Jean-Guillaume Dumas
email: guillaume.dumas@univ-grenoble-alpes.fr

Pascal Lafourcade
email: pascal.lafourcade@udamail.fr

Francis Melemedjian
email: francis.melemedjian@ntx-research.com

Jean-Baptiste Orfila
email: baptiste.orfila@univ-grenoble-alpes.fr

Pascal Thoniel
email: pascal.thoniel@ntx-research.com

LOCALPKI: A User-Centric Formally Proven Alternative to PKIX

A public-key infrastructure (PKI) binds public keys to identities of entities. Usually, this binding is established through a process of registration and issuance of certificates by a certificate authority (CA) where the validation of the registration is performed by a local registration authority. In this paper, we propose an alternative scheme, called LOCALPKI, where the binding is performed by the local authority and the issuance is left to the end user or to the local authority. The role of our third entity is then to register this binding and to provide up-to-date status information on this registration. The idea is that many more local actors could then take the role of a local authority, thus allowing for an easier spread of public-key certificates in the population. We also prove our scheme's security with Tamarin an automatic verification tool of cryptographic protocols.

Introduction

Public Key Infrastructure (abbreviated PKI) allows to bind the user identity with his public key. On internet, the PKIX standard is widely used. Almost all major internet players authentify their servers with certificates via the TLS (Transport Layer Security) protocol. In this paradigm, end entities rely on Certificate Authorities (CA) which deliver X.509 certificates containing, at least, the user's identity and public key and a validity period. These certificates are then signed by the CA. Then, to use the public key of an entity, a user verifies the associated certificate: checking validity period, correctness of signature etc. To use long enough validity periods, a revocation mechanism has then to be set up. The most deployed solutions for this are Online Certificate Status Protocol (OCSP) [START_REF] Santesson | Carlisle Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -OCSP[END_REF] and Certificate Revocation List (CRL) [START_REF] Cooper | Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile[END_REF]. In the first case, the user 1 sends a validity query of the owner's certificate to an OCSP responder (either maintained by the certificate's issuer, or well known to the user). In the second case, lists of revoked certificates must be regularly updated and published into CRL Distribution Points (CDP). Users access these CDP and check that the owner's certificate is not present inside the list. In the end, depending on the obtained certificate status, the owner is authenticated or not by the user.

The current state of the art is quite substantial, because of various security and efficiency requirements, mostly depending on the environment where the PKI must be set-up (internet, industrial architecture, power limited devices...). In terms of efficiency, solutions to reduce communication and computation costs of the revocation checks arose, such as H-OCSP [START_REF] Muñoz | H-ocsp: A protocol to reduce the processing burden in online certificate status validation[END_REF] or Delta-CRL [START_REF] Cooper | Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile[END_REF]. Moreover, the needed trustfulness in the CA has been intensively studied in order to reduce the impact of malicious behavior. Indeed, in PKIX, a compromised CA is able to ruin the entire authentication mechanism by delivering illegitimate certificates. Then, solutions based on public logs of CA's action emerged, with for instance Certificate Transparency [START_REF] Laurie | Certificate authority transparency and auditability[END_REF]. In this paradigm, certifications are included in append-only log structures: the log maintainer is able to prove that a specific certificate is present into the structure, and that each new added certificate has only extended the previous structure. The Accountable Key Infrastructure [START_REF] Kim | Accountable key infrastructure (aki): A proposal for a public-key validation infrastructure[END_REF] exploits public-logs for the certificate management and distributes the trust between several entities. In [START_REF] Dermot | Enhanced certificate transparency and end-to-end encrypted mail[END_REF], the authors provide a solution combining public revocation and a more largely distributed trust (using users' browsers) with the Certificate Issuance and Revocation Transparency. More recently, the Attack Resilient Public-Key Infrastructure (ARPKI) [START_REF] Basin | ARPKI: Attack resilient public-key infrastructure[END_REF] proposes a PKI where clients choose several authorities (CAs and log maintainers) involved into the global process. There, each of these authorities supervises the others' behavior: as a consequence, a single non compromised entity is sufficient to prevent attacks. The solution described in [START_REF] Yu | DTKI: A new formalized PKI with verifiable trusted parties[END_REF] with the Distributed Transparent Key Infrastructure (DTKI), provides security even in the case where all these entities are corrupted. Notably, the security of ARPKI and DTKI has been formally proven using the automatic cryptographic protocols verification tool Tamarin [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF][START_REF] Schmidt | Automated analysis of diffiehellman protocols and advanced security properties[END_REF]. Most of these advanced solutions provide enhanced security to the cost of some complexity in the procedures. In a practical set up these solutions involve several authorities, which must be involved in the management of technical services (this is particularly true for the management of worldwide append-only logs). Furthermore, these schemes rely on a CA's signature of certificates in order to guarantee the binding between the public key and the identity.

Another issue of PKIX is the certificates cost that still remains a problem. In order to reduce this cost and to simplify the implementation complexity, the project Let's Encrypt emerged to democratize the implementation of server certificates (https://letsencrypt.org/). Differently, the deployment of people certificates has never really been carried out on a large scale and still few end-users have certificates.

