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Abstract

In this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on gen-
eral polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are
broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction
composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts for-
mula inside each element and (ii) a stabilising term for which sufficient design conditions are provided.
An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of
high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novel DSGDs satisfy
coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a va-
riety of elliptic and parabolic problems. Links with Hybrid High-Order, non-conforming Mimetic Finite
Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete
the exposition.

Keywords: Gradient discretisation methods, Gradient Schemes, high-order Mimetic Finite Difference
methods, Hybrid High-Order methods, Virtual Element methods, non-linear problems
2010 MSC: 65N08, 65N30, 65N12

1. Introduction

The numerical resolution of (linear or non-linear) partial differential equations (PDEs) is nowadays
ubiquitous in the engineering practice. In this context, the design of convergent numerical schemes
is a very active research topic. The Gradient Discretisation Method (GDM) is a recently introduced
framework which identifies key design properties to obtain convergent schemes for a variety of linear and
non-linear elliptic and parabolic problems. Several models of current use in fluid mechanics fall into the
latter categories including, e.g., porous media flows governed by Darcy’s law, phase change problems
governed by the Stefan problem [3636], as well as simplified models of the viscous terms in power-law
fluids corresponding the Leray–Lions elliptic operators. The latter also appear in the modelling of glacier
motion [3838], of incompressible turbulent flows in porous media [2626], and in airfoil design [3737].

A Gradient Discretisation (GD) is defined by a finite-dimensional space encoding the discrete un-
knowns, as well as two linear operators acting on the latter, and corresponding to reconstructions of
scalar functions and of their gradient. For a given PDE problem, convergent GDs are characterised
by four properties, which can also serve as guidelines for the design of new schemes: coercivity, which
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by the ARC Discovery Projects funding scheme (project number DP170100605). The third author was funded by the Lab-
oratory Directed Research and Development program, under the auspices of the National Nuclear Security Administration
of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC
under contract DE-AC52-06NA25396.
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corresponds to a discrete Poincaré inequality; GD-consistency, which expresses the ability of the scalar
and gradient reconstructions to approximate functions in the space where the continuous problem is set;
limit-conformity, linking the two reconstructions through an approximate integration by parts formula;
compactness, corresponding to a discrete counterpart of the Rellich theorem.

In the recent monograph [2828], several classical discretisation methods have been interpreted in the
GDM framework. These include: arbitrary-order conforming, nonconforming, and mixed Finite Elements
(FE) on standard meshes; arbitrary-order discontinuous Galerkin (DG) schemes in their SIPG form [11]
(see, in particular, [3535] on this point); various lowest-order Finite Volume methods on specific grids;
lowest-order methods belonging to the Hybrid Mixed Mimetic family (see the unified presentation in [2929]
of the methods originally proposed in [88, 2727, 3434]) as well as nodal Mimetic Finite Differences (MFD) [99]
on arbitrary polyhedral meshes; see also [44].

In this paper we present an important addition to the GDM framework: arbitrary-order Discontinuous
Skeletal (DS) methods [1818], characterised by globally coupled unknowns that are broken polynomials on
the mesh skeleton. Specifically, the primary source of inspiration are the recently introduced Hybrid High-
Order (HHO) methods for linear [2222, 2020] and non-linear [1616, 1717] diffusion problems, and the high-order
non-conforming MFD (ncMFD) method of [4141]; see also [22] for an interpretation in the Virtual Element
framework and [33] for an introduction to the latter. We also cite here the Hybridizable Discontinuous
Galerkin methods of [1414], whose link with the former methods has been studied in [1313]; see also [66]
for a unified formulation. Like DG methods, DS methods support arbitrary approximation orders on
general polytopal meshes. DS methods are, in addition, amenable to static condensation for linear(ised)
problems, which can significantly reduce the number of unknowns in some configurations. They also
have better data locality, which can ease parallel implementations. Moreover, lowest-order versions are
often available that can be easily fitted into traditional Finite Volume simulators. Finally, unlike DG
methods, DS methods admit a Fortin operator in general meshes, a crucial property in the context of
incompressible or quasi-incompressible problems in solid- and fluid-mechanics; see, e.g., [2020, 2323].

Let a polynomial degree k ě 0 be given. The Discontinuous Skeletal Gradient Discretisations (DSGD)
studied here hinge on face unknowns that ensure the global coupling and that correspond to broken
polynomials of total degree up to k on the mesh skeleton, as well as locally coupled element-based
unknowns that correspond to broken polynomials of total degree up to l P tk ´ 1, k, k ` 1u on the mesh
itself. The reconstruction of scalar functions is defined in a straightforward manner through the latter
if l ě 0, or by a suitable combination of face-based unknowns if l “ ´1. The gradient reconstruction,
on the other hand, requires a more careful design. The seminal ideas to devise high-order gradient
reconstructions on general meshes are already present, among others, in HHO methods (see, e.g., [2222,
Eq. (13)] and [1616, Eq. (4.3)]) as well as in ncMFD methods (see [4141, Eq. (21)]). These gradient
reconstructions, however, are not suitable to define a convergent DSGD because they fail to satisfy the
coercivity requirement. In addition, when considering non-linear problems, the codomain of the gradient
reconstruction has to be carefully selected in order for the GD-consistency requirement to be satisfied
with optimal scaling in the meshsize for k ě 1 (this point was already partially recognised in [1616]). In the
context of DG methods, a stable discrete gradient based on a variation of the method originally proposed
in [1212] has been recently studied in [4242].

The main novelty of this work is the introduction of a gradient reconstruction that meets all the
requirements to define a convergent GD, and which satisfies the limit-conformity property with an error
that scales optimally in the meshsize. This gradient reconstruction is composed of two terms: a con-
sistent contribution closely inspired by [1616, Eq. (4.3)] and a stabilisation term. Two design conditions
are identified for the stabilisation term: (i) local stability and boundedness with respect to a suitable
boundary seminorm and (ii) L2-orthogonality to vector-valued polynomials of degree up to k. When
considering problems posed in a non-Hilbertian setting, an additional condition is added stipulating that
the stabilisation is built on a piecewise polynomial space. An example of stabilisation term that meets
all of the above requirement is proposed based on a Raviart–Thomas–Nédélec space on a submesh.

The rest of the paper is organised as follows. In Section 22 we recall the basics of the GDM and give a
few examples of linear and non-linear problems for which GDs are convergent under the coercivity, GD-
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consistency, limit-conformity, and compactness properties discussed above. The construction of arbitrary-
order DSGD is presented in Section 33, the main results are stated in Section 3.53.5, and numerical examples
are collected in Section 3.73.7. The links with HHO, ncMFD, and ncVEM schemes are studied in detail in
Section 44. Appendix AAppendix A contains the proofs of the main results. The material is organised so that multiple
levels of reading are possible: readers mainly interested in the numerical recipe and results can primarily
focus on Sections 22–33; readers also interested in the relations with other polytopal methods can consult
Section 44.

2. The Gradient Discretisation Method

We give here a brief presentation of the Gradient Discretisation Method (GDM) in the context of
homogeneous Dirichlet boundary conditions, and we refer to the monograph [2828] for more details and
other boundary conditions.

2.1. Gradient Discretisations and Gradient Schemes

Let Ω be a bounded polytopal domain in Rd, where d ě 1 is the space dimension. We consider elliptic
or parabolic problems whose weak formulation is set in W 1,p

0 pΩq, where p P p1,`8q denotes a Sobolev
exponent which we assume fixed in what follows.

A Gradient Discretisation (GD) is a triplet D “ pXD,0,ΠD ,∇Dq where:
(i) XD,0 is a finite dimensional vector space on R encoding the discrete unknowns, and accounting for

the homogeneous Dirichlet boundary condition;

(ii) ΠD : XD,0 Ñ LppΩq is a linear mapping that reconstructs scalar functions in LppΩq from the
discrete unknowns in XD,0;

(iii) ∇D : XD,0 Ñ LppΩqd is a linear mapping that reconstructs the “gradient” of scalar functions in
LppΩqd from the unknowns in XD,0. This reconstruction must be defined such that }∇D ¨}LppΩqd is
a norm on XD,0.

In a nutshell, the GDM consists in selecting a GD and in replacing, in the weak formulation of
the PDE, the continuous space and operators by the discrete ones provided by the GD. The scheme
thus obtained is called a Gradient Scheme (GS). To illustrate this procedure, consider the simple linear
problem: Find u : Ω Ñ R such that

´∇¨pΛ∇uq “ f in Ω,

u “ 0 on BΩ,
(1)

with diffusion tensor Λ bounded and uniformly coercive, and source term f P L2pΩq. The weak formu-
lation of (11) is

Find u P H1
0 pΩq such that, for all v P H1

0 pΩq,

ż

Ω

Λ∇u¨∇v “

ż

Ω

fv. (2)

Given a gradient discretisation D, the gradient scheme for (22) is then

Find uD P XD,0 such that, for all vD P XD,0,

ż

Ω

Λ∇DuD ¨∇DvD “

ż

Ω

fΠDvD . (3)

The same procedure applies to non-linear problems. Consider, e.g., the following generalisation of (11)
that corresponds to Leray–Lions operators: Find u : Ω Ñ R such that

´∇¨σpx, u,∇uq “ f in Ω,

u “ 0 on BΩ,
(4)
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where the flux function σ : Ω ˆ R ˆ Rd Ñ Rd satisfies the requirements detailed in [2828, Eq. (2.85)]. A
paradigmatic example of this class of problems is the p-Laplace equation which, for a fixed p P p1,`8q,
corresponds to the flux function

σpx, u,∇uq “ |∇u|p´2∇u. (5)

Assuming f P Lp
1

pΩq with p1 –
p
p´1 , Problem (44) admits the following weak formulation:

Find u PW 1,p
0 pΩq such that, for all v PW 1,p

0 pΩq,

ż

Ω

σpx, u,∇uq¨∇v “

ż

Ω

fv. (6)

Given a gradient discretisation D, the gradient scheme for (66) is then

Find uD P XD,0 such that, for all vD P XD,0,

ż

Ω

σpx,ΠDu,∇DuDq¨∇DvD “

ż

Ω

fΠDvD . (7)

2.2. Convergent Gradient Schemes

The accuracy and convergence of GSs, for linear and non-linear problems, can be assessed by a few
properties of the underlying GDs. In many situations, and in all cases considered in this paper, GDs
are obtained starting from a mesh of the domain. We consider here polytopal meshes corresponding to
couples Mh – pTh,Fhq, where Th is a finite collection of polytopal elements T of maximum diameter
equal to h ą 0, while Fh is a finite collection of hyperplanar faces F . It is assumed henceforth that the
meshMh matches the weak geometrical requirements detailed in [2828, Definition 7.2]; see also [2525, Section
2]. Our focus is on the so-called h-convergence analysis, where we consider a sequence of refined meshes
pMhqhPH whose sizes are collected in a countable set H Ă R`˚ having 0 as its unique accumulation point.
We further assume that the polytopal mesh sequences that we deal with are regular in the sense of [2525,
Definition 3], and we denote by % ą 0 the corresponding regularity parameter.

The following properties allow us to single out sequences pDhqhPH “ pXDh,0,ΠDh
,∇Dh

qhPH of GDs
that lead to gradient schemes that converge, for both linear and non-linear problems:

(GD1) Coercivity. Consider, for all h P H, the norm of the linear mapping ΠDh
defined by:

CDh
– max

vPXDh,0zt0u

}ΠDh
v}LppΩq

}∇Dh
v}LppΩqd

.

Then, there exists a real number CP ą 0 such that CDh
ď CP for all h P H.

(GD2) GD-Consistency. For all h P H, let SDh
: W 1,p

0 pΩq Ñ r0,`8q be such that

SDh
pφq – min

vPXDh,0

`

}ΠDh
v ´ φ}LppΩq ` }∇Dh

v ´∇φ}LppΩqd
˘

@φ PW 1,p
0 pΩq.

Then, it holds that
lim
hÑ0

SDh
pφq “ 0 @φ PW 1,p

0 pΩq. (8)

(GD3) Limit-conformity. Let p1 –
p
p´1 denote the dual exponent of p, and set W p1

pdiv; Ωq – tψ P

Lp
1

pΩqd : ∇¨ψ P Lp1pΩqu. For all h P H, let WDh
: W p1

pdiv; Ωq Ñ r0,`8q be such that, for all

ψ PW p1
pdiv; Ωq,

WDh
pψq – sup

vPXDh,0zt0u

1

}∇Dh
v}LppΩqd

ˇ

ˇ

ˇ

ˇ

ż

Ω

´

∇Dh
vpxq¨ψpxq `ΠDh

vpxq∇¨ψpxq
¯

dx

ˇ

ˇ

ˇ

ˇ

.

