
HAL Id: hal-01564594
https://hal.science/hal-01564594

Submitted on 19 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Complete Automatic Test Set Generator for
Embedded Reactive Systems: From AUTSEG V1 to

AUTSEG V2
Mariem Abdelmoula, Daniel Gaffé, Michel Auguin

To cite this version:
Mariem Abdelmoula, Daniel Gaffé, Michel Auguin. A Complete Automatic Test Set Generator for
Embedded Reactive Systems: From AUTSEG V1 to AUTSEG V2. International Journal On Advances
in Systems and Measurements, 2016, 9 (3-4), pp.154-166. �hal-01564594�

https://hal.science/hal-01564594
https://hal.archives-ouvertes.fr

A Complete Automatic Test Set Generator for Embedded Reactive Systems: From

AUTSEG V1 to AUTSEG V2

Mariem Abdelmoula, Daniel Gaffé, and Michel Auguin

LEAT, University of Nice-Sophia Antipolis, CNRS
Email: Mariem.Abdelmoula@unice.fr

Email: Daniel.Gaffe@unice.fr
Email: Michel.Auguin@unice.fr

Abstract—One of the biggest challenges in hardware and software
design is to ensure that a system is error-free. Small defects
in reactive embedded systems can have disastrous and costly
consequences for a project. Preventing such errors by identifying
the most probable cases of erratic system behavior is quite chal-
lenging. Indeed, tests performed in industry are non-exhaustive,
while state space analysis using formal verification in scientific
research is inappropriate for large complex systems. We present
in this context a new approach for generating exhaustive test
sets that combines the underlying principles of the industrial
testing technique with the academic-based formal verification.
Our method consists in building a generic model of the system
under test according to the synchronous approach. The goal is to
identify the optimal preconditions for restricting the state space of
the model such that test generation can take place on significant
subspaces only. So, all the possible test sets are generated from
the extracted subspace preconditions. Our approach exhibits a
simpler and efficient quasi-flattening algorithm compared with
existing techniques, and a useful compiled internal description
to check security properties while minimizing the state space
combinatorial explosion problem. It also provides a symbolic
processing technique for numeric data that provides an expressive
and concrete test of the system, while improving system verifica-
tion (Determinism, Death sequences) and identifying all possible
test cases. We have implemented our approach on a tool called
AUTSEG V2. This testing tool is an extension of the first version
AUTSEG V1 to integrate data manipulations. We present in this
paper a complete description of our automatic testing approach
including all features presented in AUTSEG V1 and AUTSEG
V2.

Keywords–AUTSEG; Quasi-flattening; SupLDD; Backtrack;
Test Sets Generation.

I. INTRODUCTION

System verification generates great interest today, espe-
cially for embedded reactive systems which have complex be-
haviors over time and which require long test sequences. This
kind of system is increasingly dominating safety-critical do-
mains, such as the nuclear industry, health insurance, banking,
the chemical industry, mining, avionics and online payment,
where failure could be disastrous. Preventing such failure by
identifying the most probable cases of erratic system behavior
is quite challenging. A practical solution in industry uses
intensive test patterns in order to discover bugs, and increase
confidence in the system, while researchers concentrate their
efforts instead on formal verification. However, testing is obvi-
ously non-exhaustive and formal verification is impracticable

on real systems because of the combinatorial explosion nature
of the state space.

AUTSEG V1 [2] combines these two approaches to provide
an automatic test set generator, where formal verification
ensures automation in all phases of design, execution and
test evaluation and fosters confidence in the consistency and
relevance of the tests. In a first version of AUTSEG, only
Boolean inputs and outputs were supported, while most of
actual systems handle numerical data. Numerical data ma-
nipulation represents a big challenge for most of existing
test generation tools due to the difficulty to express formal
properties on those data using a concise representation. In our
approach, we consider symbolic test sets which are thereby
more expressive, safer and less complex than the concrete ones.

Therefore, we have developed a second version AUTSEG
V2 [1] to take into account numerical data manipulation in
addition to Boolean data manipulation. This was achieved
by developing a new library for data manipulation called
SupLDD. Prior automatic test set generation methods have
been consequently extended and adapted to this new numer-
ical context. Symbolic data manipulations in AUTSEG V2
allow not only symbolic data calculations, but also system
verification (Determinism, Death sequences), and identification
of all possible test cases without requiring coverage of all
system states and transitions. Hence, our approach bypasses
in numerous cases the state space explosion problem.