Contributions. In this paper, we formally describe and prove the security of a PKI called LOCALPKI, based on the PKI 2.0 paradigm [START_REF] Bouzefrane | A user-centric PKI based-protocol to manage FC2 digital identities[END_REF]. The PKI 2.0 project and its instances such as LOCALPKI are seeking to democratize the attribution of people certificates, like what Let's Encrypt is doing for server certificates. They are essential for secured transactions: authentication, digital signature, confidentiality. LOCALPKI removes three known bottlenecks of PKIX: remote delivery, cost of certificates and their complexity of use. The idea is to replace CA signed certificates by user self-signed certificates. However, contrary to PGP [START_REF] Philip | The Official PGP User's Guide[END_REF], trust is not given by users but by an authority. This authority, a combination of notaries and local actors in our setting, guaranties the binding. Indeed, after registration of a certificate owner by a notary, other users will be able to verify the authenticity of this certificate via a request. For a private verification, a possibility is to send a request to the notary, similar to an OCSP procedure: the notary's response depends on the looking up of uniquely recorded legitimate users in his database. For a public verification, a possibility is to provide hashed and signed subsets of the database, similar to NSEC3 [START_REF] Kolkman | DNSSEC Operational Practices, Version 2[END_REF] (or NSEC5 [START_REF] Vcelak | NSEC5, DNSSEC Authenticated Denial of Existence[END_REF]) records within DNSSEC [START_REF] Bau | A security evaluation of DNSSEC with NSEC3[END_REF]. Also, as in PKIX, registration and authentication do not need be performed by the same entities. In PKIX the former step can be performed by a Registration Authority. In LOCALPKI, this entity is known by the notary and must be close to the user. It can be a technical service, just like a classical registration authority, but it can also be a local actor or a business service, closer to users. We have in mind banks, postal offices, mobile network operators, delivery points, university offices, for example, and more generally any actor used to check identities. For the user, he can get a free certificate (with possibly paid options available) near his home or work place with the security of face-to-face enrollment (identity verification). For local registration desks, it would often be in its own interest to deliver people certificates to its members or clients. These member/client certificates will enable them to authenticate and perform online operations, for instance securely signing contracts. Moreover, the involved entities, except for the notaries, do not really need any technical knowledge. Overall, our proposition, LOCALPKI, is a first instance of the PKI 2.0 paradigm offering an alternative to PKIX. LOCALPKI is able to provide the same services as PKIX, but using a user-centric approach and without the need of a signature by an authority for each certificate. Further, in this paper, we also provide a security analysis of our protocols, using Tamarin [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF][START_REF] Schmidt | Automated analysis of diffiehellman protocols and advanced security properties[END_REF] and show that the implementation of the LOCALPKI in a practical environment can be realized using existing PKI tools.

Organization of the paper. In section 2, we start by defining entities involved in LOCALPKI, and we make a high-level comparison with PKIX. Then in Section 3, we formally describe all the protocols involved, i.e. the registration, authentication and revocation mechanisms. Section 4 is devoted to the deployment of the architecture, using existing tools and solutions. Finally, in Section 5, we define the required security properties and an associated formal model for LOCALPKI. Those enable us to formally prove the security of LOCALPKI, using Tamarin.

General Description

LOCALPKI is a set of protocols which fulfills all the requirements of a public-key infrastructure (PKI): registration of a new user, authentication of registered users, revocation of certificates, renewals, etc. We start by introducing each entities' role.

Entities. There are three different entities in LOCALPKI: Electronic Notaries (EN), a Local Registration Authorities (LRA) and users (or End Entities). The Electronic Notary might be seen as the root CA in a classical PKI architecture. He manages the databases containing registered users. The Local Registration Authority represents the intermediate entity between the user and the notary. It is somewhat like a Registration Authority in a classical PKI, but in LOCALPKI it is closer to users than to the CA. In practice, the LRA could be an agency close to the user, such as the user's insurance company, his bank, the postal office, etc. Those agencies usually already have the abilities to check identities. The LRA is registered by some EN, and the identity checks are performed during the recording of a new user. Finally, users represent the entities who want to authenticate or be authenticated by others.

Comparison with PKIX. The main differences between LOCALPKI and PKIX are:

• In LOCALPKI registration authorities do not need to be security experts. Therefore they can be closer to users and allow more widespread deployment of the use of certificates in every day life (see § 3.2). ----------------------------- certificate: in PKIX, the CA's signature is present whereas in LOCALPKI only the self signature made by the user is required. As shown in Figure 1, certificate creation is realized in the 2 nd step by the owner instead of the 4 th one by the CA for PKIX, as shown in Figure 2. Furthermore, the registration authority forwards a certificate request to the CA, while the LRA only sends the certificate's hash to the notary. Finally, in LOCALPKI certificates are not directly published since the EN's database only contains hashes. Hence, interactive authentication is also different as shown in Figures 3 and4: with LOCALPKI, owners have to provide their certificates to users beforehand, and then the users interact with notaries in order to be convinced of the certificate's validity; with PKIX users can recover certificates in a local repository and then interacts with OCSP responders to be convinced of the certificate's validity. The full protocol, in particular the buffering mechanism (the CVL, also called public mode within LOCALPKI), is detailed next.