Then, it holds that

lim
hÑ0

WDh
pψq “ 0 @ψ PW p1

pdiv; Ωq. (9)
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(GD4) Compactness. For any vh P XDh,0 such that p}∇Dh
vh}LppΩqdqhPH is bounded, the sequence

pΠDh
vhqhPH is relatively compact in LppΩq.

A few comments are of order. Property (GD1)(GD1) is linked to the stability of the method, and stipulates
that the Lp-norm of the reconstruction of scalar functions is uniformly controlled by the Lp-norm of
the reconstruction of their gradient. It readily implies the uniform Poincaré inequality }ΠDh

vh}LppΩq ď

CP}∇Dh
vh}LppΩqd valid for all h P H and all vh P XDh,0.

Properties (GD2)(GD2) and (GD3)(GD3) are linked to the consistency of the method. More specifically, property
(GD2)(GD2) states that the reconstructions ΠDh

of scalar functions and ∇Dh
of their gradients are able to

approximate functions that lie in the space W 1,p
0 pΩq where the continuous problem is set. In the context of

the FE convergence analysis, this property is an attribute of the underlying discrete space, and is usually
called approximability ; see, e.g., [3333, Definition 2.14]. Property (GD3)(GD3), on the other hand, establishes
a link between ΠDh

and ∇Dh
in the form of a discrete integration by parts formula. Its counterpart in

the context of the FE convergence analysis for linear problems is asymptotic consistency ; see, e.g., [3333,
Definition 2.15]. Notice, however, that the formulation in (GD3)(GD3) is in a sense more general, as it is
not linked to a specific underlying problem and is in particular readily applicable to non-linear problems
(whereas [3333, Definition 2.15] is restricted to linear problems).

Finally, property (GD4)(GD4) is a discrete Rellich compactness theorem, and can be regarded as the key
ingredient to obtain strong convergence results by compactness techniques.

Remark 1 (Limit-conformity or compactness implies coercivity). Either one of (GD3)(GD3) or (GD4)(GD4) imply
(GD1)(GD1), see [2828, Lemmas 2.7 and 2.11]. The coercivity is however kept as a separate property to highlight
its importance.

The above properties are sufficient to carry out a convergence analysis, either by error estimates
(when the model is amenable to these) or by compactness, for a variety of linear and non-linear elliptic or
parabolic models. An example of such convergence results for gradient discretisations of the Leray–Lions
problem (66) is provided by Theorems 22 and 33 below; see [2828] for a comprehensive collection of convergence
results for various linear and non-linear elliptic and parabolic problems.

Theorem 2 (Convergence). We assume that σ satisfies the classical properties of Leray–Lions operators
(see [2828, Eqs. (2.85) and (2.87)]). Let pDhqhPH denote a sequence of GDs satisfying (GD1)(GD1)–(GD4)(GD4).
Then, for all h P H, there exists at least one uDh

P XDh,0 solution to (77) and, along a subsequence as
h Ñ 0, (i) ΠDh

uDh
converges strongly in LppΩq to a solution u of (66); (ii) ∇Dh

uDh
converges strongly

in LppΩqd to ∇u.

Proof. This is a special case of [2828, Theorem 2.45].

Theorem 3 (Error estimates). Let D be a gradient discretisation, and let σ be the Leray–Lions operator
corresponding to the p-Laplace equation (see (55)). Then there exists a unique uD solution to (77) and, if
u is the solution to (66), then there exists C depending only on p, f and an upper bound of CD such that

• If 1 ă p ď 2,

}u´ΠDuD}LppΩq ` }∇u´∇DuD}LppΩq ď C
“

SDpuq ` SDpuq
p´1 `WDpσp∇uqq

‰

.

• If 2 ď p,

}u´ΠDuD}LppΩq ` }∇u´∇DuD}LppΩq ď C
”

SDpuq ` SDpuq
1

p´1 `WDpσp∇uqq
1

p´1

ı

.

Proof. These error estimates are simplified forms of the ones in [2828, Theorem 2.39].

3. Discontinuous Skeletal Gradient Discretisations

In this section, we construct a family of Discontinuous Skeletal Gradient Discretisations (DSGD). The
notation is closely inspired by HHO methods; see, e.g., [2525].
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3.1. Local polynomial spaces and projectors

Local polynomial spaces on mesh elements or faces and projectors thereon play a crucial role in the
design and analysis of DSGD methods.

For any X Ă Ω, we denote by p¨, ¨qX the standard L2pXq- or L2pXqd-products. This notation is
used in place of integrals when dealing with quantities that are inherently L2-based. Let now X be a
mesh element or face. For an integer ` ě 0, P`pXq denotes the space spanned by the restriction to X of
scalar-valued, d-variate (if X is a mesh element) or pd ´ 1q-variate (if X is a face) polynomials of total
degree ` or less, and conventionally set P´1pXq – t0u.

Let again X denote a mesh element or face. The L2-orthogonal projector π0,`
X : L1pXq Ñ P`pXq is

defined as follows: For all v P L1pXq, π0,`
X is the unique polynomial in P`pXq such that

pπ0,`
X v ´ v, wqX “ 0 @w P P`pXq. (10)

In the vector case, the L2-projector is defined component-wise and denoted by π0,`
X .

For any mesh element T P Th, we also define the elliptic projector π1,`
T : W 1,1pT q Ñ P`pT q as follows:

For all v PW 1,1pT q, π1,`
T v is the unique polynomial in P`pT q that satisfies

p∇pπ1,`
T v ´ vq,∇wqT “ 0 for all w P P`pT q and pπ1,`

T v ´ v, 1qT “ 0.

On regular polytopal mesh sequences, both π0,`
T and π1,`

T have optimal approximation properties in
P`pT q (see Theorem 1.1, Theorem 1.2, and Lemma 3.1 in [1717]): For any α P t0, 1u and s P tα, . . . , `` 1u,
there exists a real number C ą 0 independent of h, but possibly depending only on d, p, %, `, α, and s,
such that, for all T P Th, and all v PW s,ppT q,

|v ´ πα,`T v|W r,ppT q ď Chs´rT |v|W s,ppT q @r P t0, . . . , su, (11a)

and, if s ě 1,

h
1
p

T |v ´ π
α,`
T v|W r,ppFT q ď Chs´rT |v|W s,ppT q @r P t0, . . . , s´ 1u, (11b)

where W r,ppFT q –
 

v P LppBT q : v|F PW
r,ppF q for all F P FT

(

and hT denotes the diameter of the
element T .

3.2. Computing gradient projections from projections of scalar functions

We continue our discussion with a crucial remark concerning the computation of the L2-orthogonal
projection of the gradient from L2-orthogonal projections of a scalar function and its traces. This remark
will inspire the choice of the discrete unknowns as well as the definition of the gradient reconstruction
in DSGD methods. In what follows, we work on a fixed mesh element T P Th, denote by FT the set of
mesh faces that lie on the boundary of T and, for all F P FT , by nTF the normal vector to F pointing
out of T .

Consider a function v P W 1,1pT q. We note the following integration by parts formula, valid for all
φ P C8pT qd:

p∇v,φqT “ ´pv,∇¨φqT `
ÿ

FPFT

pv,φ¨nTF qF . (12)

Let now an integer k ě 0 be fixed. Specialising (1212) to φ P PkpT qd, we obtain

pπ0,k
T ∇v,φqT “ ´pπ

0,k´1
T v,∇¨φqT `

ÿ

FPFT

pπ0,k
F v,φ¨nTF qF , (13)

where we have used (1010) to insert π0,k
T into the left-hand side, and π0,k´1

T and π0,k
F into the right-hand

side after observing that ∇¨φ P Pk´1pT q and, since we are considering planar faces, φ|F ¨nTF P PkpF q for

all F P FT . The relation (1313) shows that computing the L2-orthogonal projection of ∇v on PkpT qd does
not require a full knowledge of the function v. All that is required is

6



(i) π0,k´1
T v, the L2-projection of v on Pk´1pT q. Other possible choices are π0,k

T v or π0,k`1
T v (in fact,

any polynomial degree larger than or equal to k ´ 1 will do);

(ii) for all F P FT , π0,k
F v, the L2-projection on PkpF q of the trace of v on F .

3.3. Space of discrete unknowns and reconstruction of scalar functions

Inspired by the previous remark, for two given integers k ě 0 and l P tk´ 1, k, k` 1u we consider the
following set of discrete unknowns:

Uk,lh –

˜

ą

TPTh

PlpT q

¸

ˆ

˜

ą

FPFh

PkpF q

¸

.

The choice l “ k´1 can be traced back to the ncMFD of [4141], the choice l “ k to the Hybrid High-Order
method of [2222], and the choice l “ k ` 1 to the Hybridizable Discontinuous Galerkin method of [4040,
Remark 1.2.4]. Notice that, for k “ 0 and l “ k ´ 1, element-based unknowns are not present.

For a generic element of Uk,lh , we use the standard HHO underlined notation

vh “ ppvT qTPTh
, pvF qFPFh

q ,

and we define the interpolator Ik,lh : W 1,1pΩq Ñ Uk,lh such that, for all v PW 1,1pΩq,

Ik,lh v –

´

pπ0,l
T vqTPTh

, pπ0,k
F v|F qFPFh

¯

.

To account for Dirichlet boundary conditions strongly, we introduce the subspace

Uk,lh,0 –

!

vh P U
k,l
h : vF ” 0 for all F P Fb

h

)

,

where Fb
h is the set collecting the mesh faces that lie on the boundary of Ω.

The restrictions of Uk,lh , Ik,lh and vh P U
k,l
h to a generic mesh element T P Th are denoted by Uk,lT , Ik,lT ,

and vT , respectively. That is,

Uk,lT – tvT “ pvT , pvF qFPFT
q : vT P PlpT q , vF P PkpF q @F P FT u

and, for all v PW 1,1pT q,

Ik,lT v – pπ0,l
T v, pπ0,k

F v|F qFPFT
q.

Moreover, we adopt the convention that, for all T P Th,

vT –
ÿ

FPFT

ωTF vF if l ă 0, (14)

where, following [4141, Appendix A], the weights tωTF uFPFT
are defined in such a way that

ř

FPFT
ωTF pq, 1qF “

pq, 1qT for all q P P1pT q (this condition is required in the above reference to obtain L2-superconvergence,

not treated in this work). For all vh P U
k,l
h , we also define the broken polynomial field vh such that

vh|T – vT @T P Th. (15)

The space of discrete unknowns and the reconstruction of the scalar variable for a DSDG are given
by, respectively,

XDh,0 – Uk,lh,0 and ΠDh
vh – vh for all vh P U

k,l
h,0. (16)

3.4. Reconstruction of the gradient

To complete the definition of a DSGD, it remains to identify a reconstruction of the gradient, which
makes the object of this section.
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3.4.1. A consistent and limit-conforming high-order gradient

Let a mesh element T P Th be fixed. Taking inspiration from the integration by parts formula (1313),

we define the gradient reconstruction Gk
T : Uk,lT Ñ PkpT qd such that, for any vT “ pvT , pvF qFPFT

q P Uk,lT ,

Gk
T vT satisfies, for all φ P PkpT qd,

pGk
T vT ,φqT “ ´pvT ,∇¨φqT `

ÿ

FPFT

pvF ,φ¨nTF qF . (17)

By construction, it holds for all v PW 1,1pT q,

Gk
T I

k,l
T v “ π0,k

T p∇vq. (18)

Recalling the estimates (1111) on π0,k
T , this implies that Gk

T I
k,l
T v optimally approximates ∇v in PkpT qd

when v is smooth enough.
A reconstruction of the gradient that meets the consistency requirement expressed by (GD2)(GD2) can be

obtained at this point letting ∇Dh
be such that, for all vh P U

k,l
h,0,

∇Dh
vh “ Gk

hvh, (19)

where Gk
h : Uk,lh Ñ PkpThqd is the global consistent gradient reconstruction operator obtained patching

the local reconstructions: For all vh P U
k,l
h ,

pGk
hvhq|T – Gk

T vT @T P Th. (20)

However, for general element shapes, the Lp-norm of this gradient reconstruction is not a norm on
the space XDh,0 “ Uk,lh,0, hence the coercivity requirement expressed by (GD1)(GD1) cannot be met. This
initial choice of reconstructed gradient therefore has to be stabilised by accounting for jumps between
element and face unknowns. These jumps can be controlled in turn via a discrete counterpart of the
W 1,p-seminorm, which gives us an emulated Sobolev structure on Uk,lh .