We present in this paper a complete description of our auto-
matic testing approach that includes all operations introduced
in AUTSEG V1 and AUTSEG V2. In the remainder of this
paper, we give an overview of related work in Section II. We
present in Section III our global approach to test generation. A
case study is presented in Section IV. We show in Section V
experimental results. Finally, we conclude the paper in Section
VI with some directions for future works.

II. RELATED WORK

Lutess V2 [3] is a test environment, written in Lustre, for
synchronous reactive systems. It automatically generates tests
that dynamically feed the program under test from the formal
description of the program environment and properties. This
version of Lutess deals with numeric inputs and outputs unlike
the first version [4]. Lutess V2 is based on Constraint Logic
Programming (CLP) and allows the introduction of hypotheses

to the program under test. Due to CLP solvers’ capabilities, it
is possible to associate occurrence probabilities to any Boolean
expression. However, this tool requires the conversion of tested
models to the Lustre format, which may cause a few issues in
our tests.

B. Blanc presents in [5] a structural testing tool called
GATeL, also based on CLP. GATeL aims to find a sequence
that satisfies both the invariant and the test purpose by solving
the constraints problem on program variables. Contrary to
Lutess, GATeL interprets the Lustre code and starts from the
final state and ends with the first one. This technique relies on
human intervention, which is stringently averted in our paper.

C. Jard and T. Jeron, present TGV (Test Generation with
Verification technology) in [6], a powerful tool for test gener-
ation from various specifications of reactive systems. It takes
as inputs a specification and a test purpose in IOLTS (Input
Output Labeled Transition System) format and generates test
cases in IOLTS format as well. TGV allows three basic types
of operations: First, it identifies sequences of the specifica-
tion accepted by a test purpose, based on the synchronous
product. It then computes visible actions from abstraction and
determination. Finally, it selects test cases by computation
of reachable states from initial states and co-reachable states
from accepting states. A limitation lies in the non-symbolic
(enumerative) dealing with data. The resulting test cases can
be big and therefore relatively difficult to understand.

D. Clarke extends this work in [7], presenting a symbolic
test generation tool called STG. It adds the symbolic treatment
of data by using OMEGA tool capabilities. Test cases are
therefore smaller and more readable than those done with
enumerative approaches in TGV. STG produces the test cases
from an IOSTS specification (Input Output Symbolic Transi-
tion System) and a test purpose. Despite its effectiveness, this
tool is no longer maintained.

STS (Symbolic Transition Systems) [8] is quite often used
in systems testing. It enhances readability and abstraction of
behavioral descriptions compared to formalisms with limited
data types. STS also addresses the states explosion problem
through the use of guards and typed parameters related to the
transitions. At the moment, STS hierarchy does not appear
very enlightening outside the world of timed/hybrid systems
or well-structured systems. Such systems are outside of the
scope of this paper.

ISTA (Integration and System Test Automation) [9] is an
interesting tool for automated test code generation from High-
Level Petri Nets. ISTA generates executable test code from
MID (Model Implementation Description) specifications. Petri
net elements are then mapped to implementation constructs.
ISTA can be efficient for security testing when Petri nets gen-
erate threat sequences. However, it focuses solely on liveness
properties checking, while we focus on security properties
checking.

J. Burnim presents in [10], a testing tool for C called
CREST. It inserts instrumentation code using CIL (C Interme-
diate Language) into a target program. Symbolic execution is
therefore performed concurrently with the concrete execution.
Path constraints are then solved using the YICES solver.
CREST currently reasons symbolically only about linear, in-
teger arithmetic. Closely related to CREST, KLOVER [11] is
a symbolic execution and automatic test generation tool for

C++ programs. It basically presents an efficient and usable tool
to handle industrial applications. Both KLOVER and CREST
cannot be adopted in our approach, as they accommodate tests
on real systems, whereas we target tests on systems still being
designed.

III. ARCHITECTURAL TEST OVERVIEW

We introduce in this section the principles of our automatic
testing approach including data manipulation. Fig .1 shows
five main operations including: i) the design of a global model
of the system under test, ii) a quasi-flattening operation, iii)
a compilation process, iv) a generation process of symbolic
sequences mainly related to the symbolic data manipulation
entity, v) and finally the backtrack operation to generate all
possible test cases.

Figure 1. Global Test Process.

1. Global model: it presents the main input of our test. The
global architecture is composed of hierarchical and parallel
concurrent FSM based on the synchronous approach. It should
conform to the specification of the system under test.

2. Quasi-flattening process: it flattens only hierarchical
automata while maintaining parallelism. This offers a simple
model, faster compilation, and brings more flexibility to iden-
tify all possible system evolutions.

