y)gs(u0(y) + up(y)) dy, 1 ≤ s ≤ N.

We introduce a closed ball in our Sobolev space as

(1.10) Bρ := {u(x) ∈ H2(R3,RN ) | ∥u∥H2(R3,RN ) ≤ ρ}, 0 < ρ ≤ 1.

We now look for the solution of (1.9) as the fixed point of the auxiliary
nonlinear system

(1.11)
√
−∆us = εs

∫
R3

Hs(x− y)gs(u0(y) + v(y)) dy, 1 ≤ s ≤ N,

in ball (1.10). For a given vector function v(y), this is a system of
equations with respect to u(x). The left side of (1.11) contains the
non Fredholm operator

√
−∆ : H1(R3) → L2(R3). Since its essential

spectrum fills the nonnegative semi-axis [0,+∞), this operator has no
bounded inverse. The analogous situation appeared in articles [25, 28],
but as distinct from the present work; the problems treated there
required orthogonality relations. The fixed point technique was applied
in [20] to estimate the perturbation to the standing solitary wave of
the nonlinear Schrödinger (NLS) equation where either the external
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potential or the nonlinear term in the NLS were perturbed but the
Schrödinger operator involved in the nonlinear problem there had the
Fredholm property, see [8], [20, Assumption 1]. We define a closed
ball in the space of N dimensions

(1.12) I := {z ∈ RN | |z| ≤ ce∥u0∥H2(R3,RN ) + ce}.

We now introduce the following quantities with 1 ≤ s, j ≤ N ,

a2,s,j := sup
z∈I

∣∣∣∣∇∂gs
∂zj

∣∣∣∣, a2,s :=

√√√√ N∑
j=1

a22,s,j , a2 := max
1≤s≤N

a2,s.

Also,
a1,s := sup

z∈I
|∇gs(z)|, a1 := max

1≤s≤N
a1,s.

The next assumption follows from the nonlinear part of problem (1.2).

Assumption 1.2. Let 1 ≤ s ≤ N be such that gs(z) : RN → R with
gs(z) ∈ C2(RN ). We also assume that gs(0) = 0, ∇gs(0) = 0 and
a2 > 0.

Here, C2(RN ) denotes the space of twice continuously differentiable
functions on RN . It follows that a1, as defined above, is also positive;
otherwise, all functions gs(z) will be constants in the ball I, and
then, a2 = 0. For example, gs(z) = z2, z ∈ RN , obviously satisfies
Assumption 1.2.

We introduce operator Tg such that u = Tgv, where u is a solution
of the system of equations (1.11).

Our main result is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then, system (1.11)
defines the map Tg : Bρ → Bρ, which is a strict contraction for all
0 < ε < ε∗ for some ε∗ > 0. The unique fixed point up(x) of the map
Tg is the only solution of the system of equations (1.9) in Bρ.

It would be natural to conjecture here that this fixed point contin-
uously depends on parameters of the contracting operator, namely, on
functions gs for the operator Tg. We leave this as an open question.
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Obviously, the resulting solution of system (1.2) given by (1.8) will be
nontrivial due to the fact that the source terms fs(x) are nontrivial for
a certain s = 1, . . . , N , and all gs(0) = 0, as assumed.

The next, trivial, lemma will be needed in our applications.

Lemma 1.4. Consider the function φ(R) := αR+ β/R2 for R ∈
(0,+∞) with the constants α, β > 0. It achieves the minimal value
at R∗ = (2β/α)1/3, which is given by φ(R∗) = (3/22/3)α2/3β1/3.

We now proceed to the proof of our main statement.

2. The existence of the perturbed solution.

Proof of Theorem 1.3. We arbitrarily choose v(x) ∈ Bρ and denote
the terms involved in the integral expressions on the right side of
system (1.11) as

Gs(x) := gs(u0(x) + v(x)), 1 ≤ s ≤ N.

Applying standard Fourier transform (1.6) to both sides of sys-
tem (1.11) yields

ûs(p) = εs(2π)
3/2 Ĥs(p)Ĝs(p)

|p|
, 1 ≤ s ≤ N.

Thus, for the norm, we obtain

(2.1) ∥us∥2L2(R3) = (2π)3ε2s

∫
R3

|Ĥs(p)|2|Ĝs(p)|2

p2
dp.

Obviously, for any ϕ(x) ∈ L1(R3),

(2.2) ∥ϕ̂(p)∥L∞(R3) ≤
1

(2π)3/2
∥ϕ(x)∥L1(R3).