Remark 4 (Non-conforming P1 finite elements). If T is a d-simplex (i.e., a triangle if d “ 2, a tetrahedron
if d “ 3, etc.) and we take k “ 0 and l “ ´1, the gradient reconstruction Gk

T vT defined by (1717) coincides
with the gradient of the non-conforming P1 function ϕ such that |F |´1

ş

F
ϕ “ vF for all F P FT . In

this case, the Lp-norm of the global gradient given by (1919) defines a norm on the space of discrete
unknowns, and stabilisation is not needed. To recover the usual non-conforming P1 scheme (often called
the Crouzeix–Raviart scheme, although historically this name refers to the usage of non-conforming P1–
P0 discretisations for the velocity–pressure unknowns in Stokes and Navier–Stokes equations [1515]), (1616)
has to be modified setting ΠDh

vh|T – r1
T vT for all T P Th and all vT P U

0,´1
T , where r1

T is the high-order
reconstruction of scalar function defined in the following section.

3.4.2. High-order reconstruction of scalar functions and discrete W 1,p-seminorm

Let vT P U
k,l
T . Recalling the convention (1414), vT defines a reconstruction of scalar functions inside T

of degree maxp0, lq. However, taking again inspiration from the integration by parts formula (1313), this

time specialised to φ “∇w with w P Pk`1pT q, one can define a higher-order reconstruction rk`1
T : Uk,lT Ñ

Pk`1pT q such that, for all vT P U
k,l
T , rk`1

T vT satisfies, for all w P Pk`1pT q,

p∇rk`1
T vT ,∇wqT “ ´pvT ,4wqT `

ÿ

FPFT

pvF ,∇w¨nTF qF . (21a)

Equation (21a21a) defines rk`1
T vT up to an additive constant, which we fix by imposing

prk`1
T vT ´ vT , 1qT “ 0. (21b)
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Remark 5 (Optimal approximation properties of rk`1
T ˝ Ik,lT ). When l ě 0, following the reasoning of [2222,

Lemma 3], it can be proved that rk`1
T ˝ Ik,lT “ π1,k`1

T , and optimal approximation properties in Pk`1pT q
follow from (1111) with α “ 1 and ` “ k ` 1. The case l ă 0, on the other hand, can only occur when
k “ 0. Owing to the specific choice for the reconstruction of a (constant) element value in (1414), optimal
approximation properties analogous to (1111) with α “ 1 and ` “ 1 can be proved also in this case.

To define the discrete Sobolev seminorm on Uk,lh , for all T P Th we introduce the difference operators

δlT : Uk,lT Ñ PlpT q and, for all F P FT , δkTF : Uk,lT Ñ PkpF q such that, for all vT P U
k,l
T ,

δlT vT – π0,l
T pr

k`1
T vT ´ vT q, δkTF vT – π0,k

F prk`1
T vT ´ vF q @F P FT . (22)

The role of these difference operators in the context of HHO methods has been highlighted in [2525,
Section 3.1.4]. We also note here the following relation:

pδlT vT , pδ
k
TF vT qFPFT

q “ Ik,lT rk`1
T vT ´ vT , (23)

which will be exploited in Section 4.54.5 and Lemma 2121 below.
The discrete W 1,p-seminorm is defined setting

}vh}
p
1,p,h –

ÿ

TPTh

}vT }
p
1,p,T ,

where, for all T P Th, the local seminorm is such that, denoting by hF the diameter of the face F ,

}vT }
p
1,p,T – }Gk

T vT }
p
LppT qd

` |vT |
p
p,BT , |vT |

p
p,BT –

ÿ

FPFT

h1´p
F }pδkTF ´ δ

l
T qvT }

p
LppF q. (24)

As a result of Proposition 2020 below, }¨}1,p,h is a norm on the subspace Uk,lh,0.

3.4.3. A stabilised reconstruction of the gradient

We can now describe the general form of the gradient ∇Dh
: Uk,lh Ñ L2pΩqd, built inside each mesh

element from the consistent and limit-conforming part Gk
T and a stabilising contribution:

p∇Dh
vhq|T “ GT vT – Gk

T vT ` ST vT @vh P U
k,l
h , @T P Th, (25)

where ST : Uk,lT Ñ L2pT qd satisfies the following design conditions:

(S1) L2-stability and boundedness. For all T P Th and all vT P U
k,l
T , it holds that

}ST vT }L2pT qd » |vT |2,BT , (26)

where a » b means Ca ď b ď C´1a with real number C ą 0 independent of h and of T , but possibly
depending on d and on discretisation parameters including %, k, and l.

(S2) Orthogonality. For all vT P U
k,l
T and all φ P PkpT qd, it holds

pST vT ,φqT “ 0. (27)

(S3) Image. If p ‰ 2, there exists kS P N independent of h and of T such that the image of ST is
contained in PkSpPT qd, the space of vector-valued broken polynomials of total degree up to kS on a
regular polytopal partition PT of T . Here, regular means that, for all P P PT , denoting by rP and
hP the inradius and diameter of P , respectively, it holds that

%hP ď rP , %hT ď hP . (28)
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Remark 6 (L2-based stabilising contribution). Property (S2)(S2), which is crucial to ensure the stabilising
properties of ST , requires to work with an inner product space. In our case, a natural choice is L2pT qd.
The role of orthogonality properties analogous to (S2)(S2) has been previously recognised in the context of
specific stabilised method, see for example [77, Proposition 7] for the lowest-order Compatible Discretisa-
tion Operator methods, [2828, Theorems 13.7 and 14.5] for the Hybrid Mimetic Mixed methods and the
nodal Mimetic Mixed Methods, and [3232, Section 4.2] for numerical methods for elasticity models.

Remark 7 (Lp-stability of ST ). Property (S3)(S3) is required to extend the stability properties expressed by
(S1)(S1) to Lp; see the proof of point (i) in Proposition 1919 for further details.

The above construction of a DSGD is summarised in the following

Definition 8 (Discontinuous Skeletal Gradient Discretisation). Given a polytopal mesh Mh, a Discon-
tinuous Skeletal Gradient Discretisation (DSGD) is given by Dh “ pXDh,0,ΠDh

,∇Dh
q where XDh,0 and

ΠDh
are defined by (1616), and ∇Dh

is given by (2525) with a family of stabilisations tST : T P Mhu

satisfying properties (S1)(S1)–(S3)(S3).

3.5. Main results

The construction detailed above yields a GD that meets properties (GD1)(GD1)–(GD4)(GD4) identified in
Section 22, as summarised in the following

Theorem 9 (Properties of DSGD). If pMhqhPH is a regular sequence of polytopal meshes, then the
sequence of the corresponding DSGDs pDhqhPH given by Definition 88 satisfies properties (GD1)(GD1)–(GD4)(GD4).

Proof. See Appendix A.3.1Appendix A.3.1.

Since we are dealing with arbitrary-order methods, given the error estimates in Theorem 33, a relevant
point consists in estimating the convergence rates of the quantities SDh

pφq (see (GD2)(GD2)) and WDpψq (see
(GD3)(GD3)) when their arguments exhibit further regularity. This makes the object of the following

Proposition 10 (Estimates on SD and WD). Let Mh be a polytopal mesh and Dh be a DSGD as in
Definition 88. Then, denoting by a À b the inequality a ď Cb with real number C ą 0 not depending on
h, but possibly depending on d, p, %, k, l, and kS, it holds with l` – maxpl, 0q,

@φ PW 1,p
0 pΩq XW l``1,ppThq, }ΠDh

Ik,lh φ´ φ}LppΩq À hl
`
`1|φ|W l``1,ppThq

, (29a)

@φ PW 1,p
0 pΩq XW k`2,ppThq, }∇Dh

Ik,lh φ´∇φ}LppΩqd À hk`1|φ|Wk`2,ppThq
. (29b)

As a consequence,

@φ PW 1,p
0 pΩq XWminpk,l`q`2,ppThq, SDh

pφq À hminpk,l`q`1}φ}Wminpk,l`q`2,ppThq
. (30)

Moreover,

@ψ PW p1
pdiv; Ωq XW k`1,p1pThqd, WDh

pψq À hk`1}ψ}Wk`1,p1 pThq
d . (31)

Here, for an integer s ě 0 and a real number q P r1,`8q, W s,qpThq – tv P LqpΩq : v|T P W
s,qpT q @T P

Thu is the broken space on Th constructed on W s,q and endowed with the norm

}v}W s,qpThq –

˜

ÿ

TPTh

}v|T }
q
W s,qpT q

¸
1
q

.

Proof. See Appendix A.3.2Appendix A.3.2.

Remark 11 (Order of SDh
). In the case l ě k, (3030) yields the optimal order Ophk`1q for interpolations of

smooth enough functions. If l “ k´ 1, one order is lost and (3030) gives an Ophkq estimate (but, as shown
by (2929), this loss is only perceptible on the approximations of the functions, not of their gradients).
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3.6. Local stabilising contribution based on a Raviart–Thomas–Nédélec subspace

We construct in this section a stabilising contribution that fulfils the requirements expressed by (S1)(S1)–
(S3)(S3).

3.6.1. An inspiring remark

Let, for the sake of brevity,
δk∇,T – ∇rk`1

T ´Gk
T .

We start by observing that it holds, for all vT P U
k,l
T and all φ P PkpT qd,

pδk∇,T vT ,φqT “ p∇rk`1
T vT ,φqT ´ pG

k
T vT ,φqT

“ pvT ´ rk`1
T vT ,∇¨φqT `

ÿ

FPFT

prk`1
T vT ´ vF ,φ¨nTF qF

“ pπ0,l
T pvT ´ rk`1

T vT q,∇¨φqT `
ÿ

FPFT

pπ0,k
F prk`1

T vT ´ vF q,φ¨nTF qF

“ ´pδlT vT ,∇¨φqT `
ÿ

FPFT

pδkTF vT ,φ¨nTF qF

“ p∇δlT vT ,φqT `
ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,φ¨nTF qF ,

where we have used the definition of δk∇,T in the first line, an integration by parts together with the

definition (1717) of Gk
T in the second line, (1010) together with the fact that ∇¨φ P Pk´1pT q Ă PlpT q

since l ě k ´ 1 and φ|F ¨nTF P PkpF q for all F P FT to introduce the projectors in the third line, the

definition (2222) of δlT and δkTF in the fourth line, and an integration by parts to conclude. Rearranging
the terms, we arrive at

ppδk∇,T ´∇δlT qvT ,φqT “
ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,φ¨nTF qF . (32)

A few remarks are of order to illustrate the consequences of the above relation.

Remark 12 (Control of the element-based difference through face-based differences). A first notable
consequence is that the element-based difference pδk∇,T ´∇δlT qvT can be controlled in terms of the face-

based differences tpδkTF ´ δ
l
T qvT : F P FT u: For all T P Th and all vT P U

k,l
T , it holds

}pδk∇,T ´∇δlT qvT }L2pT qd À |vT |2,BT , (33)

where a À b means a ď Cb with real number C ą 0 independent of h and of T , but possibly depending
on d, %, k, and l. To prove (3333), it suffices to observe that

}pδk∇,T ´∇δlT qvT }L2pT qd “ sup
φPPkpT qd,}φ}

L2pT qd
“1

ppδk∇,T ´∇δlT qvT ,φqT

“ sup
φPPkpT qd,}φ}

L2pT qd
“1

ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,φ¨nTF qF

ď sup
φPPkpT qd,}φ}

L2pT qd
“1

|vT |2,BTh
1
2

T }φ¨nT }L2pBT q À |vT |2,BT ,

where we have used the fact that pδk∇,T ´∇δlT qvT P PkpT qd in the first line, (3232) in the second line, the
Cauchy–Schwarz inequality in the third line, and the discrete trace inequality (A.6A.6) below with p “ 2 to

infer h
1
2

T }φ¨nT }L2pBT q À }φ}L2pT qd and conclude.
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Figure 1: Illustration of PTF .

Remark 13 (Stabilisation based on a lifting of face-based differences). Let now vT P Uk,lT be fixed.
Relation (3232) no longer holds true in general if we replace φ by a function η belonging to a space ST

larger than PkpT qd. It then makes sense to define the nontrivial residual linear form RT pvT ; ¨q : ST Ñ R
such that

RT pvT ;ηq – ´ppδk∇,T ´∇δlT qvT ,ηqT `
ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,η¨nTF qF .