3. Compilation process: it generates an implicit automaton
represented by a Mealy machine from an explicit automaton.
This process compiles the model, checks the determinism of all
automata and ensures the persistence of the system behavior.

4. Symbolic data manipulation (SupLDD): it offers a sym-
bolic means to characterize system preconditions by numerical
constraints. It is solely based on the potency of the LDD library
[4]. The symbolic representation of these preconditions shows
an important role in the subsequent operations for generating
symbolic sequences and performing test cases ”Backtrack”. It
evenly enhances system security by analyzing the constraints
computations.

5. Sequences Symbolic Generation (SSG): it works locally
on significant subspaces. It automatically extracts necessary
preconditions which lead to specific, significant states of the
system from generated sequences. It relies on the effective
representation of the global model and the robustness of
numerical data processing to generate the exhaustive list of

possible sequences, avoiding therefore the manual and explicit
presentation of all possible combinations of system commands.

6. Backtrack operation: it allows the verification of the
whole system behavior through the manipulation of extracted
preconditions from each significant subspace. It verifies the
execution context of each significant subspace. Specifically, it
identifies all paths satisfying each final critical state precondi-
tions to reach the root state.

A. Global model
In this paper, we particularly focus on verification of

embedded software controlling reactive systems behavior. The
design of such systems is generally based on the synchronous
approach [12] that presents clear semantics to exceptions,
delays and actions suspension. This notably reduces the pro-
gramming complexity and favors the application of verification
methods. In this context, we present the global model by
hierarchical and parallel concurrent Finite States Machines
(FSMs) based on the synchronous approach. The hierarchical
machine describes the global system behavior, while parallel
automata act as observers for control data of the hierarchical
automaton. Our approach allows for testing many types of
systems at once. In fact, we present a single generic model for
all types of systems, the specification of tests can be done later
using particular Boolean variables called system preconditions
(type of system, system mode, etc.). Hence, a specific test
generation could be done at the end of test process through
analysis of the system preconditions. This prevents generating
as many models as system types, which can highly limit the
legibility and increase the risk of specification bugs.

B. Quasi-flattening process
A straightforward way to analyze a hierarchical machine is

to flatten it first (by recursively substituting in a hierarchical
FSM, each super state with its associated FSM and calculating
the Cartesian product of parallel sub-graphs), then apply on the
resulting FSM a verification tool such as a model-checking or
a test tool. We will show in our approach that we don’t need
to apply the Cartesian product, we can flatten only hierarchical
automata: This is why we call it ”Quasi-flattening”.

Let us consider the model shown in Fig .2, which shows
automata interacting and communicating between each other.
Most of them are sequential, hierarchical automata (e.g. au-
tomata 1 and 2), while others are parallel automata (e.g.
automata 6 and 8). We note in this architecture 13122 (3
× 6 × 3 × 3 × 3 × 3 × 3 × 3) possible states derived
from parallel executions (graphs product) while there are many
fewer reachable states at once. This model is designed by the
graphic form of Light Esterel language [13]. This language
is inspired by SyncCharts [14] in its graphic form, Esterel
[15] in its textual form and Lustre [16] in its equational form.
It integrates high-level concepts of synchronous languages
in an expressive graphical formalism (taking into account
the concept of multiple events, guaranteeing the determinism,
providing a clear interpretation, rationally integrating the pre-
emption concept, etc.).

A classical analysis is to transform this hierarchical struc-
ture in Light Esterel to the synchronous language Esterel. Such
a transformation is not quite optimized. In fact, Esterel is not
able to realize that there is only one active state at once. In
practice, compiling such a structure using Esterel generates 83

Figure 2. Model Design.

registers making roughly 9.6 ×1024 states. Hence, the behoof
of our process. Opting for a quasi-flattening, we have flattened
only hierarchical automata, while the global structure remained
parallel. Thus, state 2 of automaton 1 in Fig .2 is substituted
by the set of states {4, 5, 6, 7, 8, 9} of automaton 2 and so on.
Required transitions are rewritten thereafter. Parallel automata
are acting as observers that manage the model’s control flags.
Flattening parallel FSMs explode usually in terms of number
of states. Thus there is no need to flatten them, as we can
compile them separately thanks to the synchronous approach,
then concatenate them with the flat model retrieved at the
end of the compilation process. This quasi-flattening operation
allows for flattening the hierarchical automata and maintaining
the parallelism. This offers a simpler model, faster compilation,
and brings more flexibility to identify all possible evolutions
of the system as detailed in the following steps.