In departure from articles [25, 28] involving the standard Laplacian
operator in the diffusion term, here we do not try to control the norms∥∥∥∥Ĥs(p)

|p|

∥∥∥∥
L∞(R3)

.
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We estimate the right side of (2.1), applying (2.2) with R > 0 as

(2.3) (2π)3ε2s

∫
|p|≤R

|Ĥs(p)|2|Ĝs(p)|2

p2
dp

+ (2π)3ε2s

∫
|p|>R

|Ĥs(p)|2|Ĝs(p)|2

p2
dp

≤ ε2s∥Hs∥2L1(R3)

{
1

2π2
∥Gs(x)∥2L1(R3)R+

1

R2
∥Gs(x)∥2L2(R3)

}
.

Since v(x) ∈ Bρ, we obtain

∥u0 + v∥L2(R3,RN ) ≤ ∥u0∥H2(R3,RN ) + 1,

and, by means of Sobolev embedding (1.5),

|u0 + v| ≤ ce∥u0∥H2(R3,RN ) + ce.

We use the identity formula

Gs(x) =

∫ 1

0

∇gs(t(u0(x) + v(x))) · (u0(x) + v(x)) dt, 1 ≤ s ≤ N.

Throughout this paper, · stands for the scalar product of two vectors
in RN . With ball I defined in (1.12) we derive

|Gs(x)| ≤ sup
z∈I

|∇gs(z)||u0(x) + v(x)| ≤ a1|u0(x) + v(x)|.

Hence,

∥Gs(x)∥L2(R3) ≤ a1∥u0 + v∥L2(R3,RN ) ≤ a1(∥u0∥H2(R3,RN ) + 1).

In addition, for t ∈ [0, 1] and 1 ≤ j ≤ N ,

∂gs
∂zj

(t(u0(x) + v(x))) =

∫ t

0

∇∂gs
∂zj

(τ(u0(x) + v(x))) · (u0(x) + v(x)) dτ.

This implies∣∣∣∣∂gs∂zj
(t(u0(x) + v(x)))

∣∣∣∣ ≤ sup
z∈I

∣∣∣∣∇∂gs
∂zj

∣∣∣∣ |u0(x) + v(x)|

= a2,s,j |u0(x) + v(x)|.
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Hence, by virtue of the Schwarz inequality,

|Gs(x)| ≤ |u0(x) + v(x)|
N∑
j=1

a2,s,j |u0,j(x) + vj(x)| ≤ a2|u0(x) + v(x)|2,

such that

∥Gs(x)∥L1(R3) ≤ a2∥u0(x) + v(x)∥2L2(R3,RN ) ≤ a2(∥u0∥H2(R3,RN ) + 1)2.

Thus, we arrive at the upper bound for the right side of (2.3), given by
(2.4)

ε2s∥Hs∥2L1(R3)(∥u0∥H2(R3,RN ) + 1)2
{

a22
2π2

(∥u0∥H2(R3,RN ) + 1)2R+
a21
R2

}
,

with R ∈ (0,+∞). Lemma 1.4 gives us the minimal value of (2.4).
Therefore,

∥us∥2L2(R3) ≤
3

24/3π4/3
ε2∥Hs∥2L1(R3)(∥u0∥H2(R3,RN ) + 1)3(1/3)a

2/3
1 a

4/3
2 ,

such that

(2.5) ∥u∥2L2(R3,RN ) ≤
3

24/3π4/3
ε2H2(∥u0∥H2(R3,RN )+1)3(1/3)a

2/3
1 a

4/3
2 .

Obviously, by means of (1.11),

−∆us = εs
√
−∆

∫
R3

Hs(x− y)Gs(y) dy, 1 ≤ s ≤ N.

Using (2.2), we easily obtain

∥∆us∥2L2(R3) ≤ ε2a22(∥u0∥H2(R3,RN ) + 1)4∥∇Hs∥2L2(R3).

Hence,

(2.6)
N∑
s=1

∥∆us∥2L2(R3) ≤ ε2a22(∥u0∥H2(R3,RN ) + 1)4Q2.

The definition of norm (1.4), along with inequalities (2.5) and (2.6),
give

∥u∥H2(R3,RN ) ≤ ε(∥u0∥H2(R3,RN ) + 1)2a
2/3
2

×
√

3

24/3π4/3
H2a

2/3
1 + a

2/3
2 Q2 ≤ ρ,
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for all ε > 0 sufficiently small; therefore, u(x) ∈ Bρ as well. If, for a
certain v(x) ∈ Bρ, there are two solutions u1,2(x) ∈ Bρ of system (1.11),
their difference w(x) := u1(x)− u2(x) ∈ L2(R3,RN ) solves

√
−∆w = 0.