Assume now ST large enough for the L2pT qd-norm of the Riesz representation LT vT PST of RT pvT ; ¨q
to control |vT |2,BT (hence also }pδk∇,T ´∇δlT qvT }L2pT qd by (3333)). Property (S1)(S1) is then fulfilled letting
the stabilising contribution in (2525) be such that ST vT “ LT vT for all vT . This choice also satisfies

(S2)(S2) by construction since PkpT qd Ă ST and RT pvT ; ¨q vanishes on PkpT qd for any vT P U
k,l
T owing

to (3232). Finally, property (S3)(S3) is satisfied provided that ST is a piecewise polynomial space on a regular
polytopal partition of T .

The above procedure can be interpreted as a lifting on ST of the face-based differences tpδkTF´δ
l
T qvT :

F P FT u realised by means of the operator LT . This interpretation justifies the terminology employed in
Section 3.6.33.6.3 below.

3.6.2. A Raviart–Thomas–Nédélec subspace

In this section we define a good candidate to play the role of the space ST in Remark 1313. From this
point on, we work on a fixed mesh element T P Th and assume, for the sake of simplicity, that (i) the
faces of T are pd´1q-simplices and that (ii) T is star-shaped with respect to a point xT whose ortogonal
distance dTF from each face F P FT satisfies

dTF ě %hT , (34)

where, as in Section 2.22.2, % denotes the mesh regularity parameter. These assumptions can be relaxed
using a simplicial submesh of T and at the price of a heavier notation. For all F P FT , we denote by PTF
the d-simplex of base F and apex xT , and by FTF the set of pd´ 1q-simplicial faces of PTF , see Figure
11. In what follows, we work on the face-based simplicial partition PT – tPTF : F P FT u.

For an integer m ě 0 and a face F P FT , we let RTmpPTF q – PmpPTF qd ` xPmpPTF q denote the
Raviart–Thomas–Nédélec space [4444, 4343] of degree m on the simplex PTF . Each function η P RTmpPTF q
is uniquely identified by the following degrees of freedom (see, e.g., [55, Proposition 2.3.4]):

pη¨nσ, qqσ @σ P FTF ,@q P Pmpσq,
pη,χqPTF

@χ P Pm´1pPTF q
d,

12



where, for all σ P FTF , the normal nσ points out of PTF . Additionally, we note the following relation,
valid for all η P RTmpPTF q:

}η}2L2pPTF qd
» }π0,m´1

PTF
η}2L2pPTF qd

`
ÿ

σPFTF

hF }η¨nσ}
2
L2pσq, (35)

where » means Ca ď b ď C´1a with real number C ą 0 independent of h and of PTF , but possibly
depending on % and m.

The candidate to play the role of the space ST in Remark 1313 is RTk`1
pPT q, the broken Raviart–

Thomas–Nédélec space of degree pk ` 1q on the submesh PT .

3.6.3. Lifting of face-based differences

We are now ready to construct the lifting of face-based differences. Owing to the specific choice of
ST , we can proceed face by face. Specifically, for all F P FT , we define the lifting operator Lk`1

TF : Uk,lT Ñ

RTk`1
pPTF q such that, for all vT P U

k,l
T , Lk`1

TF vT satisfies for all η P RTk`1
pPTF q

pLk`1
TF vT ,ηqPTF

“ ´ppδk∇,T ´∇δlT qvT ,ηqPTF
` ppδkTF ´ δ

l
T qvT ,η¨nTF qF . (36)

In what follows, we extend Lk`1
TF vT by zero outside PTF .

Proposition 14 (Stabilisation based on a Raviart–Thomas–Nédélec subspace). The following stabilising
contribution satisfies properties (S1)(S1)–(S3)(S3):

ST –
ÿ

FPFT

Lk`1
TF . (37)

Proof. (i) Proof of (S1)(S1). We abridge by a À b the inequality a ď Cb with real number C independent of
both h and T , but possibly depending on d, %, k, and l. We start by proving that

|vT |2,BT À }ST vT }L2pT qd . (38)

Let η P RTk`1
pPTF q be such that

pη¨nTF , qqF “ h´1
F ppδ

k
TF ´ δ

l
T qvT , qqF @q P Pk`1pF q,

pη¨nσ, qqσ “ 0 @σ P FTF ztF u,@q P Pk`1pσq,

pη,χqPTF
“ 0 @χ P PkpPTF qd.

(39)

Plugging this definition into (3636) and using the Cauchy–Schwarz inequality, we infer that

h´1
F }pδ

k
TF ´ δ

l
T qvT }

2
L2pF q ď }L

k`1
TF vT }L2pPTF qd

}η}L2pPTF qd

À }Lk`1
TF vT }L2pPTF qd

h
´ 1

2

F }pδkTF ´ δ
l
T qvT }L2pF q,

where we have used (3535) and (3939) with q “ η¨nTF P Pk`1pF q or q “ η¨nσ P Pk`1pσq to estimate the

L2-norm of η. Dividing by h
´ 1

2

F }pδkTF ´ δlT qvT }L2pF q, squaring, summing over F P FT , and taking the
square root of the resulting inequality proves (3838).

Let us now prove that
}ST vT }L2pT qd À |vT |2,BT . (40)
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Letting in (3636) η “ Lk`1
TF vT , summing over F P FT , and using multiple times the Cauchy–Schwarz

inequality, we obtain

}ST vT }
2
L2pT qd “

ÿ

FPFT

}Lk`1
TF vT }

2
L2pPTF qd

ď

ˆ

}pδk∇,T ´∇δlT qvT }
2
L2pT qd `

ÿ

FPFT

h´1
F }pδ

k
TF ´ δ

l
T qvT }

2
L2pF q

˙
1
2

ˆ

ˆ

}ST vT }
2
L2pT qd ` hT }ST vT ¨nT }

2
L2pBT q

˙
1
2

À |vT |2,BT }ST vT }L2pT qd ,

where we have used (3333) and the discrete trace inequality (A.6A.6) below with p “ 2 to conclude. Combin-
ing (3838) and (4040) gives (S1)(S1).

(ii) Proof of (S2)(S2). Let φ P PkpT qd, set η “ φ|PTF
P PkpPTF qd Ă RTk`1

pPTF q in (3636), and sum over
F P FT to obtain

pST vT ,φqT “
ÿ

FPFT

pLk`1
TF vT ,φqPTF

“ ´ppδk∇,T ´∇δlT qvT ,φqT `
ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,φ¨nTF qF “ 0,

where we have used (3232) to conclude.
(iii) Proof of (S3)(S3). The regularity of the face-based partition PT follows from (3434) in view of [2424,

Lemma 3]. Property (S3)(S3) is then satisfied with kS – k ` 2.

Remark 15 (The lowest-order case). The lifting operators LTF and stabilisation ST described above are
some of the possible choices that satisfy (S1)(S1)–(S3)(S3). In certain cases, simpler liftings can be designed.
Consider for example k “ 0 and l P t´1, 0u. In this case, (i) δk∇,T vT “ 0 since P0pT qd “∇P1pT q, so that

G0
T “∇r1

T ; (ii) δ´1
T “ δ0

T “ 0 by (21b21b). Hence, (3636) reduces to

pL1
TF vT ,ηqPTF

“ pδkTF vT ,η¨nTF qF . (41)

An appropriate lifting can then be constructed in P0pPTF q
d instead of RT1

pPTF q as described hereafter,
and the assumption that the faces of T are simplices can be removed (for any F P FT , PTF is then the

pyramid with base F and apex xT ). Define LHMM

TF : U0,l
T Ñ P0pPTF q

d such that, for all vT P U
0,l
T ,

LHMM

TF vT “
|F |

|PTF |
δ0
TF vTnTF “

d

dTF
δ0
TF vTnTF .

Notice that this lifting is designed to satisfy (4141) for all η P P0pPTF q
d. Defining, for all T P Th, ST by

(3737), the discrete elements of the corresponding DSGD D are then

XD,0 “ tvh “ ppvT qTPTh
, pvF qFPFh

q : vT P R , vF P R , vF “ 0 @F P Fb
hu,

and, for all vh P XD,0 and all T P Th, expressing (1717), (2121) and (2222) for k “ 0,

pΠDvhq|T “ vT ,

p∇Dvhq|PTF
“ G0

T vh `
d

dTF

`

vT `G0
T vT ¨ pxF ´ xT q ´ vF

˘

nTF @F P FT

where xF is the centre of mass of F and G0
T vT – 1

|T |

ř

FPFT
|F |vFnTF .
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Figure 2: Triangular, Cartesian, hexagonal and locally refined meshes for the numerical examples of Section 3.73.7

This gradient discretisation corresponds, for k “ l “ 0, to the Hybrid-Mixed-Mimetic methods of [2929]
(with the isomorphism AT “ ´ 1?

d
Id in [2929, Section 5.3.1]). The coercivity, GD-consistency, limit–

conformity and compactness of families of such GDs are established in [2828, Chapter 13], and can also be
proved by checking that ST satisfies (S1)(S1)–(S3)(S3) (use η “ h´1

F δ0
TF vTnTF in (4141) to establish Á in (2626),

and [2828, Eq. (13.10)] to see that
ş

T
ST vT “ 0 and thus that (S2)(S2) holds).

3.7. Numerical examples

In this section we provide numerical evidence to support our theoretical results.

3.7.1. Trigonometric solution for p ě 2

We solve inside the two-dimensional unit square Ω “ p0, 1q2 the p-Laplace problem (66) corresponding
to the exact solution

upxq “ sinpπx1q sinpπx2q, (42)

with p P t2, 3, 4u and source term inferred from u. We consider the matching triangular, Cartesian,
(predominantly) hexagonal, and locally refined mesh families depicted in Figure 22 and polynomial degrees
ranging from 0 to 4. The first, second, and fourth mesh families originate from the FVCA5 benchmark [3939],
whereas the third from [2424]. The local refinement in the third mesh family has no specific meaning here:
its purpose is to demonstrate the seamless treatment of nonconforming interfaces.

We report in Figure 33 the error }Gk
hpI

k,l
h u ´ uhq}LppΩqd versus the meshsize h, where Gk

h is the
consistent (but in general not stable) global gradient reconstruction defined by (2020). The reference
slopes correspond to the convergence rates resulting from Theorem 33 together with Proposition 1010 (more
precisely, the order corresponds to the dominating term). The theoretical orders of convergence are
perfectly matched for p “ 2. Similar considerations hold for p “ 3 and k ă 2 whereas, for k ě 2,
the order of convergence is limited by the regularity of the function ψ ÞÑ |ψ|p´2ψ, which impacts on
the regularity of |∇u|p´2∇u. Finally, for p “ 4 the theoretical orders of convergence are matched for
k P t0, 1, 2u, while faster convergence than predicted by the error estimates is observed for k P t3, 4u.
This phenomenon will be further investigated in the future. For a comparison with the HHO method of
[1616], see Figure 55 below.

3.7.2. Exponential solution for p ă 2

As pointed out in [1717], the trigonometric solution (4242) does not have the required regularity to assess
the convergence order of the DSGD method when 1 ă p ă 2. For this reason, we consider instead the
exponential solution

upxq “ exppx1 ` πx2q,

and solve the p-Laplace problem with p “ 7
4 , Dirichlet boundary conditions on BΩ, and right-hand side

f inferred from the expression of u. The error }Gk
hpI

k,l
h u´ uhq}LppΩqd versus the meshsize h is plotted in

Figure 44 for the mesh families illustrated in Figure 22 and polynomial degrees ranging from 0 to 4. For
the sake of completeness, a comparison with the HHO method (4949) is also included. We observe that
the DSGD and HHO methods give similar results in terms of the selected error measure (which accounts
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(l) p “ 4, locally refined

Figure 3: }Gk
hpI

k,l
h u´ uhq}LppΩqd v. h. Trigonometric test case, p P t2, 3, 4u, DSGD.
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(d) Cartesian, HHO
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(e) Hexagonal, DSGD
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(f) Hexagonal, HHO
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(g) Locally refined, DSGD
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(h) Locally refined, HHO

Figure 4: Error }Gh
hpI

k,l
h u´ uhq}LppΩqd v. h, exponential test case, p “ 7

4
.

17



only for the consistent part of the gradient, common to both methods). When including the stabilisation
seminorm in the error measure, computations not shown here for the sake of brevity hint to a slightly
better accuracy for the HHO method.

4. Alternative gradient and links with other methods

In this section we discuss an alternative to the gradient reconstruction GT defined by (2525), and links
with other methods.