Algorithm 1 details our quasi-flattening operation. We
denote downstream the initial state of a transition and upstream
the final one. This algorithm implements three main operations.
Overall, it replaces each macro state with its associated FSM.
It first interconnects the internal initial states. It then replaces
normal terminations (Refers to SyncCharts ”normal termina-
tion” transition [14]) with internal transitions in a recursive
manner. Finally, it interconnects all states of the internal FSM.

Figure 3. Interconnection of Internal States.

We show in Fig .3 the operation of linking internal initial
states described in lines 3 to 9 of algorithm 1. This latter starts

Algorithm 1 Flattening operation

1: St ← State; SL ← State List of FSM; t ← transition in
FSM

2: while (SL 6= empty) do
3: Consider each St from SL
4: if (St is associated to a sub-FSM) then
5: mark the deletion of St
6: load all sub-St from sub-FSM (particularly init-sub-

St)
7: for (all t of FSM) do
8: if (upstream(t) == St) then
9: upstream(t) ← init-sub-St // illustration in Fig

.3 (t0, t1, t2 relinking)
10: for (all t of FSM) do
11: if (downstream(t) == St) then
12: if (t is a normal-term transition) then
13: // illustration in Fig .4
14: for (all sub-St of sub-FSM) do
15: if (sub-St is associated to a sub-sub-FSM)

then
16: create t′ (sub-St, upstream(t)) // Keep

recursion
17: if (sub-St is final) then
18: for (all t′′ of sub-FSM) do
19: if (upstream(t′′) == sub-St) then
20: upstream(t′′) ← upstream(t); merge

effect(t) to effect(t′′)
21: else
22: // weak or strong transition: illustration in Fig

.3
23: // For example t3 is less prior than t6 and

replaced by t6.t3 and t6
24: for (all sub-St of sub-FSM) do
25: if (t is a weak transition) then
26: create t′(sub-St,upstream(t),trigger(t),

weak-effect(t))
27: else
28: create t′(sub-St,upstream(t),trigger(t))
29: for (all sub-t of sub-FSM) do
30: turn-down the sub-t priority (or turn up

t′ priority)
31: delete t

by marking the super state St to load it in a list and to be
deleted later. Then, it considers all associated sub-states sub-
St (states 3, 4, 5). For each transition in the global automaton,
if the upstream state of this transition is the super state St,
then this transition will be interconnected to the transition of
the initial state of St (state 3). This corresponds to relinking
t0, t1, t2.

Fig .4 illustrates the connection of a normal termination
transition (lines 10 to 20 of algorithm 1). If the downstream
state of a normal termination transition (t5) is a super state St,
then the associated sub-states (1,2,3,4) are considered. If these
sub-states are super states too, then a connection is created
between these states and the upstream state of the normal
termination transition.

Otherwise, if these sub-states are final states (3,4), then
they will be merged with the upstream state of the normal
termination transition (state 5). Finally, the outputs of the

Figure 4. Normal Transition Connection.

merged states are redirected to the resulted state. St is marked
in a list to be deleted at the end of the algorithm.

Besides, in case of a weak or a strong preemption transition
(According to SyncCharts and Esterel: in case of weak pre-
emption, preempted outputs are emitted a last time, contrary
to the strong preemption), we create transitions between all
sub-states of the super state St and their upstream states, as
described in lines 21 to 31 of algorithm 1. Fig .3 illustrates
this step, where t6 and t7 are considered to be preemption
transitions: all the internal states (3,4,5) of the super state St
are connected to their upstream states (6,7). Then, the priority
of transitions is managed: the upper level transitions are prior
to those of lower levels. In this context, t3 is replaced by
t7.t6.t3 to show that t6 and t7 are prior than t3 and so on. At
the end of this algorithm, all marked statements are deleted.
In case of weak preemption transition, the associated outputs
are transferred to the new transitions.

Flattening the hierarchical model of Fig .2 results in a flat
structure shown in Fig .5. As the activation of state 2 is a
trigger for state 4, these two states will be merged, just as
state 6 will be merged to state 10, etc. Automata 6 and 8
(observers) remain parallel in the expanded automaton; they
are small and do not increase the computational complexity.
The model in Fig .5 contains now only 144 (16 × 3 × 3) state
combinations. In practice, compiling this model according to
our process generates merely 8 registers, equivalent to 256
states.

Figure 5. Flat Model.

Our flattening differs substantially from those of [17] and
[18]. We assume that a transition, unlike the case of the states
diagram in Statecharts, cannot exit from different hierarchical
levels. Several operations are thus executed locally, not on
the global system. This yields a simpler algorithm and faster
compilation. To this end, we have integrated the following
assumptions in our algorithm:

-Normal termination. Fig .4 shows an example of normal
termination carried when a final internal state is reached. It
allows a unique possible interpretation and facilitates code
generation.
-Strong preemption. Unlike the weak preemption, internal
outputs of the preempted state are lost during the transition.