Protocol Description

We now give some notations and then formally define the LOCALPKI protocols.

Notations

We denote by Pk A (resp. Sk A) the public key (resp. private key) of a user A. We write {m} Pk A (resp. {m} Sk A) the action of ciphering (resp. signing) a message m with the public key Pk A (resp. the private key Sk A). Hashing a message m is written H(m), with H the hash function. The concatenation of two messages m 1 and m 2 is denoted m 1 ||m 2 . Generally, the notation O A is used to express the belonging of the object O (e.g., a certificate) to the user A. We denote by X 509 () a function which takes user's information and returns them into the X 509 certificate format without any signature.

Registration of a New User

In order to be known within the infrastructure, and to allow him to be authenticated by the others, a user first needs to be enrolled into the system: this step is called registration.

The first phase is the new key pair generation by the user. Then, he interacts with a LRA to start the registration process. In LOCALPKI the LRA should be physically close to the user, so that they can meet in person. The user begins by providing ID proofs according to the established security policy (e.g., a visual check of the ID card). Once the identity check succeeds, the user gives his public key to the LRA. Next, the authority generates a field equivalent to the ToBeSigned (TBSCert) in the X.509 certificates, containing at least: the user's ID, his public key, a Serial Number (SN), a validity period and the URL of the notary associated with the LRA. The SN has been obtained by the LRA from previous exchanges with the EN. The latter is in charge of the SN generation, and communicates to each supervised LRA a specific range of SN. For the next step, the user hashes the previously generated T BSCert and signs the digest: the result is called SI (Signature Id). Afterwards, by using the previously provided public key, the LRA is able to recompute the digest and then to check the correctness of the signature. At this step, the user has proven his knowledge about the associated private key to the LRA. The final registration phase is performed by the EN who registers the unique couple (SN, SI) (this is a simplified version of what is called a "public key ownership certificate" in [START_REF] Bouzefrane | A user-centric PKI based-protocol to manage FC2 digital identities[END_REF]). For this, the LRA ciphers the couple using the EN's public key, and sends the result along with its signature of this message (i.e., {H(SN, SI)} Sk LRA). In the end, the registered user owns a certificate Cert containing the T BSCert, and in particular the SN and the SI, while the EN has added the associated couple (SN, SI) to his database. The complete process is detailed in Algorithm 1 and schemed in Figure 5.

Algorithm 1 Registration of Alice

Require: The LRA owns a priori serial numbers, provided by a trusted electronic notary EN. Ensure: Identity check (by the LRA) and registration of Alice into the EN database.

LRA → EN: {SN

A ||SI A } Pk EN ||{H(SN A ||SI A)} Sk LRA 10: end if 11:
EN decides to add Alice to his database.

Authentication

Once the owner of the certificate has been correctly registered, other users could authenticate him i.e., they are ensured that the used public key is indeed the owner's one. The authentication process in LOCALPKI can be realized in two different ways. First by using a private mode, where only the EN knows the full database containing registered users. In this case, the user requests the EN about the validity of the owner's certificate, and no more information is revealed. The second possibility is to apply the public mode (also called buffering mode), where the EN shares parts of his database with the user, who makes the validity verification by himself. In both cases, the user must be able to first authenticate the EN using the URL provided in the certificate. As in PKIX, the mechanism used in LOCALPKI is the trust anchors [START_REF] Reddy | Trust anchor management requirements[END_REF]. A trust anchor contains certificates of the trusted notaries. Then, users are able to retrieve information on notaries, in particular their associated public key. In the following, we detail both the private and public modes.

Private Mode.

The specificity of the private mode resides in the database of registered users, which is only known by the EN. Then the validity check of the owner's certificate by another user (the verifier) is made by interacting with the EN at verification time. First the verifier gets the certificate from the owner. Then, the verifier has two possibilities: he can check the owner's self signature by himself (Algorithm 2) or delegate also this task to the notary (Algorithm 3). In the first case, the Authentication Request (AR) only contains the couple (SN, SI) and a nonce R. In the second case, the AR is made of the complete certificate and a nonce. In any case, the entity verifying the signature has to extract the public key, the SI and the T BSCert from the certificate. Then, he hashes the T BSCert and applies the cipher on the SI using the public key. The verifier also checks that the EN associated to the URL contained in the certificate belongs to his trust anchor, otherwise authentication cannot be realized. Then, he sends the correct AR (depending on the choice of the signature verification) to the indicated EN. During the next step, the EN looks for the given IDs in his database. If they are found, he responds positively, otherwise he gives a negative answer. The complete message consists of the previous answer, the nonce R, the couple (SN, SI) and the signature by the notary of all the previous contents. Finally, the verifier checks the EN's signature of the answer using the public key extracted from the EN's certificate (stored in the user trust anchor). An example of authentication can be found in Figure 6.