4.1. A consistent gradient based on rk`1
T

An alternative to using Gk
T in (2525) would be to use ∇rk`1

T . This would lead to a local gradient defined
by

p r∇Dh
vhq|T “

rGT vT :“∇rk`1
T vT `

rST vT @vh P U
k,l
h , @T P Th. (43)

The stabilisation term rST is still required to satisfy the L2-stability and boundedness property (S1)(S1)
and the image property (S3)(S3). As shown in (A.13A.13) below, the property (S2)(S2) is required on ST vT to

ensure that it is orthogonal to the consistent part Gk
T vT of GT vT . For rGT vT , the consistent part is

∇rk`1
T vT P∇Pk`1pT q, and the orthogonality property on rST vT can therefore be relaxed into

(ĂS2) For all vT P U
k,l
T and all φ P∇Pk`1pT q, prST vT ,φqT “ 0,

where, with respect to (S2)(S2), the space for φ is ∇Pk`1pT q instead of PkpT qd.
Performing integration-by-parts and introducing projection operators in (21a21a) leads to

´ p∇δlT vT ,∇wqT “
ÿ

FPFT

ppδkTF ´ δ
l
T qvT ,∇w¨nTF qT , @w P Pk`1pT q. (44)

Comparing with (3232), we see that the volumetric term δk∇,T vT has disappeared, and the only remaining

volumetric term ∇δlT vT belongs to ∇PlpT q. This is a gain with respect to the situation in Section 3.63.6,

in which the degree of the volumic term was constrained by δk∇,T vT to be k, whatever the choice of l.

As a consequence, the construction of rST can be done in a (possibly) smaller space than RTk`1
pPTF q,

as detailed in what follows.
First, considering w “ ´δlT vT in (4444) and using the trace inequality (A.6A.6) with p “ 2 on ∇δlT vT

yields (compare with Remark 1212)
}∇δlT vT }L2pT qd À |vT |2,BT . (45)

Then, following the ideas of Section 3.6.33.6.3, we construct the lifting rL
k

TF : Uk,lT Ñ RTmaxpl,kq
pPTF q such

that, for all η P RTmaxpl,kq
pPTF q,

prL
k

TF vT ,ηqPTF
“ p∇δlT vT ,ηqPTF

` ppδkTF ´ δ
l
T qvT ,η¨nTF qF . (46)

Since ∇δlT vT P ∇PlpT q Ă Pl´1pT qd and pδkTF ´ δlT qvT P Pmaxpl,kqpF q, following the proof of (S1)(S1) in

Proposition 1414 shows that, with this choice of rL
k

TF , we only need (3939) to hold for q P Pmaxpl,kqpF q and

χ P Pl´1pT qd. The space RTmaxpl,kq
pPTF q enables these choices of q and χ, and the L2-stability of

rST :“
ř

FPFT

rL
k

TF therefore follows. When l P tk ´ 1, ku, this stabilisation term is constructed on a

piecewise RTk space, instead of a piecewise RTk`1 space for ST in Section 3.6.33.6.3.
Although the choice (4343) leads to coercive, consistent, limit-conforming, and compact families of

gradient discretisations, it can turn out to be far from optimal for general problems. More precisely, its
limit-conformity properties are much worse than those of (2525). Indeed, the full orthogonality property
(S2)(S2) is essential to establish the Ophk`1q estimate (3131) on WDh

(see Remark 2424). In general, we cannot
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establish more than an Ophq estimate on WDh
, irrespective of k, if the gradient is reconstructed via

(4343). For anisotropic linear problems, a modification of rk`1
T embedding a dependence on the diffusion

coefficient can be constructed to recover optimal rates of convergence [2121]; for fully non-linear models,
though, the only option to recover a truly high-order method seems to be using the gradient Gk

T vT in
the full polynomial space PkpT qd.

To illustrate numerically the loss of convergence experienced when using the gradient reconstruc-
tion (4343) in the context of fully non-linear problems, we solve the problem described in Section 3.7.13.7.1
using two numerical methods: the HHO method of [1616] (see (4949) below), and the method obtained from

the latter replacing Gk
T by ∇rk`1

T . We report in Figure 55 the error }Ik,lh u´ uh}1,p,h versus the meshsize
h, with reference slopes corresponding to the estimates of convergence rates derived in [1717, Theorem 3.2].
The leftmost column, corresponding to the Poisson problem with p “ 2, shows that both Gk

T and ∇rk`1
T

can be used when WDh
is applied to ψ “∇u. For p P t3, 4u, on the other hand, a significant loss in the

convergence rate is observed for k ą 1 (the dashed line corresponding to ∇rk`1
T departs from the solid

line corresponding to Gk
T ). Notice that, for k ě 3 and p “ 3, the order of convergence is again limited by

the regularity of the function ψ ÞÑ |ψ|p´2ψ. The results presented here replace the ones of [1717, Figure
3], which were affected by a bug in one of the libraries used in our code. From these new tests, the error
estimates of [1717, Theorem 3.2] appear to be sharp also for p ą 2.

4.2. Hybrid High-Order methods

The HHO method proposed in [2222] for problem (22) with Λ “ Id reads

Find uh P U
k,l
h,0 such that, for all vh P U

k,l
h,0, ahho

h puh, vhq “ pf, vhq, (47)

where the broken polynomial function vh is defined by (1515), and the bilinear form ahho
h : Uk,lh ˆUk,lh Ñ R

is assembled from the elementary contributions

ahho
T puT , vT q – p∇rk`1

T uT ,∇rk`1
T vT qT `

ÿ

FPFT

h´1
F ppδ

k
TF ´ δ

l
T quT , pδ

k
TF ´ δ

l
T qvT qF . (48)

Here, the consistent gradient is ∇rk`1
T , as in (4343), and the stabilisation is not incorporated in the gradient

reconstruction, but rather added as a separate term in the bilinear form.
For the non-linear problem (66), on the other hand, the HHO method considered in [1616, 1717] reads

Find uh P U
k,l
h,0 such that, for all vh P U

k,l
h,0, Ahho

h puh, vhq “ pf, vhq,

with function Ahho
h : Uk,lh ˆ Uk,lh Ñ R assembled from the elementary contributions

Ahho
T puT , vT q –

ż

T

σpGk
TuT q¨G

k
T vT `

ÿ

FPFT

hp´1
F

ż

F

|pδkTF ´ δ
l
T quT |

p´2pδkTF ´ δ
l
T quT pδ

k
TF ´ δ

l
T qvT . (49)

Also in this case, stability is achieved by a separate term, and only the consistent (but not stable)
gradient reconstruction appears in the consistency term. Notice that, unlike the linear case, the gradient
reconstructed in the full polynomial space PkpT qd is present here; see comments at the end of Section
4.14.1.

4.3. High-order non-conforming Mimetic Finite Difference

The ncMFD method of [4141] hinges on degrees of freedom (DOFs) that are the polynomial moments
of degree up to pk ´ 1q inside the mesh elements and the polynomial moments of degree up to k on the
mesh faces. Xh is the space of vectors gathering such DOFs. Given a function v P H1pΩq, we denote by
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(l) p “ 4, locally refined

Figure 5: }Gk
hpI

k,l
h u´ uhq}LppΩqd v. h. Trigonometric test case, p P t2, 3, 4u, HHO.
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vI its interpolation in Xh, that is, the vector collecting its moments in the elements and on the faces. If
v P Xh, we denote by vT P Pk´1pT q, T P Th, and vF P PkpF q, F P Fh, the polynomials reconstructed
from the moments represented by v. This defines an isomorphism

v P Xh ÞÑ vh “ ppvT qTPTh
, pvF qFPFh

q P Uk,k´1
h . (50)

Denoting by v|T the sub-vector made of the DOFs of v P Xh in the mesh element T P Th and on the
mesh faces in FT , the ncMFD method for problem (22) with Λ “ Id reads

Find u P Xh such that, for all v P Xh,
ÿ

TPTh

ut|TMTv|T “
ÿ

TPTh

Lf pv|T q, (51)

where Lf pvT q is a discretisation of
ş

T
fv, and the matrix MT is positive semi-definite with suitable

consistency and stability properties. Setting Nd,k “ dimpPk´1pT qq and selecting a basis pqiqi“0,...,Nd,k´1

of Pk´1pT q with q0 “ 1, the required consistency and stability properties on MT lead to the following
decomposition (see [4141, Eq. (35)]):

MT “ M0
T `M1

T “
pRT ppR

t
T
pNq´1

pRtT `M1
T

where At is the transpose of A, kerpM1
T q “ tpvIq|T : v P Pk´1pT qu, pN has columns pNi “ pqiq

I for

i “ 1, . . . , Nd,k ´ 1, and pRT is the matrix with columns ppRT,iqi“1,...,Nd,k
defined by

@v P Xh , ppRT,iq
tv|T “ ´pvT ,∆qiq `

ÿ

FPFT

pvF ,∇qi¨nTF qF . (52)

The stabilising matrix M1
T does not have any impact on the consistency of the method; its sole role is

to stabilise the matrix M so that its kernel is R1I (which is expected: a matrix MT representing the
bilinear form

ş

T
∇u ¨∇v should vanish on interpolants of constant functions). The matrix M0

T , on the
other hand, contains all the consistency properties of the method. The analysis of the stabilisation part
is made in Section 4.54.5, alongside the analysis of the stabilisation in the HHO and ncVEM methods.

Let us analyse here the consistent part M0
T of MT . Take v P Xh, and let vh P U

k,k´1
h corresponding

to v through the isomorphism (5050). Comparing (21a21a) and (5252) shows that

p∇rk`1
T vT ,∇qiqT “ ppRT,iq

tv|T “ ppR
t
Tv|T qi , @i “ 1, . . . , Nd,k ´ 1.

Hence, with obvious notations,

vt|TM
0
Tw|T “ ppR

t
Tv|T q

tppRtT
pNq´1ppRtTw|T q

“ rp∇rk`1
T vT ,∇qiqT s

t
i“1,...,Nd,k´1p

pRtT
pNq´1rp∇rk`1

T wT ,∇qiqT si“1,...,Nd,k´1. (53)

Applying (5252) to v|T “ pqjq
I and integrating by parts shows that ppRtT

pNqij “ p∇qi,∇qjqT , that is, pRtT
pN

is the Gram matrix of p∇qiqi“1,...,Nd,k´1 in L2pT qd. Equation (5353) can therefore be re-written as

vt|TM
0
Tw|T “ p∇rk`1

T vT ,∇rk`1
T wT qT .

Thus, recalling the isomorphism (5050) between Xh and Uk,k´1
h , the ncMFD method (5151) is equivalent to

Find uh P U
k,k´1
h such that, for all vh P U

k,k´1
h ,

ÿ

TPTh

p∇rk`1
T uT ,∇rk`1

T vT qT ` s
mfd
T pu, vq “

ÿ

TPTh

Lf pv|T q,

where smfd
T is the stabilising bilinear form assembled from the local matrices pM1

T qTPTh
. Here, the consis-

tent part is constructed from ∇rk`1
T , as in (4343), but the stabilisation is external to the gradient. In the

ncMFD method, the loading term is discretised (for k ě 2) by

Lf pv|T q “

ż

T

π0,k´1
T pfqvT “

ż

T

fvT . (54)

A modification of (5454) is necessary for the low orders k “ 0, 1 – see [4141, Section 2.7].
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4.4. Non-conforming Virtual Element Method

For a given mesh element T P Th, we define the local non-conforming virtual element space as
follows [22]:

V h,nck pT q –
 

vh P H
1pT q : nTF ¨∇vh|F P P

kpF q @F P FT , ∆vh P Pk´1pT q
(

. (55)

This space is finite dimensional and its functions are described by their face moments against the poly-
nomials of degree up to k on each face F P FT and the cell moments against polynomials of degree up to
k ´ 1 inside cell T . The unisolvency of these degrees of freedom has been proved in [22].

The global non-conforming virtual element space of degree k is given by:

V h,nck,0 pΩq –

"

vh P L
2pΩq :

ż

F

rr vh ssq “ 0 @F P Fh , @q P PkpF q

and vh|T P V
h,nc
k pT q @T P Th

*

,

(56)

where rr vh ss denotes the jump operator with the usual definition at interfaces (the sign is not relevant),
and extended to boundary faces setting rr vh ss – vh.

The polynomials of degree up to pk ` 1q are a subspace of V h,nck pT q. The jump conditions on the

elements of V h,nck,0 pΩq ensure that Ik,k´1
h : V h,nck,0 pΩq Ñ Uk,k´1

h,0 is well defined (there is only one interpolant

on each face, and the polynomial moments up to degree k of functions in V h,nck,0 pΩq vanish on each

F P Fb
h ). Moreover, the unisolvent property of the set of DOFs shows that Ik,k´1

h is an isomorphism

between V h,nck,0 pΩq and Uk,k´1
h,0 .