C. Compilation process

We proceed in our approach to a symbolic compilation of
the global model into Mealy machines, implicitly represented
by a set of Boolean equations (circuit of logic gates and
registers presenting the state of the system). In fact, the flat
automata and concurrent automata are compiled separately.
Compilation results of these automata are concatenated at
the end of this process. They are represented by a union of
sorted equations rather than a Cartesian product of graphs to
support the synchronous parallel operation and instantaneous
diffusion of signals as required by the synchronous approach.
Accordingly, the system model is substantially reduced. Our
compilation requires only log2(nbstates) registers, while clas-
sical works uses one register per state [19]. It also allows
checking the determinism of all automata, which ensures the
persistence of the system behavior.

Algorithm 2 describes the compilation process in details.
First, it counts the number of states in the automaton and
deduces the size of the states vector. Then, it develops the
function of the next state for a given state variable. Finally,
the generated vector is characterized by a set of Boolean
expressions. It is represented by a set of BDDs.

Let us consider an automaton with 16 states as an exam-
ple. The vector characterizing the next state is created by 4
(log2(16)) expressions derived from inputs data and the current
state. For each transition from state ”k” to state ”l”, two types
of vectors encoded by n (n = 4 bits in this example) bits
are created: Vk vector specifying the characteristic function of
transition BDDcond, and Vl vector characterizing the function
of the future state BDD−NextState. If Vk(i) is valued to 1,
then the state variable yi is considered positively. Otherwise,
yi is reversed (lines 18-22). In this context, the BDD charac-
terizing the transition condition is deduced by the combination
of ”yi” and the condition ”cond” on transition. For instance,
BDDcond = y0 × ȳ1 × ȳ2 × y3 × cond for Vk = (1, 0, 0, 1).

We show in lines (23-27) the construction of the Next
State function BDD − NextState(i) = BDDy(i)+ ×
notBDDy(i)′+ . BDDy(i)+ characterizes all transitions that
turns y+i to 1 (Set registers to 1). Conversely, BDDy(i)′+

characterizes all transitions that turns y+i to 0 (Reset registers
to 0). So, each function satisfying y+ and not (y

′+) is
a possible solution. In this case, parsing all states of the
system is not necessary. Fig .6 shows an example restricted
to only 2 states variables where it is possible to find an
appropriate function ”BDD+

y1 respect = y0.x + y0.x” for
y+1 and ”BDD+

y0 respect = y0.x + y1.y0.x” for y+0 even
if the system state is not specified for ”y1y0 = 11”.Thus,
BDD − NextState (BDDy(i)+) is specified by the two
BDDrespect looking for the simplest expressions to check
on one hand y+0 and not(y

′+
0) and on the other hand y+1 and

not(y
′+
1).

Algorithm 2 Compilation process

1: R ← Vector of states
2: R-I ← Initial vector of states (initial value of registers)
3: Next-State ← Vector of transitions
4: N ← Size of R and Next-State
5: f,f’ ← Vectors of Boolean functions
6: N ← log2 (Statesnumber − 1)+ 1
7: Define N registers encapsulated in R.
8: for (i=0 to N − 1) do
9: BDDf(i) ← BDD-0 // BDD initialisation

10: BDDf ′(i) ← BDD-0
11: for (j=0 to Noutputs− 1) do
12: OutputO(j) ← BDD-0
13: R-I ← binary coding of initial state
14: for (transition tkl=k to l) do
15: Vk ← Binary coding of k
16: Vl ← Binary coding of l
17: BDDcond ← cond (tkl);
18: for (i=0 to N − 1) do
19: if Vk(i)==1 then
20: BDDcond ← BDDand(R(i), BDDcond) //

BDDcond: tkl BDD characteristics
21: else
22: BDDcond ← BDDand(BDDnot (R(i)),

BDDcond)
23: if (Vl(i)==1) then
24: BDDf(i) ← BDDor(BDDf(i), BDDcond)//

BDDf(i): set of register
25: else
26: BDDf ′(i) ← BDDor(BDDf ′(i), BDDcond))//

BDDf ′(i): reset of register
27: outputO(output(tkl))← BDDor

(outputO(output(tkl)), BDDcond)
28: for (i=0 to N − 1) do
29: BDD-NextState(i)← BDDrespect (BDDf , BDD′

f)
30: // respect: every BDDh such us BDDf → BDDh

AND BDDh → not(BDD′
f)

Figure 6. Next State Function.