Algorithm
? == {SI B } Pk B R A $ ←- R A ||SN B ||SI B / / If (SN B ; SI B) ∈ CVL Then Rep = "OK"||R A ||SN B ||SI B Else Rep = "Unknown"||R A ||SN B ||SI B Endif SI Rep = {H(Rep)} Sk EN Rep||SI Rep o o Check: H(Rep) ? == {SI Rep } Pk EN

Public Mode: Certificate Verification List.

In the public mode, checking the owner's certificate validity is realized by the verifier. He first obtains the owner's certificate. Then he must check that the certificate's signature (i.e., the SI) is consistent with the information contained in the T BSCert (i.e., the public key and the SN). After having checked that the EN belongs to his trust anchor, the verifier sends a request to the EN designated by its URL in the certificate. This request asks for the Certificate Verification List (CVL) i.e., the content of the database storing the couple (SN, SI) of previously registered users. To exchange the CVL with the user, the EN sends a signature of the CVL in addition to the list itself. This also ensures its integrity. Finally, the verifier checks the signature of the EN, and then verifies that (SN, SI) belongs to the CVL. Of course, just like a CRL, a CVL can be locally stored (buffered) and reused in a certain time interval without any refreshment. Just like for a CRL, a typical refreshment rate for a CVL could be in days. An example of public authentication is given in Figure 7.

Even if the public mode reduces the number of operation realized by the EN, it implies a non-negligible communication cost. In order to reduce it, the idea is to divide the database into subdomains. Indeed, the EN is in charge of the generation of the SN given to the LRA. Hence, the database is intrinsically divided into LRA subdomains. Then, the verifier could buffer only the CVL associated to a subdomain, and hence the communication cost between the client and the EN is reduced to this subdomain size.

Comparison between Public, Private Modes and PKIX Mechanisms.

LOCALPKI is designed to be used by default in the private mode, offering a lower communication cost and an always up-to-date database. Nevertheless, the CVL are interesting in the case where an online interaction is not always guaranteed. In comparison with mechanisms used in PKIX, the private mode can be assimilated with OCSP and CVL with CRL. Initially, OCSP was not designed to resist against replay attacks. In a later version, a counter-measure has been added to the responseExtensions field (see [18, § 4.4.1]). However, as discussed in [18, § 5], this solution is not required by the norm. In the private mode of LOCALPKI, replay attacks are countered by default.

In PKIX, the complete list of revoked certificates must be shared. Thus, the communication cost is large. A way to reduce these large broadcasts, on solution can be to use δ-CRL's. Similarly we proposed to allow subdomain CVL's. In the case of the CVL, only the subdomain part containing the certificates need to be exchanged to have a correct authentication. But, unlike δ-CRL, a subdomain CVL is fail-safe. Indeed a user looking only in a partial CRL can miss that a certificate has been revoked with another reason, and still use it. On the contrary, if a valid certificate is not present in a subdomain CVL, it just cannot be used.

Furthermore, CRL based solutions expose users to false positive authentications. Since a CRL is not continuously updated, recently revoked certificates could still be considered valid. By using a white-list strategy like CVL, verifiers may not succeed in authenticating newly registered users. However, once again, obtaining a false negative is usually a safer fail than a false positive. Besides that, only valid certificates are stored. Then, in case of authentication failure, the verifier cannot know the reason (revocation, unregistered user).

Revocation

A public key infrastructure should provide a solution to revoke certificates before the end of their validity period. This allows for instance to manage lost or compromised key pairs. In LOCALPKI, a certificate revocation can easily be done by the certificate's owner or by the LRA, via a request to the EN. In both cases, this request is signed and contains the owner's certificate along with a Revoke message. In case of a request from the owner's certificate, the signature acts as a proof of knowledge of the private key. In case of a request by the associated LRA, the notary has anyway to accept registrations from this LRA (for instance within a range of allowed serial number values). This same range can be used to guaranty that the LRA is allowed to revoke this serial number. Hence, in both cases, the EN verifies the signature and if the couple (SN, SI) is present in his database, he simply removes the entry. Thus, an authentication attempt using this revoked couple fails, since the entry has been removed from the EN database. Then the renewal procedure is simple: after the revocation, the user has to enter a new registration process with his LRA. EN removes (SN X ; SI X) from the database. 5: end if 4 Deployment LOCALPKI has the advantage to be easily deployed from an existing PKIX. Actually, each of these requirements can be satisfied by adapting the current standards of PKIX. In the following, we present how to realize it.