Due to the fact that the operator
√
−∆ does not possess nontrivial

square integrable zero modes, w(x) = 0 almost everywhere in R3.
Hence, system (1.11) defines a map Tg : Bρ → Bρ for all ε > 0 small
enough.

Our goal is to show that this map is a strict contraction. We
arbitrarily choose v1,2(x) ∈ Bρ. By means of the argument above we
have u1,2 = Tgv1,2 ∈ Bρ as well. By virtue of system (1.11),

√
−∆u1,s = εs

∫
R3

Hs(x− y)gs(u0(y) + v1(y)) dy, 1 ≤ s ≤ N,(2.7)

√
−∆u2,s = εs

∫
R3

Hs(x− y)gs(u0(y) + v2(y)) dy, 1 ≤ s ≤ N.(2.8)

We define

G1,s(x) := gs(u0(x) + v1(x)),

G2,s(x) := gs(u0(x) + v2(x)), 1 ≤ s ≤ N,

and apply the standard Fourier transform (1.6) to both sides of systems
(2.7) and (2.8). We obtain

û1,s(p) = εs(2π)
3/2 Ĥs(p)Ĝ1,s(p)

|p|
, û2,s(p) = εs(2π)

3/2 Ĥs(p)Ĝ2,s(p)

|p|
.

In addition,

∥u1,s(x)−u2,s(x)∥2L2(R3) = ε2s(2π)
3

∫
R3

|Ĥs(p)|2|Ĝ1,s(p)− Ĝ2,s(p)|2

|p|2
dp.

Furthermore, it can be estimated by using (2.2) from above that

ε2s∥Hs∥2L1(R3)

{
1

2π2
∥G1,s(x)−G2,s(x)∥2L1(R3)R

+ ∥G1,s(x)−G2,s(x)∥2L2(R3)

1

R2

}
,
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where R ∈ (0,+∞). For 1 ≤ s ≤ N , we use the identity

G1,s(x)−G2,s(x) =

∫ 1

0

∇gs(u0(x) + tv1(x) + (1− t)v2(x))

· (v1(x)− v2(x)) dt.

Clearly, for v1,2(x) ∈ Bρ and t ∈ [0, 1], we easily obtain the upper
bound for ∥v2(x) + t(v1(x)− v2(x))∥H2(R3,RN ) as

t∥v1(x)∥H2(R3,RN ) + (1− t)∥v2(x)∥H2(R3,RN ) ≤ ρ.

Thus, v2(x) + t(v1(x)− v2(x)) ∈ Bρ as well. We derive

|G1,s(x)−G2,s(x)| ≤ sup
z∈I

|∇gs(z)||v1(x)− v2(x)| = a1,s|v1(x)− v2(x)|.

Therefore,

∥G1,s(x)−G2,s(x)∥L2(R3) ≤ a1,s∥v1(x)− v2(x)∥H2(R3,RN ).

In addition, for 1 ≤ j ≤ N ,

∂gs
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))

=

∫ 1

0

∇∂gs
∂zj

(τ [u0(x) + tv1(x) + (1− t)v2(x)])

· (u0(x) + tv1(x) + (1− t)v2(x)) dτ.

Hence,∣∣∣∣∂gs∂zj
(u0(x) + tv1(x) + (1− t)v2(x))

∣∣∣∣
≤ sup

z∈I

∣∣∣∣∇∂gs
∂zj

∣∣∣∣{|u0(x)|+ t|v1(x)|+ (1− t)|v2(x)|},

where t ∈ [0, 1]. Clearly, by virtue of the Schwarz inequality, we
estimate |G1,s(x)−G2,s(x)| from the above by

N∑
j=1

a2,s,j

{
|u0(x)|+

1

2
|v1(x)|+

1

2
|v2(x)|

}
|v1,j(x)− v2,j(x)|

≤ a2,s

{
|u0(x)|+

1

2
|v1(x)|+

1

2
|v2(x)|

}
|v1(x)− v2(x)|.