As we handle automata with numerical and Boolean vari-
ables, each data inequation was first replaced by a Boolean
variable (abstraction). Then at the end of the compilation
process, data were re-injected to be processed by SupLDD
later.

D. Symbolic data manipulation
In addition to Boolean functions, our approach allows

numerical data manipulation. This provides more expressive
and concrete system tests.

1) Related work: Since 1986, Binary Decision Diagrams
(BDDs) have successfully emerged to represent Boolean func-
tions for formal verification of systems with large state space.
BDDs, however, cannot represent quantitative information such
as integers and real numbers. Variations of BDDs have been
proposed thereafter to support symbolic data manipulations
that are required for verification and performance analysis of
systems with numeric variables. For example, Multi-Terminal
Binary Decision Diagrams (MTBDDs) [20] are a generaliza-
tion of BDDs in which there can be multiple terminal nodes,
each labelled by an arbitrary value. However, the size of nodes
in an MTBDD can be exponential (2n) for systems with large
ranges of values. To support a larger number of values, Yung-
Te Lai has developed Edge-Valued Binary Decision Diagrams
(EVBDDs) [21] as an alternative to MTBDDs to offer a more
compact form. EVBDDs associate multiplicative weights with
the true edges of an EVBDD function graph to allow an
optimal sharing of subgraphs. This suggests a linear evolution
of non-terminal node sizes rather than an exponential one for
MTBDDs. However, EVBDDs are limited to relatively simple
calculation units, such as adders and comparators, implying a
high cost per node for complex calculations such as (X × Y)
or (2X).

To overcome this exponential growth, Binary Moment
Diagrams (BMDs) [22], another variation of BDDs, have been
specifically developed for arithmetic functions considered to
be linear functions, with Boolean inputs and integer outputs,
to perform a compact representation of integer encodings and
operations. They integrate a moment decomposition principle
giving way to two sub-functions representing the two moments
(constant and linear) of the function, instead of a decision.
This representation was later extended to Multiplicative Bi-
nary Moment Diagrams (*BMDs) [23] to include weights
on edges, allowing to share common sub-expressions. These
edges’ weights are multiplicatively combined in a *BMD, in
contrast to the principle of addition in an EVBDD. Thus, the
following arithmetic functions X + Y , X − Y , X × Y , 2X

show representations of linear size. Despite their significant
success in several cases, handling edges’ weights in BMDs
and *BMDs is a costly task. Moreover, BMDs are unable to
verify the satisfiability property, and function outputs are non-
divisible integers in order to separate bits, causing a problem
for applications with output bit analysis. BMDs and MTBDDs
were combined by Clarke and Zhao in Hybrid Decision
Diagrams (HDDs) [24]. However, all of these diagrams are
restricted to hardware arithmetic circuit checking and are not
suitable for the verification of software system specifications.

Within the same context of arithmetic circuit checking,
Taylor Expansion Diagrams (TEDs) [25] have been introduced
to supply a new formalism for multi-value polynomial func-
tions, providing a more abstract, standard and compact design
representation, with integer or discrete input and output values.
For an optimal fixed order of variables, the resulting graph is
canonical and reduced. Unlike the above data structures, TED
is defined on a non-binary tree. In other words, the number of
child nodes depends on the degree of the relevant variable.
This makes TED a complex data structure for particular

functions such as (ax). In addition, the representation of the
function (x < y) is an important issue in TED. This is
particularly challenging for the verification of most software
system specifications. In this context, Decision Diagrams for
Difference logic (DDDs) [26] have been proposed to present
functions of first order logic by inequalities of the form
{x − y ≤ c} or {x − y < c} with integer or real variables.
The key idea is to present these logical formulas as BDD
nodes labelled with atomic predicates. For a fixed variables
order, a DDD representing a formula f is no larger than
a BDD of a propositional abstraction of f. It supports as
well dynamic programming by integrating an algorithm called
QELIM, based on Fourier-Motzkin elimination [27]. Despite
their proved efficiency in verifying timed systems [28], the
difference logic in DDDs is too restrictive in many program
analysis tasks. Even more, dynamic variable ordering (DVO)
is not supported in DDDs. To address those limitations, LDDs
[29] extend DDDs to full Linear Arithmetic by supporting an
efficient scheduling algorithm and a QELIM quantification.
They are BDDs with non-terminal nodes labelled by linear
atomic predicates, satisfying a scheduling theory and local
constraints reduction. Data structures in LDDs are optimally
ordered and reduced by considering the many implications of
all atomic predicates. LDDs have the possibility of computing
arguments that are not fully reduced or canonical for most
LDD operations. This suggests the use of various reduction
heuristics that trade off reduction potency for calculation cost.