• First of all, certificates employed in LOCALPKI can be based on X.509v3 certificates [START_REF] Cooper | Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile[END_REF]. Indeed, both PKI, LOCALPKI and PKIX, share the same kind of identification data (TBSCert). Then, the CA's signature is replaced by the user's signature and the SN can be stored in the serialNumber field. • The communications with the notaries during authentication in the private mode, Figure 6, can be set up using the OCSP norm [START_REF] Santesson | Carlisle Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -OCSP[END_REF]. Within the OCSP request, the SN replaces the current serialNumber in the CertID sequence, and the SI is stored in the signature field of the optional Signature sequence. Note that other fields in CertID, such that the issuerNameHash and issuerKeyHash, could be left empty since this information is either irrelevant or redundant with the SI. The nonce R A (see Figure 6 and Algorithms 2 and 3) can be stored into the OCSP requestExtensions. • Similarly, the notary's answer can also follow the OCSP response format, where all the latter fields are also present. • In the public mode, Certificate Verification Lists (CVL) can be managed just like Certificate Revocation Lists (CRL). For example, a CVL could be published on the EN websites, and can be stored in local repositories. Moreover, if an organization with subdomains is required, e.g., each range of SN represents a subdomain, the Delta-CRL indicator could used [START_REF] Cooper | Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile[END_REF], as well as the BaseCRLNumber field which could represent for us an equivalent Base CVL number field. • The revocation requests within LOCALPKI and PKIX are almost identical. Thus, LOCALPKI may use the Certificate Management Protocol [START_REF] Peylo | Internet X.509 Public Key Infrastructure -HTTP Transfer for the Certificate Management Protocol (CMP)[END_REF] directly for revocations. • Finally, PKIX requires trust anchors [START_REF] Reddy | Trust anchor management requirements[END_REF] to be deployed, e.g., within the store of the users' browsers or OS's. Communications between LRAs and notaries, also require an anchor mechanism and that of PKIX can also be used directly. Therefore, existing tools like OpenSSL allow for all entities to generate keys, certificates, authentication and revocation requests or responses. The technical setup of LOCALPKI is mainly restricted to the management of the databases. This is delegated to the EN, who are thus also in charge of maintaining the PKI availability. LRAs are in charge of communications with the notaries, that is mainly exchanging serial numbers, and of the face to face identity verifications.

Differently, users have several possibilities, depending on their expertise.

• Expert users, first generate themselves their own key pair. Then they request a serial number, SN, through the LRA, in order to create and sign their certificate. Finally they give the associated SI to the LRA who will forward it to the notary. • An intermediate possibility, is for the user to only generate a key pair. The LRA will then take charge of the certificate creation and provide means for the user to sign it with his private key (for instance a usb port and a keyboard so as to type the password deciphering the private key stored in a usb device). • The LRA can also create fresh key pairs on the fly and provide everything to the user. Part or all of the latter two possibilities could even be realized through a dedicated web site. Therefore, the only technical requirement for the LRA is the use of tools like OpenSSL, in order to help the users registration and the creation of a user-friendly associated API.

Security Analysis

The main goal of LOCALPKI is to make authentication of users possible when using asymmetric cryptography. However, the protocol must provide other security guarantees. In the following, we define the desired security properties. Then, we show how we model the protocol in the automatic cryptographic protocols verification tool called Tamarin Prover, in order to prove these security properties.

Security Properties

The first property that is required is that the protocol must be correct, i.e., if a person has been correctly registered into the database and her certificate is still valid, then he must be correctly authenticated. The underlying property correspond to classical authentication property and is thus about correct identity checks.

Vice versa, the soundness property can be defined as follows: an adversary who has not been registered cannot be authenticated. This property implies that an adversary cannot forge a certificate considered as valid and cannot impersonate a valid one. A reformulation of the soundness property is that authentication at time i 2 implies a registration at time i 1 with i 1 < i 2 .

In [START_REF] Basin | ARPKI: Attack resilient public-key infrastructure[END_REF], the authors defined the Connection Integrity as follows: if a user establishes a connection with another one, then the user communicates with the legitimate owner of the private key. In others words, in the case where registration has been correctly done (i.e., by honest participants), no adversary can possibly know the private key of the honest owner.

Moreover, the protocol must ensure some secrecy properties. Indeed, a protocol execution must not reveal any sensitive information: once authenticated, the adversary cannot know the message.

To summarize, by assuming that LRA and the EN are trusted, LOCALPKI verifies the following security properties:

• Correctness: if a user has been correctly registered and is not revoked then he must be correctly authenticated ; • Soundness: if a user has been authenticated, then he must have been registered before and he has not been revoked before; • Connection Integrity: if a user is correctly registered, then the adversary does not know his private key. • Secrecy: once a user is authenticated, the messages sent to him cannot be learnt by the adversary.

Tamarin Prover Modeling

In order to prove these security properties, we use Tamarin Prover an automatic security protocol verifier [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF]. This tool implements a protocol verification technique for unbounded number of sessions. Adversaries are defined according to the Dolev-Yao model [START_REF] Dolev | On the security of public key protocols[END_REF]. This means that adversaries can extract information from every exchanged messages. The usual perfect encryption hypothesis is also assumed in this tool (i.e., the adversary does not learn any information from a encrypted message if he does not own the associated private key). Moreover, we use classic equational theories provided by default by Tamarin for the crypto-operations like ciphering or signing messages. In Tamarin, the protocols are modeled using multiset rewriting rules. The rules are composed of facts, which are used to model the local knowledge of a participant, such as the reception of a message, or the generation of a fresh number or the emission of a message. Then, each player action is implemented as a rule. A rule rewrites a fact into another one, and is eventually labeled in order to trace the realized actions. For example, a rule rewriting a fact composed of a message and key into another state containing the cipher of the message with the previous key could be labeled as Cipher. Facts could be persistent (denoted with a ! before its name), which means that it can be reused arbitrarily often by rules. Otherwise facts are said to be linear and can be used only once. Once all the protocol rules are defined, we model the desired properties as lemmas. A lemma is a first-order logic sequence applied on the label of previously defined rules. They contain quantifiers (∀: All, ∃: Ex) and logical connectives (&,|,not, ==>), along with timepoints (declared with #, and employed with @). For example Ex sna sia #i. Bob Auth Alice(<sna,sia>) @i means that the event Bob Authenticates Alice using variables <sna,sia> occurs at time i. Now, we detail our model and the properties proved. We also show that trust hypothesis on entities are mandatory, just like, e.g., trust hypothesis are required on CAs in PKIX, by describing attacks found by the tool if any of these hypothesis is removed.