12 VITALI VOUGALTER AND VITALY VOLPERT

The Schwarz inequality gives the upper bound for

∥G1,s(x)−G2,s(x)∥L1(R3)

as

a2,s

{
∥u0(x)∥L2(R3,RN ) +

1

2
∥v1(x)∥L2(R3,RN ) +

1

2
∥v2(x)∥L2(R3,RN )

}
× ∥v1(x)− v2(x)∥L2(R3,RN )

≤ a2{∥u0(x)∥H2(R3,RN ) + 1}∥v1(x)− v2(x)∥H2(R3,RN ).

This allows us to estimate the norm ∥u1(x)− u2(x)∥2L2(R3,RN ) by

(2.9) ε2H2∥v1 − v2∥2H2(R3,RN )

{
a2

2

2π2
(∥u0∥H2(R3,RN ) + 1)2R+

a1
2

R2

}
.

By virtue of Lemma 1.4, we minimize (2.9) over R > 0 in order to
obtain that ∥u1(x)− u2(x)∥2L2(R3,RN ) is bounded from above by

(2.10) ε2H2∥v1 − v2∥2H2(R3,RN )

3

24/3
a
4/3
2

π4/3
(∥u0∥H2(R3,RN ) + 1)4/3a

2/3
1 .

By means of (2.7) and (2.8) we have

−∆(u1,s−u2,s)=εs
√
−∆

∫
R3

Hs(x−y)[G1,s(y)−G2,s(y)] dy, 1≤ s ≤N.

Hence, via (2.2), we obtain

∥∆(u1,s − u2,s)∥2L2(R3) ≤ ε2∥∇Hs∥2L2(R3)∥G1,s(x)−G2,s(x)∥2L1(R3)

≤ ε2∥∇Hs∥2L2(R3)a
2
2(∥u0∥H2(R3,RN ) + 1)2∥v1 − v2∥2H2(R3,RN ),

such that
N∑
s=1

∥∆(u1,s − u2,s)∥2L2(R3)

is estimated from above by

(2.11) ε2Q2a22(∥u0∥H2(R3,RN ) + 1)2∥v1 − v2∥2H2(R3,RN ).

By virtue of inequalities (2.10) and (2.11) the norm ∥u1−u2∥H2(R3,RN )

is bounded from above by

εa
2/3
2 (∥u0∥H2(R3,RN )+1)

[
3

24/3
H2a

2/3
1

π4/3
+Q2a

2/3
2

]1/2
∥v1−v2∥H2(R3,RN ).
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Hence, the map Tg : Bρ → Bρ, defined by system (1.11), is a strict
contraction for all values of ε > 0 small enough. Its unique, fixed
point up(x) is the only solution of system (1.9) in Bρ. The resulting
u(x) ∈ H2(R3,RN ), given by (1.8), is a solution of the system of
equations (1.2). �

3. Auxiliary results. We recall the solvability conditions for the
linear Poisson type equation

(3.1)
√
−∆ϕ = f(x), x ∈ Rd, d ∈ N,

established in [30]. We denote the inner product as

(3.2) (f(x), g(x))L2(Rd) :=

∫
Rd

f(x)g(x) dx,

with a slight abuse of notation, when the functions involved in (3.2)
are not square integrable, for example, the functions present in or-
thogonality conditions (3.3) and (3.4). Indeed, if f(x) ∈ L1(Rd) and
g(x) ∈ L∞(Rd), then the integral on the right side of (3.2) makes sense.

The technical result below was easily proved [30] by applying the
standard Fourier transform to problem (3.1).

Lemma 3.1. Let f(x) ∈ L2(Rd), d ∈ N.

(i) When d = 1 and |x|f(x) ∈ L1(R), equation (3.1) admits a unique
solution ϕ(x) ∈ H1(R) if and only if the orthogonality condition

(3.3) (f(x), 1)L2(R) = 0

holds.
(ii) When d = 2 and |x|f(x) ∈ L1(R2), problem (3.1) possesses a

unique solution ϕ(x) ∈ H1(R2) if and only if the orthogonality
relation

(3.4) (f(x), 1)L2(R2) = 0

holds.
(iii) When d ≥ 3 and f(x) ∈ L1(Rd), equation (3.1) has a unique

solution ϕ(x) ∈ H1(Rd).
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Note that, in dimensions d ≥ 3, under the assumptions stated above,
no orthogonality relations are needed to solve the linear Poisson-type
equation (3.1) in H1(Rd).
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elliptiques dans Rn, CRAS 307 (1988), 577–580.

5. P. Bolley and T.L. Pham, Propriété d’indice en théorie Hölderienne pour
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