2) SupLDD: We summarize from the above data structures
that LDD is the most relevant work for data manipulation in
our context. Accordingly, we have developed a new library
called Superior Linear Decision Diagrams (SupLDD) built on
top of Linear Decision Diagrams (LDD) library. Fig .7 shows
an example of representation in SupLDD of the arithmetic
formula F1 = {(x ≥ 5) ∧ (y ≥ 10) ∧ (x + y ≥ 25)} ∨ {(x <
5)∧(z > 3)}. Nodes of this structure are labelled by the linear
predicates {(x < 5); (y < 10); (x + y < 25); (−z < −3)} of
formula F1, where the right branch evaluates its predicates to
1 and the left branch evaluates its predicates to 0. In fact, the
choice of a particular comparison operator within the 4 possi-
ble operators {<,≤, >,≥} is not important since the 3 other
operators can always be expressed from the chosen operator:
{x < y} ⇔ {NEG(x ≥ y)}; {x < y} ⇔ {−x > −y} and
{x < y} ⇔ {NEG(−x ≤ −y)}.

Figure 7. Representation in SupLDD of F1.

We show in Fig .7.b that the representation of F1 in
SupLDD has the same structure as a representation in BDD
that labels its nodes by the corresponding Boolean variables

{C0;C1;C2;C3} to each SupLDD predicate. But, a repre-
sentation in SupLDD is more advantageous. In particular, it
ensures the numerical data evaluation and manipulation of all
predicates along the decision diagram. This furnishes a more
accurate and expressive representation in Fig .7.c than the
original BDD representation. Namely, the Boolean variable C3
is replaced by EC3 which evaluates the corresponding node to
{x+y < 15} instead of {x+y < 25} taking into account prior
predicates {x < 5} and {y < 10}. Besides, SupLDD relies
on an efficient T-atomic scheduling algorithm [29] that makes
compact and non-redundant diagrams for SupLDD where a
node labelled for example by {x ≤ 15} never appears as a
right child of a node labelled by {x ≤ 10}. As well, nodes are
ordered by a set of atoms {x, y, etc.} where a node labelled by
{y < 2} never appears between two nodes labelled by {x < 0}
and {x < 13}. Further, SupLDD diagrams are optimally
reduced, including the LDD reduction rules. First, the QELIM
quantification introduced in LDDs allows the elimination of
multiples variables: For example, the QELIM quantification of
the expression {(x−y ≤ 3)∧(x−t ≥ 8)∧(y−z ≤ 6)∧(t−k ≥
2)} eliminates the intermediate variables y and t and generates
the simplified expression {(x − z ≤ 9) ∧ (x − k ≥ 10)}.
Second, the LDD high implication [29] rule enables getting
the smallest geometric space: For example, simplifying the
expression {(x ≤ 3)∧ (x ≤ 8)} in high implication yields the
single term {x ≤ 3}. Finally, the LDD low implication [29]
rule generates the largest geometric space where the expression
{(x ≤ 3) ∧ (x ≤ 8)} becomes {x ≤ 8}.

SupLDD operations- SupLDD operations are primarily
generated from basic LDD operations [29]. They are simpler
and more adapted to our needs. We present functions to manip-
ulate inequalities of the form {

∑
aixi ≤ c}; {

∑
aixi < c};

{
∑

aixi ≥ c}; {
∑

aixi > c}; where {ai, xi, c ∈ Z}. Given
two inequalities I1 and I2, the main operations in SupLDD
include:

-SupLDD conjunction (I1, I2): This absolutely corresponds
to the intersection on Z of subspaces representing I1 and I2.

-SupLDD disjunction (I1, I2): As well, this operation abso-
lutely corresponds to the union on Z of subspaces representing
I1 and I2.

Accordingly, all the space Z can be represented by a union
of two inequalities {x ≤ a} ∪ {x > a}. As well, the empty
set can be inferred from the intersection of inequalities {x ≤
a} ∩ {x > a}.

-Equality operator {
∑

aixi = c}: It is defined by the inter-
section of two inequalities {

∑
aixi ≤ c} and {

∑
aixi ≥ c}.