All the Tamarin source files can be found at: http://localpki.forge.imag.fr/. See the associated Makefile for details on how to generate proofs and attacks.

LOCALPKI Tamarin Model

We consider a protocol execution where only one notary, one LRA, one registered user (Alice) and one verifier (Bob) are represented, which is enough according to a well-known theoretical result [START_REF] Comon | Security properties: two agents are sufficient[END_REF] that proves that for secrecy and authentication properties only one intruder is enough and at most one honest participant per role. Our model of this execution comprises the registration of Alice, her authentication by Bob followed by an exchange of a message, and the revocation of her certificate.

In the classic model of PKIX, key pair generations are done by generic persistent facts, instantiated with different terms. These facts bind the identity of the entity with its public key to represent the trust anchors, i.e., other entities have the correct association between the public key and the identity. Thus, this method is usable for modeling the trust anchors of the LRA and the EN. In the case of Alice, we need to explicitly define the self-signed certificate described in the Algorithm 1. Moreover, we assume that the Alice's certificate is public.

We employ two types of communication channels, depending on the situation: a real-life meeting and insecure channels. Since the registration must be realized during a real-life meeting, we assume that it is not subject to any intruder attack. Therefore, our model expresses the information exchanged between the LRA and Alice in a totally private manner (i.e., the adversary is not able to learn or modify any information for this exchange). All others communications are exposed to eventual wiretapping.

The registration of the couple (SN A , SI A) in the database is represented as a state which associate the knowledge of (SN A , SI A) to the identity of the EN.

Finally, for revocation, since Tamarin is working on execution traces, we must represent the removal of the certificate from the database. For this we have employed a tag into a persistent fact to express that the revocation is definitive.

Security Properties

First, we explicit security properties i.e., lemmas, in the case where all entities are supposed honest but in presence of an intruder. As defined in the Section 5.1, we have implemented lemmas about correctness, soundness and secrecy of the protocol.

Soundness. The first lemma (soundness) proves the soundness of the LOCALPKI. The couple <sna,sia> represents SN the Serial Number and SI the Signature Id of Alice. Each label in the lemma represents the moment where the actual event occurs. The idea is to prove that for all possible couples (sna, sia) related to the Alice's private key ltkA, if Bob has successfully authenticated Alice at time i (Bob Auth Alice()), then it means that Alice has been previously registered (at time j, by the notary, EN Reg Alice()), and that if the certificate has been revoked (Cert Is Revoked()), then it was at an earlier time k: lemma soundness: all-traces "All EN B sna sia #i.

Bob_Auth_Alice(B, <sna,sia>, ltkA) @i ==> (Ex #j. EN_Reg_Alice(EN, <sna,sia>, ltkA)@j & (j<i)) & (All #k.

Cert_Is_Revoked(EN, <sna,sia>, ltkA)@k ==> i<k)"

Correctness. The second lemma (correctness) ensures that our model is correct, i.e., there exists an execution where Alice is registered, Bob authenticates Alice and the certificate is not revoked. Thanks to this lemma, we check that our model realizes the protocol steps in a correct order. Other lemmas in our modeling also provide sanity checks, for example to show that there exists a trace where the certificate has been correctly revoked.

lemma correctness: exists-trace "(Ex EN B sna sia ltkA #i #j. EN_Reg_Alice_(EN, <sna,sia>, ltkA) @i & Bob_Auth_Alice(B,<sna,sia>, ltkA) @j & not(Ex EN #l. Cert_Is_Revoked(EN, <sna,sia>, ltkA) @l & i<l))"

Secrecy. In the secrecy lemma (secrecy), we ensure the secrecy of exchanged messages using a LO-CALPKI based authentication. Then, we prove in Tamarin that the message (denoted x) should not be in the adversary knowledge, written as K() at any time.

lemma secrecy: all-traces "All x #i. Secret(x) @i ==> not(Ex #j. K(x)@j)"

Connection Integrity. Similarly, in the connection integrity lemma (connection), we ensure that the secret key of Alice, ltkA, should not be in the adversary knowledge neither in the case where Bob authenticates Alice from her certificate nor in the case where the certificate has been revoked.

lemma connection: all-traces "(All EN sna sia ltkA #i. Bob_Auth_Alice(B, <sna,sia>, ltkA)@i ==> not(Ex #l. K(ltkA) @l)) & (All B sna sia ltkA #i.