The virtual element discretisation of problem (22) with Λ “ Id reads as:

Find uh P V
h,nc
k,0 pΩq such that, for all vh P V

h,nc
k,0 pΩq, ahpuh, vhq “ pfh, vhq (57)

where the bilinear form ahpuh, vhq approximates the left-hand side of (22) and fh|T “ π0,k´1
T f .

Mimicking the additivity of integrals, we assume that the virtual element bilinear form is the sum-
mation of local elemental terms

ahpuh, vhq “
ÿ

TPTh

ah,T puh, vhq. (58)

Two different formulations of the local bilinear form ah,T can be found in the literature, both including
a consistency and a stability term:

– first formulation [22]: for every uh, vh P V
h,nc
k pT q:

ah,T puh, vhq – p∇π1,k`1
T uh,∇π1,k`1

T vhqT ` S
`

pId´ π1,k`1
T quh, pId´ π

1,k`1
T qvh

˘

; (59)

– second formulation [1111, 1010]: for every uh, vh P V
h,nc
k pT q:

ah,T puh, vhq – pπ0,k
T ∇uh,π

0,k
T ∇vhqT ` S

`

pId´ π1,k`1
T quh, pId´ π

1,k`1
T qvh

˘

. (60)

In these definitions, the first term on the right is the consistency term designed to provide the exactness
of the integration whenever at the least one of the entries uh or vh is a polynomial of degree up to pk`1q.
The second term is a stabilisation, and S can be any symmetric and positive definite bilinear form for
which there exist two positive constants c˚ and c˚ such that

c˚}∇vh}
2
L2pT qd ď Spvh, vhq ď c˚}∇vh}

2
L2pT qd @vh P V

h,nc
k pT q such that π1,k`1

T vh “ 0. (61)

Remark 16. The connection between formulation (5959) and the ncMFD method of [4141] reviewed in Sec-
tion 4.34.3 has been established in [22].
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4.5. HHO, ncMFD and ncVEM are gradient discretisation methods

In the previous sections, we showed that the consistent gradient in the HHO, ncMFD and ncVEM
methods (first formulation) is, for the Poisson problem, identical to the consistent gradient in (4343).
We show here that the stabilisations used in these methods can actually be represented by well-chosen
stabilisation terms ST satisfying (S1)(S1)–(S3)(S3), and thus that these methods are gradient discretisation
methods.

Following the discussion in the previous sections, for the Poisson problem the HHO, ncMFD and
ncVEM (first formulation) can be written, upon an isomorphism of the space of discrete unknowns and

with the proper choice of l P tk ´ 1, k, k ` 1u: Find uh P U
k,l
h,0 such that, for all vh P U

k,l
h,0,

ÿ

TPTh

p∇rk`1
T uT ,∇rk`1

T vT qT `
ÿ

TPTh

StabT puT ´ I
k,l
T rk`1

T uT , vT ´ I
k,l
T rk`1

T vT q “
ÿ

TPTh

LT,f pvT q, (62)

where LT,f : Uk,lT Ñ R is a specific linear form and StabT is a symmetric bilinear form on Uk,lT that is

coercive and stable on ImpId´ Ik,lT rk`1
T q, that is,

@vT P U
k,l
T , StabT pvT ´ I

k,l
T rk`1

T vT , vT ´ I
k,l
T rk`1

T vT q » |vT |
2
2,BT , (63)

where a » b means Ca ď b ď C´1a with real number C ą 0 independent of h and of T .

Remark 17 (Stabilisation term). For the HHO scheme (4848), by (2323) the vector ppδkTF ´ δlT qvT qFPFT
is

the difference of the face- and cell-unknowns of vT ´ I
k,l
T rk`1

T vT . Hence, the definition

StabT puT ´ I
k,l
T rk`1

T uT , vT ´ I
k,l
T rk`1

T vT q –
ÿ

FPFT

h´1
F ppδ

k
TF ´ δ

l
T quT , pδ

k
TF ´ δ

l
T qvT qF

is valid and ensures that the stabilisation terms in (4848) and (6262) coincide. This also shows that StabT pvT´

Ik,lT rk`1
T vT , vT ´ I

k,l
T rk`1

T vT q “ |vT |
2
2,BT , and thus that (6363) holds.

For the ncVEM version (any formulation), comparing the stabilisations in (6060)–(5959) and in (6262) leads

to defining, for all uh, vh P V
h,nc
k pT q and setting uT “ Ik,lT uh|T and vT “ Ik,lT vh|T ,

StabT puT ´ I
k,l
T rk`1

T uT , vT ´ I
k,l
T rk`1

T vT q – S
`

pId´ π1,k`1
T quh, pId´ π

1,k`1
T qvh

˘

.

Estimate (6363) then follows from (6161) and from (A.17A.17) in Lemma 2222.

Due to the orthogonality condition (S2)(S2), the GS (33) for Problem (11) with Λ “ Id, based on the

gradient reconstructions (4343) (with rST “ ST ) and some function reconstruction rΠDh
, is given by

ÿ

TPTh

p∇rk`1
T uT ,∇rk`1

T vT qT `
ÿ

TPTh

pSTuT ,ST vT qT “

ż

Ω

f rΠDh
vh. (64)

For all methods except the ncMFD with k “ 1, accounting for (1414) when k “ 0 and l “ ´1, we have

Lf,T pvT q “ pf, vT qT and thus the choice rΠDh
“ ΠDh

defined in (1616) ensures that the right-hand sides of
(6262) and (6464) coincide. For the ncMFD with k “ 1, a slightly different discretisation of the right-hand
side has to be considered in order to ensure optimal L2-error estimates under elliptic regularity; see [4141,
Section 2.7] for further details.

To prove that (6262) can be written as (6464), it remains to show that for any stabilisation StabT as
above, there exists ST satisfying (S1)(S1)–(S3)(S3) and such that

@uT , vT P U
k,l
T , pSTuT ,ST vT qT “ StabT puT ´ I

k,l
T rk`1

T uT , vT ´ I
k,l
T rk`1

T vT q. (65)

Let us fix an initial S0
T satisfying the design properties (for example, the stabilisation defined by (3737)).

The property (S1)(S1) on S0
T and Lemma 2121 in Appendix Appendix A.2Appendix A.2 below show that S0

T : Uk,lT Ñ ImpS0
T q
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and pId ´ Ik,lT rk`1
T q : Uk,lT Ñ ImpId ´ Ik,lT rk`1

T q have the same kernel. As shown by (6363) and Lemma 2121,

StabT is an inner product on ImpId´Ik,lT rk`1
T q. Applying thus [2929, Lemma A.3] produces an inner product

x¨, ¨yT on ImpS0
T q such that

@uT , vT P U
k,l
T , xS0

TuT ,S
0
T vT yT “ StabT puT ´ I

k,l
T rk`1

T uT , vT ´ I
k,l
T rk`1

T vT q. (66)

Using then [3030, Lemma 5.2] with the inner products x¨, ¨yT and p¨, ¨qT on ImpS0
T q, we find an isomorphism

LT of ImpS0
T q such that

@uT , vT P U
k,l
T , xS0

TuT ,S
0
T vT yT “ pLTS0

TuT ,LTS0
T vT qT . (67)

Combining (6666) and (6767) shows that (6565) holds with

ST “ LTS0
T .

The proof that ST defined above satisfies the design properties is easy. The L2-stability and boundedness
(S1)(S1) is a direct consequence of (6565) with vT “ uT and of (6363). The image of S0

T is, by assumption,
L2pT qd-orthogonal to PkpT qd and contained in some PkS pPT q. Since LT is an isomorphism of ImpS0

T q,
we have ImpST q “ ImpS0

T q and Properties (S2)(S2) and (S3)(S3) on ST therefore follow.

Remark 18 (Formulations based on Gk
T ). With minor modifications, it is easy to construct a stabilisation

ST that satisfies (ĂS2) instead of (S2)(S2). This can be done at a reduced cost, as discussed in Section 4.14.1.
The reasoning above can also be easily adapted to the first formulation of ncVEM, provided that the
terms ∇rk`1

T in (6262) are replaced with Gk
T .

Appendix A. Proofs of the results on DSGDs

This section contains the proofs of Theorem 99 and Proposition 1010 preceded by some preliminary
results: the study of the properties of stabilising contributions satisfying (S1)(S1)–(S3)(S3) and uniform equiv-
alences of discrete W 1,p-seminorms. We also include lemmas used in Section 44 to show that the HHO
method, ncMFD method and ncVEM are GDMs.

Appendix A.1. Properties of the stabilising contribution

Proposition 19 (Properties of ST ). Let tST : T P Thu be a family of stabilising contributions satisfying
assumptions (S1)(S1)–(S3)(S3). Then, the following properties hold:

(i) Lp-stability and boundedness. For all T P Th and all vT P U
k,l
T ,

}ST vT }LppT qd » |vT |p,BT , (A.1)

with hidden constant as in (2626) and additionally depending on p and kS.

(ii) Consistency. For all T P Th and all v PW k`2,ppT q,

}ST I
k,l
T v}LppT qd À hk`1

T |v|Wk`2,ppT q, (A.2)

where a À b means a ď Cb with real number C ą 0 independent of both h and T , but possibly
depending on d, %, k, l, p and kS.

As a consequence of (A.2A.2), if v P Pk`1pT q, then ST I
k,l
T v “ 0.
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In the proof, we will need the following direct and reverse Lebesgue embeddings, proved in [1616,
Lemma 5.1]: Let X denote a measurable subset of Rd with inradius rX and diameter hX , and let two
reals r, s P r1,`8s and an integer ` P N be fixed. Then, for all q P P`pXq, it holds that

}q}LrpXq » |X|
1
r´

1
s }q}LspXq, (A.3)

where a » b means Ca ď b ď C´1a with real number C ą 0 only depending on d, a lower bound of the
ratio rX

hX
, r, s, and `.

We will also need the following Lp-trace inequality (see, e.g., [1616, Eq. (A.10)]): For all T P Th and all
v PW 1,ppT q,

h
1
p

T }v}LppBT q À }v}LppT q ` hT }∇v}LppT qd , (A.4)

where a À b means a ď Cb with real number C ą 0 independent of h and of T , but possibly depending
on d, p, and %. When v P P`pT q for some integer ` ě 0, combining (A.4A.4) with the following inverse
inequality (see, e.g., [1616, Remark A.2]):

}∇v}LppT qd À h´1
T }v}LppT q, (A.5)

yields

h
1
p

T }v}LppBT q À }v}LppT q, (A.6)

where the hidden multiplicative constant in (A.5A.5) and (A.6A.6) can additionally depend on `.
We are now ready to prove Proposition 1919.

Proof of Proposition 1919. (i) Lp-stability and boundedness. When p “ 2, (A.1A.1) coincides with (2626). Let
us now consider the case p ‰ 2 and recall the following inequalities valid for all integers n ě 1 and all
reals q P r1,`8q, ai ě 0 (1 ď i ď n):

n
ÿ

i“1

aqi ď

˜

n
ÿ

i“1

ai

¸q

ď nq´1
n
ÿ

i“1

aqi , n
1´q
q

n
ÿ

i“1

a
1
q

i ď

˜

n
ÿ

i“1

ai

¸
1
q

ď

n
ÿ

i“1

a
1
q

i . (A.7)

We also notice that, owing to (2828), it holds for all T P Th that

|P | » |T | @P P PT , cardpPT q » 1. (A.8)

To prove |P | » |T |, it suffices to observe that |P | » hdP » hdT » |T |, where we have used, respectively, the
first and second conditions in (2828) and the mesh regularity to conclude. The bound on cardpPT q follows
by writing |T | “

ř

PPPT
|P | »

ř

PPPT
|T | “ cardpPT q|T |.

Let now T P Th and vT P U
k,l
T be fixed. Since ST vT P PkS pP q for all P P PT , we have that

}ST vT }
p
LppT qd

“
ÿ

PPPT

}ST vT }
p
LppP qd

»
ÿ

PPPT

|P |pp
1
p´

1
2 q}ST vT }

p
L2pP qd

Eqs. (2828) and (A.3A.3)

» |T |pp
1
p´

1
2 q

ÿ

PPPT

}ST vT }
p
L2pP qd

Eq. (A.8A.8).