Cert_Is_Revoked(EN, <sna,sia>, ltkA) @i ==> not(Ex #l. K(ltkA) @l))"

In other words, whatever subsequent messages sent by any user, Alice's private key remains private.

Trust assumptions

Next, we show that our trust assumptions in both the LRA and the EN are mandatory in order to preserve the security of the protocol (as is the case in PKIX). To show this we present attacks on the protocol where one of the entity is malicious i.e. its private key is given to the adversary.

Trust in the EN. In the case where the notary is corrupted, the secrecy is not verified because he is able to add a false key pair to his database. Then after the authentication of Alice by Bob with these keys, a wiretap between communications allows him to retrieve secret exchanged information. Soundness is also falsified: since the adversary has access to the EN's private key, he acts as Alice has been previously registered into the EN database whereas she is not. In practice, this attack represents the possibility to the notary of giving to the person of his choice the trust to be authenticated. Concerning the connection integrity property, Tamarin finds an attack as soon as the EN's key is leaked to the adversary. The attack is the following: after its initialization, the EN registers himself as Alice. This means that the adversary forges a certificate using Alice's identity, and uses its own private key to sign the certificate. At the next step, Bob authenticates Alice using this certificate, and the adversary knows the associated private key: therefore the connection integrity is broken. First, this attacks highlights the obvious forgery ability of a malicious notary. Second, it shows that the connection integrity property is well-defined. Indeed, such a forgery ruins the integrity, even if the adversary has no knowledge of the Alice's actual private key. This proves that the EN should be a trusted entity.

Trust in the LRA. When the LRA's private key is leaked, the tool does not find any attack on the soundness. From a practical point of view, this result makes sense: the LRA is only involved into the registration process. Then, even if he provides false information, Alice should be registered before an authentication process. However, by removing the restriction of a unique registration per couple (SN A , SI A), the adversary sends a revoked couple to the EN, in order to pass over the revocation. In practice, serials numbers are provided by the EN so that this attack is easily preventable, by marking the used ones. Secrecy is falsified because the adversary impersonates the LRA during the last step of registration, by signing false information (i.e., false key pair). Then, since Bob does not exchange messages with the correct Alice's public key, and a simple wiretap allows the adversary to retrieve secret messages. When the LRA's private key is given to the adversary, the connection integrity is also broken. During this attack, Alice registers herself to the LRA. Then the LRA modifies Alice's certificate by including its own key pairs: the public one into the certificate, and the private one is used to sign the forged certificate. Then, the fake certificate is sent to the EN. Afterwards, suppose that the EN, for any reason, decides to revoke this certificate. At this point in time, the EN has succeeded in revoking the certificate while the adversary knows the associated private key. Hence, the connection integrity is broken. This attack shows the LRA ability to forge certificates. In conclusion, this proves that LRA should be a trusted entity.

Trust in Alice. When Alice is corrupted, repercussions on the protocol security are limited. It does not influence soundness property. This result is coherent: even with Alice's private key is given to the adversary, he cannot be authenticated without a previous registering. In practice, a malicious behavior from Alice could be an identity fraud during the registering if the LRA has been misled. However, this kind of attacks are out of the Tamarin scope, since ID checking cannot actually be modeled. On secrecy aspects, obviously, if the private key of Alice is leaked, the adversary is able to read the secret messages sent to Alice. This attack could correspond to the Alice's private key theft, where both Alice and the attacker are able to retrieve messages ciphered with the associate public key. Finally, if the private key of Alice is leaked, connection integrity is obviously broken, since the adversary can then use her key. Overall, we conclude that Alice does not need to be a trusted participant.

Security of the LOCALPKI

From our security analysis, using the Tamarin prover, we have proven the following theorem:

Theorem 1. If the notary and the local registration authority are not corrupted, then the LOCALPKI security architecture is correct, sound, and preserves confidentiality and integrity.

Our implementation consists of about 350 source lines of code to describe the model consisting of 20 rules and 4 lemmas. In order to reduce proof timings we have associated each entity to a defined Role. Moreover, we have enforced some actions to be unique (denoted as Only One). These constraints are called axioms into the code. They avoid generic rewriting of rules either by associating a fixed string to an identity variable or either by implying timepoints equality in case of multiple uses of the same rules. Therefore, using a single core of an i5 4590@3.50Ghz with 8GB RAM, we obtain very good performance for the security verification, as shown in Table 1.

Conclusion

In this paper, we have proposed an alternative public-key infrastructure model, LOCALPKI. This model has been analyzed and its security formally proven using Tamarin. The main feature is that, unlike the PKIX standard, here user certificates are self-signed and only the binding of a certificate with an identity is signed by a third-party, a notary in LOCALPKI. Therefore, it is easier for users to use certificates within their local environment. Furthermore, the registration process can be transferred to the notaries by local businesses, which only have to handle identity verifications. We think that this could foster a wider spread of certificates among everyday end users. For this, notaries just have to maintain an accessible database of fingerprints. Hence, LOCALPKI is an alternative to the PKIX solution, providing similar security properties. However, in some cases, the key management of LOCALPKI is better than PKIX. For example, bank customers have the possibility to look at their account from a website, sometimes using a certificate-based authentication. Managing a classical PKIX either requires a large internal department or a full delegation of trust to a PKI actor. By deploying the LOCALPKI solution, the bank still preserves a local registration, and thus trust and responsibility of its customers, and the technical part of ensuring their authentication is deported to notaries. Overall, the cost and the technical requirements for the company are reduced. Moreover, LOCALPKI also offers to small agencies the possibility to help users for their registration. The economics incentive would be to offer this service only at a moderate cost, where deploying a full PKI in every agency should be too expensive.