In the second line, condition (2828) is invoked to use % as a lower bound for rP
hP

when applying (A.3A.3). Using
the first pair of inequalities in (A.7A.7) with q “ p

2 if p ě 2, the second pair of inequalities in (A.7A.7) with
q “ 2

p if p ă 2 and, in both cases, ai “ }ST vT }
2
L2pP qd and n “ cardpPT q » 1, we infer

}ST vT }
p
LppT qd

» |T |pp
1
p´

1
2 q

˜

ÿ

PPPT

}ST vT }
2
L2pP qd

¸

p
2

“ |T |pp
1
p´

1
2 q}ST vT }

p
L2pT qd

.
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Taking the pth root of the above relation, we arrive at

}ST vT }LppT qd » |T |
1
p´

1
2 }ST vT }L2pT qd . (A.9)

Proceeding similarly using (A.3A.3) repeatedly on the faces of T and using |F |hF » |T |, we can prove
that

|vT |2,BT » |T |
1
2´

1
p |vT |p,BT . (A.10)

Combining (A.9A.9) and (A.10A.10) with (2626), (A.1A.1) follows.

(ii) Consistency. Let a mesh element T P Th be fixed and set, for the sake of brevity, pvT – Ik,lT v.
Using the uniform equivalence (A.1A.1) proved in the first point, and recalling the definition (2424) of the
|¨|p,BT -seminorm, it is inferred that

}STpvT }
p
LppT qd

À |pvT |
p
p,BT “

ÿ

FPFT

h1´p
F }pδkTF ´ δ

l
T qpvT }

p
LppF q.

For all F P FT , using the triangle inequality followed by the discrete trace inequality (A.6A.6), we infer that

}pδkTF ´ δ
l
T qpvT }

p
LppF q À }δ

k
TFpvT }

p
LppF q ` }δ

l
TpvT }

p
LppF q À }δ

k
TFpvT }

p
LppF q ` h

´1
T }δ

l
TpvT }

p
LppT q.

Using the above inequality together with the uniform bound on the number of faces of T (see [1919,
Lemma 1.41]) for the second term, and expanding the difference operators according to their defini-
tions (2222), we arrive at

}STpvT }
p
LppT qd

À h´pT }π
0,l
T pr

k`1
T pvT ´ vq}

p
LppT q `

ÿ

FPFT

h1´p
F }π0,k

F prk`1
T pvT ´ vq}

p
LppF q.

We notice that the projectors in the above bound can be removed invoking the LppT q-boundedness of π0,l
T

for the first term and the LppF q-boundedness of π0,k
F for the second (see [1616, Lemma 3.2]). Combining

this observation with the optimal approximation properties of rk`1
T ˝ Ik,lT discussed in Remark 55, we then

conclude that

}STpvT }
p
LppT qd

À h´pT }r
k`1
T pvT ´ v}

p
LppT q `

ÿ

FPFT

h1´p
F }rk`1

T pvT ´ v}
p
LppF q À h

ppk`1q
T |v|p

Wk`2,ppT q
.

Appendix A.2. Uniform equivalence of discrete W 1,p-seminorms

The second preliminary result is the uniform equivalence of various W 1,p-seminorms on the global
space of discrete unknowns Uk,lh .

Proposition 20 (Uniform equivalence of discreteW 1,p-seminorms). Define the discrete seminorm ~¨~1,p,h

such that, for all vh P U
k,l
h ,

~vh~
p
1,p,h –

ÿ

TPTh

~vT~
p
1,p,T ,

~vT~
p
1,p,T – }∇vT }

p
LppT qd

`
ÿ

FPFT

h1´p
F }vF ´ vT }

p
LppF q @T P Th.

(A.11)

Then, ~¨~1,p,h is a norm on the subspace Uk,lh,0 and, denoting by tST : T P Thu a family of stabilising

contributions that satisfy (S1)(S1)–(S3)(S3) and defining ∇Dh
by (2525), it holds for all vh P U

k,l
h and all T P Th,

~vT~1,p,T » }vT }1,p,T » }∇Dh
vh}LppT qd , (A.12)

where a » b means Ca ď b ď C´1a with real number C ą 0 independent of T and h, but possibly
depending on d, p, %, k, l, and kS. As a consequence, for all vh P U

k,l
h ,

~vh~1,p,h » }vh}1,p,h » }∇Dh
vh}LppΩqd . (A.13)
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Proof. The fact that ~¨~1,p,h is a norm on Uk,lh,0 can be proved in a similar manner as for the case p “ 2
and l “ k considered in [2020, Proposition 5]. The local seminorm equivalence ~vh~1,p,T » }vh}1,p,T valid
for all T P Th, on the other hand, is proved in [1616, Lemma 5.2] (see also references therein) for the case
l “ k, and the same reasoning extends to l “ k ´ 1 and l “ k ` 1.

Let now a mesh element T P Th be fixed. We have that

}∇Dh
vh}LppT qd “ }GT vT }LppT qd » |T |

1
p´

1
2 }GT vT }L2pT qd

“ |T |
1
p´

1
2

´

}Gk
T vT }

2
L2pT qd ` }ST vT }

2
L2pT qd

¯
1
2

» |T |
1
p´

1
2

´

}Gk
T vT }L2pT qd ` |vT |2,BT

¯

»

´

}Gk
T vT }LppT qd ` |vT |p,BT

¯

» }vT }1,p,T ,

(A.14)

where we have used a reasoning similar to the one leading to (A.9A.9) in the first line (recall that GT vT
is piecewise polynomial on T owing to (S3)(S3)), the orthogonality property (S2)(S2) in the second line, the
stability and boundedness property (S1)(S1) in the third line, and (A.10A.10) together with the discrete Lebesgue
embeddings (A.3A.3) in the last line. This concludes the proof of (A.12A.12). The global version (A.13A.13) follows
by raising (A.12A.12) to the power p and summing over T P Th.

The following lemma, which justifies the importance of the seminorm | ¨ |p,BT , was used in Section 4.54.5
to prove that HHO, ncMFD and ncVEM are GDM.

Lemma 21. For any T P Th and any vT P U
k,l
T , it holds that

~vT ´ I
k,l
T rk`1

T vT~1,p,T » |vT |p,BT , (A.15)

where a » b means C´1a ď b ď Ca with real number C ą 0 depending only on d, %, p, k, and l. As a
consequence, vT ´ I

k,l
T rk`1

T vT “ 0 if and only if |vT |p,BT “ 0.

Proof. Here, a À b means that a ď Cb for some real number C ą 0 as in the statement. Using
direct and inverse Lebesgue inequalities as in the proof of Proposition 1919, we deduce from (4545) that
}∇δlT vT }LppT qd À |vT |p,BT . Hence, using the relation (2323) together with the definitions (A.11A.11) of ~¨~1,p,T

and (2424) of |vT |p,BT , we obtain

~vT ´ I
k,l
T rk`1

T vT~
p
1,p,T “ }∇δlT vT }

p
LppT qd

`
ÿ

FPFT

h1´p
F }pδkTF ´ δ

l
T qvT }

p
LppF q » |vT |

p
p,BT ,

which is (A.15A.15). If vT ´ Ik,lT rk`1
T vT “ 0, the relation above shows that |vT |p,BT “ 0. Conversely, if

|vT |p,BT “ 0 then, letting wT – vT ´ I
k,l
T rk`1

T vT , we have that ~wT~1,p,T “ 0, which implies in turn that

wT is constant equal to c and that wF “ wT “ c for all F P FT . Then, rk`1
T wT “ rk`1

T Ik,lT c “ π1,k`1
T c “ c

(see Remark 55 and additionally observe, for k “ 0 and l “ ´1, that wT “ c owing to the choice of the
weights ωTF ). We then have that

c “ rk`1
T wT “ rk`1

T pvT ´ I
k,l
T rk`1

T vT q “ rk`1
T vT ´ rk`1

T Ik,lT rk`1
T vT “ rk`1

T vT ´ rk`1
T vT “ 0,

where we have used the definition of wT in the second equality, the linearity of rk`1
T in the third, the

fact that rk`1
T Ik,lT rk`1

T “ rk`1
T in the fourth (since rk`1

T Ik,lT “ π1,k`1
T preserves polynomials up to degree

ď k ` 1). Thus, the constant c is 0, which shows that vT ´ I
k,l
T rk`1

T vT “ 0.

The last lemma of this section was used in Section 4.54.5 to analyse the ncVEM stabilisation in the
context of the GDM.
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Lemma 22. For all T P Th and all vh P V
h,nc
k pT q (with V h,nck pT q defined by (5555)), it holds that

}∇vh}L2pT qd » ~I
k,k´1
T vh~1,2,T , (A.16)

where ~¨~1,2,T is defined in (A.11A.11) and a » b means C´1a ď b ď Ca with real number C ą 0 independent
on h, but possibly depending on d, k, l and %. As a consequence,

for all vh P V
h,nc
k pT q such that π1,k

T vh “ 0, }∇vh}L2pT qd » |I
k,k´1
T vh|1,2,T . (A.17)

Proof. Here, a À b means a ď Cb with C as in the statement. Since ∇vh¨nTF P PkpF q for all F P FT
and ∆vh P Pk´1pT q, integrating by parts and setting vT – Ik,k´1

T vh,

}∇vh}
2
L2pT qd “ ´ pvh,∆vhqT `

ÿ

FPFT

pvh,∇vh¨nTF qF

“ p´vT ,∆vhqT `
ÿ

FPFT

pvF ,∇vh¨nTF qF

“ p∇vT ,∇vhqT `
ÿ

FPFT

pvF ´ vT ,∇vh¨nTF qF .

The Cauchy–Schwarz inequality and the trace inequality (A.6A.6) applied on ∇vh¨nTF then yield }∇vh}L2pT qd À

~vT~1,2,T , which is half of (A.16A.16).

To prove the second half for k ě 1, recall first that vT “ π0,k´1
T vh. A triangle inequality and (11a11a)

with ` “ k ´ 1, p “ 2, α “ 0 and r “ s “ 1 thus show that

}∇vT }L2pT qd À }∇vh}L2pT qd . (A.18)

Then, write

}vF ´ vT }L2pF q “ }π
0,k
F pvh ´ π

0,k´1
T vhq}L2pF q ď }vh ´ π

0,k´1
T vh}L2pF q ď h

1
2

T }∇vh}L2pT qd ,

where (11b11b) was used with ` “ k´1, p “ 2, α “ 0, r “ 0 and s “ 1. Combining this estimate with (A.18A.18)
concludes the proof of (A.16A.16). The above argument can be extended along similar lines to the case k “ 0,
the only variation being linked to the fact that, in this case, vT is not an L2-orthogonal projection of vh
(see (1414)).

To prove (A.17A.17), notice that if π1,k`1
T vh “ 0 then rk`1

T vT “ rk`1
T Ik,lT vh “ π1,k`1

T vh “ 0. Hence, (A.16A.16)
yields

}∇vh}L2pT qd » ~vT ´ I
k,l
T rk`1

T vT~1,2,T ,

and the proof is complete by invoking (A.15A.15).

Appendix A.3. Main results

We are now ready to prove the main results stated in Section 3.53.5.

Appendix A.3.1. Properties of Discontinuous Skeletal Gradient Discretisations

Proof of Theorem 99. We use a polytopal toolbox in the spirit of [3131] and [2828, Section 7.2]. Let

XTh,0 –
 

wh “ ppwT qTPTh
, pwF qFPFh

q : wT P R , wF P R , wF “ 0 @F P Fb
h

(

“ U0,0
h,0

and ΠTh
: XTh,0 Ñ LppΩq, ∇Th

: XTh,0 Ñ LppΩqd be defined by, for all wh P XTh,0 and all T P Th,

pΠTh
whq|T “ wT and p∇Th

whq|T “
1

|T |

ÿ

FPFT

|F |wFnTF .

28



By [2828, Corollary 7.12], the coercivity, limit-conformity, consistency, and compactness of pDhqhPH follow

if we find a mapping Φ : Uk,lh,0 Ñ XTh,0 (“control” of Dh) such that, recalling the definition (A.11A.11) of
~¨~1,p,h and setting

}Φ}Dh,Th
– max

vhPU
k,l
h,0zt0hu

~Φpvhq~1,p,h

}∇Dh
vh}LppΩqd

, (A.19a)

ωΠpDh, Th,Φq – max
vhPU

k,l
h,0zt0hu

}ΠDh
vh ´ΠTh

Φpvhq}LppΩq

}∇Dh
vh}LppΩqd

, (A.19b)

ω∇pDh, Th,Φq – max
vhPU

k,l
h,0zt0hu

`
ř

TPTh
|T |1´p

ˇ

ˇ

ş

T
p∇Dh

vh ´∇Th
Φpvhqq

ˇ

ˇ

p˘ 1
p

}∇Dh
vh}LppΩqd

, (A.19c)

we have
}Φ}Dh,Th

À 1 and, as hÑ 0 , ωΠpDh, Th,Φq Ñ 0 and ω∇pDh, Th,Φq Ñ 0, (A.20)

where a À b means a ď Cb with real number C ą 0 independent of h, but possibly depending on d, %, k,
l, and kS.

Let Φ be defined the following way. For all vh “ ppvT qTPTh
, pvF qFPFh

q P Uk,lh , we let Φpvhq – v0
h “

`

pv0
T qTPTh

, pv0
F qFPFh

˘

P XTh,0 be such that v0
T “ π0,0

T vT for all T P Th and v0
F “ π0,0

F vF for all F P Fh.

Properties (A.20A.20) follow if we establish that, for all vh P U
k,l
h,0,

~v0
h~1,p,h À }∇Dh

vh}LppΩqd , (A.21a)

}ΠDh
vh ´ΠTh

v0
h}LppT q À h}∇Dh

vh}LppΩqd , (A.21b)

and, for all T P Th and all vT P U
k,l
T ,

pGT vT ,ηqT “
ÿ

FPFT

pv0
F ,η¨nTF qF @η P P0pT qd. (A.21c)

Indeed, (A.21aA.21a) gives a bound on }Φ}Dh,Th
, (A.21bA.21b) gives anOphq estimate on ωΠpDh, Th,Φq, and (A.21cA.21c)

shows that ω∇pDh, Th,Φq “ 0.
(i) Proof of (A.21aA.21a). By the definition (A.11A.11) of the ~¨~1,p,h-seminorm along with that of v0

h, we have
that

~v0
h~

p
1,p,h “

ÿ

TPTh

ÿ

FPFT

h1´p
F }v0

F ´ v
0
T }
p
LppF q. (A.22)

Let now a mesh element T P Th be fixed and observe that, for all F P FT ,

}v0
F ´ v

0
T }LppF q “ }π

0,0
F pvF ´ v

0
T q}LppF q ď }vF ´ v

0
T }LppF q

ď }vF ´ vT }LppF q ` }vT ´ v
0
T }LppF q

À }vF ´ vT }LppF q ` h
´ 1

p

T }vT ´ v
0
T }LppT q

À }vF ´ vT }LppF q ` h
1´ 1

p

T }∇vT }LppT qd , (A.23)

where we have used the Lp-boundedness of the L2-orthogonal projector (see [1616, Lemma 3.2]) in the first
line, the triangle inequality in the second line, the discrete Lp-trace inequality (A.6A.6) in the third line, and
a local Poincaré–Wirtinger inequality which can be inferred from (11a11a) with α “ ` “ r “ 0 and s “ 1 to
conclude.

Taking the pth power of (A.23A.23), multiplying by h1´p
F » h1´p

T and summing over F P FT and T P Th
leads to ~v0

h~1,p,h À ~vh~1,p,h. Estimate (A.21aA.21a) follows by using (A.13A.13).
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(ii) Proof of (A.21bA.21b). Using a local Poincaré–Wirtinger inequality as above we infer, for all T P Th,
}vT ´ v0

T }LppT q À hT }∇vT }LppT qd . Taking the pth power of this inequality, summing over T P Th, and
using hT ď h and the uniform norm equivalence (A.13A.13) to bound the right-hand side, (A.21bA.21b) follows.

(iii) Proof of (A.21cA.21c). Let η P P0pT qd Ă PkpT qd. Since ∇¨η “ 0, using the orthogonality property
(S2)(S2) followed by the definition (1717) of Gk

T we infer that pGT vT ,ηqT “
ř

FPFT
pvF ,η¨nTF qF . Equa-

tion (A.21cA.21c) then follows by noticing that, η¨nTF being constant on F , pvF ,η¨nTF qF “ pπ
0,0
F vF ,η¨nTF qF “

pv0
F ,η¨nTF qF .

The GD-consistency follows from Proposition 1010 (proved below), and from [2828, Lemma 2.17] which
shows that the consistency holds provided that SDh

pφq Ñ 0 for all φ in a dense subset of W 1,p
0 pΩq.

Remark 23 (Condition (A.21aA.21a)). In [2828], a slightly different norm is considered in the argument of the
maximum in (A.19aA.19a). The original expression is obtained replacing ~v0

h~
p
1,p,h by

ÿ

TPTh

ÿ

FPFT

d1´p
TF }v

0
F ´ v

0
T }
p
LppF q,

where the only difference with respect to (A.22A.22) is that the role of the local length scale is played by dTF ,
the orthogonal distance between a point xT inside T and the face F , instead of hF . If, for all T P Th, we
choose the point xT such that condition (3434) is verified, it can easily be proved that dTF » hF , and the
two norms are uniformly equivalent.

Appendix A.3.2. Estimates on SD and WD
Proof of Proposition 1010. (i) Estimates on the addends in SDh

. Take φ P W 1,p
0 pΩq XW l`1,ppThq and let

vh “ Ik,lh φ P Uk,lh . For all T P Th, if l ě 0 then pΠDh
vhq|T “ vT “ π0,l

T φ on T so the approximation
estimate (11a11a) applied with α “ 0, ` “ l, s “ `` 1 and r “ 0 yields

}ΠDh
vh ´ φ}LppT q À hl`1

T |φ|W l`1,ppT q. (A.24)

On the other hand, if l “ ´1, the specific choice (1414) of vT yields

}ΠDh
vh ´ φ}LppT q À hT |φ|W 1,ppT q. (A.25)

Combining (A.24A.24) and (A.25A.25), taking the pth power, summing over T P Th, and taking the pth root of
the resulting inequality gives (29a29a).

For a fixed mesh element T P Th, use the definition (2525) of ∇Dh
, the commutativity property (1818) of

Gk
T , the approximation property (11a11a) of π0,k

T with s “ k` 1 and r “ 0, and the consistency (A.2A.2) of ST
to obtain

}∇Dh
vh ´∇φ}LppT qd ď }G

k
T vT ´∇φ}LppT qd ` }ST vT }LppT qd

À hk`1
T |∇φ|Wk`1,ppT qd ` h

k`1
T |φ|Wk`2,ppT q À hk`1

T |φ|Wk`2,ppT q.

The estimate (29b29b) follows taking the pth power, summing over T P Th, and taking the pth root of the
resulting inequality.

If l P tk, k ` 1u or l “ ´1 (in which case k “ 0), the estimate (3030) on SDh
pφq is an immediate

consequence of (2929). Consider now l “ k ´ 1 and k ě 1. An easy modification of the proof above shows
that, for all φ PW 1,p

0 pΩqXW k`1,ppThq, }∇Dh
vh´∇φ}LppΩqd À hk}φ}Wk`1,ppThq

. Then (3030) follows from
this modified version of (29b29b) and from (29a29a).

(ii) Estimate on WDh
pψq. For all vh P XDh,0,

ż

Ω

∇Dh
vhpxq¨ψpxqdx “

ÿ

TPTh

p∇Dh
vh,ψ ´ π

0,k
T ψqT `

ÿ

TPTh

p∇Dh
vh,π

0,k
T ψqT

—
ÿ

TPTh

AT `
ÿ

TPTh

BT .
(A.26)
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The approximation property (11a11a) of π0,k
T with s “ k ` 1, r “ 0 and p1 instead of p yields

ÿ

TPTh

|AT | À
ÿ

TPTh

hk`1
T }∇Dh

vh}LppT qd}ψ}Wk`1,p1 pT qd

ď hk`1

˜

ÿ

TPTh

}∇Dh
vh}

p
LppT qd

¸1{p˜
ÿ

TPTh

}ψ}p
1

Wk`1,p1 pT qd

¸1{p1

“ hk`1}∇Dh
vh}LppΩqd}ψ}Wk`1,p1 pThq

d .

(A.27)

By definitions (2525) and (1717) of ∇Dh
and Gk

T , and by the orthogonality property (S2)(S2) of ST ,

BT “ pGk
T vT ,π

0,k
T ψqT “ ´ pvT ,∇¨π0,k

T ψqT `
ÿ

FPFT

pvF ,π
0,k
T ψ¨nTF qF

“ ´ pvT ,∇¨pπ0,k
T ψ ´ψqqT `

ÿ

FPFT

pvF , pπ
0,k
T ψ ´ψq¨nTF qF

´ pvT ,∇¨ψqT `
ÿ

FPFT

pvF ,ψ¨nTF qF

“ p∇vT , pπ
0,k
T ψ ´ψqqT `

ÿ

FPFT

pvF ´ vT , pπ
0,k
T ψ ´ψq¨nTF qF

´ pΠDh
vh,∇¨ψqT `

ÿ

FPFT

pvF ,ψ¨nTF qF

— BT,1 ´ pΠDh
vh,∇¨ψqT `

ÿ

FPFT

pvF ,ψ¨nTF qF ,

(A.28)

where we used an integration-by-parts and the definition (1616) of ΠDh
in the penultimate line. For any

interface F with T1, T2 as neighbouring mesh elements, since ψ PW p1
pdiv; Ωq we have ψ¨nT1F`ψ¨nT2F “

0 on F . Moreover, vF “ 0 whenever F is a boundary face. Hence

ÿ

TPTh

ÿ

FPFT

pvF ,ψ¨nTF qF “
ÿ

FPF i
h

pvF ,ψ¨nT1F `ψ¨nT2F qF `
ÿ

FPFb
h

pvF ,ψ¨nTF qF “ 0.

Summing (A.28A.28) over T P Th and using the previous relation leads to

ÿ

TPTh

BT “
ÿ

TPTh

BT,1 ´
ż

Ω

ΠDh
vhpxq∇¨ψpxqdx. (A.29)

Recalling the definition (1010) of π0,k
T , it is readily inferred that the first term in BT,1 is zero since ∇vT P

∇PlpT q Ă PkpT qd. Moreover, using again the approximation properties (1111) of π0,k
T with r “ 0, s “ k`1

and p1 instead of p, we can write

|BT,1| À
ÿ

FPFT

}vF ´ vT }LppF q}π
0,k
T ψ ´ψ}Lp1 pF qd

À
ÿ

FPFT

h
k`1´ 1

p1

T }vF ´ vT }LppF q|ψ|Wk`1,p1 pT qd

À hk`1|ψ|Wk`1,p1 pT qd

˜

ÿ

FPFT

h
1
p´1

F }vF ´ vT }LppF q

¸

,

where we used hF ď hT in the last line. Sum over T P Th and invoke Hölder’s inequality, the property
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CardpFT q À 1, and the norm equivalence (A.13A.13) to deduce

ÿ

TPTh

|BT,1| À hk`1|ψ|Wk`1,p1 pThq
d

˜

ÿ

TPTh

ÿ

FPFT

h1´p
F }vF ´ vT }

p
LppF q

¸1{p

À hk`1}ψ}Wk`1,p1 pThq
d}∇Dh

vh}LppΩqd . (A.30)

Finally, using (A.27A.27), (A.29A.29) and (A.30A.30) in (A.26A.26), we get

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇Dh
vhpxq¨ψpxqdx`

ż

Ω

ΠDh
vhpxq∇¨ψpxqdx

ˇ

ˇ

ˇ

ˇ

À hk`1}ψ}Wk`1,p1 pThq
d}∇Dh

vh}LppΩqd .

The estimate (3131) follows immediately.

Remark 24 (Choice of the gradient reconstruction). An inspection of the above proof shows that using (4343)
in place of (2525) can lead to significant losses in the order of convergence forWDh

pψq (while the convergence
expressed by (99) still holds true). As a matter of fact, with this choice one would have to replace

throughout the proof π0,k
T ψ by the L2-orthogonal projection of ψ on ∇Pk`1pT q. The latter quantity has

optimal approximation properties only if either k “ 0 (since ∇P1pT q “ P0pT qd) or there exists w P Lp
1

pΩq
such that ψ|T “ ∇w|T for all T P Th. Recalling Theorem 33 with p “ 2 and σpx, u,∇uq “ ∇u, we see
that for the Poisson equation, WDh

is applied to ψ “∇u. In this case, the gradient reconstruction (4343)
leads to optimal convergence rates. However, there is a real loss of estimate for more general problems
for which error estimates are written in terms of WDh

pΛ∇uq (for anisotropic linear diffusion, see [2828,
Theorem 2.29]) or WDh

p|∇u|p´2∇uq (for the p-Laplace equation, see Theorem 33).
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