Also, as seen in the Section 4, the overall deployment of LOCALPKI can be made using only existing tools, which facilitates the process.

As further work, legal aspect on the shared responsibility of the LRA and the EN in LOCALPKI should be studied, since both entities play an important role into the registration and authentication processes. Our first idea is that the EN could register the identity of the LRA sending information about new users and store this information also within the database. Thus, if this user is recognized as malicious, the EN could blame the LRA.

Further work also includes a study about adapting the secure trust computations described in [START_REF] Dumas | Private multiparty matrix multiplication and trust computations[END_REF]. They compute a global trust by using the trust evaluation of each certification authorities towards the others. This allows to obtain a better hint about the trust given in CAs, instead of being based only on the trustfulness given by trust anchors. This method could be relevant to the LOCALPKI architecture, since it is also using the trust anchor mechanism.

We also plan to realize a study of whether this model could also simplify identity-based approaches like certificateless PKI [START_REF] Gentry | Certificate-based encryption and the certificate revocation problem[END_REF][START_REF] Baek | Certificateless public key encryption without pairing[END_REF].

Finally, just like Let's Encrypt offers certificates enabling HTTPS (via SSL/TLS) for websites, we plan to set up a web site offering the possibility to create self-signed LOCALPKI certificates for any user.

Figure 5 :

 5 Figure 5: Registration of Alice.

Figure 6 :

 6 Figure 6: Authentication of Bob by Alice (in private mode).

Figure 7 :

 7 Figure 7: Authentication of Bob by Alice (in public mode).

•

 Certificate creation is done by the CA in PKIX; in LOCALPKI it is done by the LRA while the notaries store and make this decision available (see § 3.2).

	3. Hash of cert.	
	Local RA	Notary
	2. Cert. Creation	
	ID: User	
	User Public Key	
	User Information	
	Validity	
	-	
	Database
	• The default authentication mode in PKIX is buffering via CRL; while default authentication mode in
	LOCALPKI is interactive, somewhat like OCSP Online-Certificate Status Protocol (see § 3.3.1).
	• The alternative authentication mode in PKIX is OCSP, while LOCALPKI can also propose an alterna-
	tive buffering mechanism called Certificate Verification Lists (CVL), described in Section 3.3.2.
	From a closer look at both protocols execution, the major difference is in the signature of the user's

2

 Certificate check in private mode (self signature verification) Require: Alice gets the certificate from Bob. She wants to check the validity of the certificate. Ensure: Authentication of Bob to Alice if the certificate is correct, failure otherwise. URL EN : AR=SN Bob ||SI Bob ||R A

	? == H(T BSCert B) then Alice: R A ← $ 1: if {SI A } Pk B 2:
	3: Alice → 4: if (SN Bob ; SI Bob) ∈ Database then
	5:	Rep = "OK"||AR
	6:	else
	7:	Rep = "Unknown"||AR
	8:	end if
	9:	URL EN → Alice: Rep||{H(Rep)} Sk EN
	10:	Alice checks the response signature, and authenticate (or not) Bob.
	11: end if
		Alice	Electronic Notary
		Knows Cert

B from Bob Recovers (T BSCert B , SI B) from Cert B with T BSCert B = Bob||Pk B ||SN B ... Check: H(T BSCert B)

 Algorithm 3 Certificate check in private mode (delegate signature verification) Require: Alice gets the certificate from Bob. She wants to check the validity of the certificate. Ensure: Authentication of Bob to Alice if the certificate is correct, failure otherwise. 1: Alice: R A ← $ 2: Alice → URL EN : AR=Cert Bob ||R A 3: if {SI A } Pk B Rep = "Wrong Signature"||AR 11: end if 12: URL EN → Alice: Rep||{H(Rep)} Sk EN 13: Alice checks the response signature, and authenticate (or not) Bob.

	5:	Rep = "OK"||AR
	6:	else
	7:	Rep = "Unknown"||AR
	8:	end if
	9: else
	10:	

?

== H(T BSCert B) then

4: if (SN Bob ; SI Bob) ∈ Database then

Algorithm 4

 4 Certificate revocationRequire: Alice correctly registered in the EN database. X ∈ {LRA,User} Ensure: The certificate revocation of User

1: X → EN: SI Rev = Cert X ||{H("Revoke"||(SN User ; SI User))} Sk X 2: EN checks signature 3: if Verification is OK and (SN X ; SI X) ∈ DataBase then 4:

Table 1 :

 1 Timings of Tamarin's proofs of lemmas.

	Lemma	CPU Time
	Correctness:	4.7 s
	Soundness:	4.4 s
	Connection integrity:	10.9 s
	Secrecy:	6.6 s