-Resolution operator: It simplifies arithmetic expressions
using QELIM quantification, and both low and high implica-
tion rules introduced in LDD. For example, the QELIM reso-
lution of {(x−y ≤ 3)∧(x−t ≥ 8)∧(y−z ≤ 6)∧(x−t ≥ 2)}
gives the simplified expression {(x − z ≤ 9) ∧ (x − t ≥
8)∧ (x− t ≥ 2)}. This expression can be further simplified to
{(x − z ≤ 9) ∧ (x − t ≥ 8)} in case of high implication and
to {(x− z ≤ 9) ∧ (x− t ≥ 2)} in case of low implication.

-Reduction operator: It solves an expression A with respect
to an expression B. In other words, if A implies B, then the
reduction of A with respect to B is the projection of A when B
is true. For example, the projection of A {(x− y ≤ 5) ∧ (z ≥
2) ∧ (z − t ≤ 2)} with respect to B {x − y ≤ 7} gives the
reduced set {(z ≥ 2) ∧ (z − t ≤ 2)}.

We report in this paper on the performance of these
functions to enhance our tests. More specifically, by means of
the SupLDD library, we present next the Sequences Symbolic
Generation operation that integrates data manipulation and
generates more significant and expressive sequences. More-
over, we track and analyze test execution to spot the situations
where the program violates its properties (Determinism, Death
sequences). On the other hand, our library ensures the analysis
of the generated sequences context to carry the backtrack
operation and generate all possible test cases.

E. Sequences Symbolic Generation (SSG)
Contrary to the classical sequences generator that follows

only one of the possible paths, we proceed to a symbolic
execution [30] to automatically explore all possible paths
of the studied system. The idea is to manipulate logical
formulas matching interrelated variables instead of updating
directly the variables in memory, in the case of concrete
classical execution. Fig .8 presents a set of possible sequences
describing the behavior of a given system. It is a classical
representation of the dynamic system evolutions. It shows a
very large tree or even an infinite tree. Accordingly, exploring
all possible program executions is not at all feasible. This
requires imagining all possible combinations of the system
commands, which is almost impossible. We will show in the
next session the weakness of this classical approach when
testing large systems.

Figure 8. Classical Sequences Generation.

If we consider the representation of the system by a
sequence of commands executed iteratively, the previous se-
quences tree becomes a repetition of the same subspace pattern
as shown in Fig .9. Instead of considering all the state space,
we seek in our approach to restrict the state space and confine
only on significant subspaces. This represents a specific system
command, which can be repeated through possible generated
sequences. Each state in the subspace is specified by 3 main
variables: symbolic values of the program variables, path
condition and command parameters (next byte-code to be
executed). The path condition represents preconditions that
should be satisfied by the symbolic values to successfully
advance the current path execution.

Figure 9. AUTSEG Model Representation.

In other words, it defines the preconditions to successfully
follow that path. We particularly define two types of precon-
ditions:

• Boolean global preconditions that define the execution
context of a given command. They appear as input
constraints of the tested command. They state the
list of commands that should be executed beforehand.
They arise as well as command output if the latter is
properly executed.

• Numerical local preconditions that define numerical
constraints on commands parameters. They are pre-
sented and manipulated by SupLDD functions men-
tioned in Section III-D2. Thus, they are presented
in the form of {

∑
aixi ≤ c}; {

∑
aixi < c};

{
∑

aixi ≥ c}; {
∑

aixi > c}; where xi presents the
several commands parameters.

Our approach is primarily designed to test systems running
iterative commands. In this context, the SSG operation occurs
in the significant subspace representing a system command
instead of considering all the state space. It generates the ex-
haustive list of possible sequences in each significant subspace
and extracts the optimal preconditions defining its execution
context. In fact, we test all system commands, but a single
command is tested at once. The restriction was done by
characterizing all preconditions defining the execution context
in each subspace. Hence, the major complex calculation is
intended to be locally performed in each significant subspace
avoiding the state space combinatorial explosion problem.

Indeed, the safety of the tested system is checked by
means of SupLDD analysis on numerical local preconditions
and BDD analysis on Boolean global preconditions. First, we
check if there are erroneous sequences. To this end, we apply
the SupLDD conjunction function on all extracted numerical
preconditions within the analyzed path. If the result of this
conjunction is null, the analyzed sequence is then impossible
and should be rectified! Second, we check the determinism of
the system behavior. To this end, we verify if the SupLDD
conjunction of all outgoing transitions from each state is
empty. In other words, we verify if the SupLDD disjunction
of all outgoing transitions from each state is equal to all of
the space covering all possible system behaviors. Finally, we
check the execution context of each command. This is to
identify and verify that all extracted global preconditions are
met. If the context is verified, then the generated sequence is
considered safe. This verification operation is performed by
the ”Backtrack” operation detailed below.

Algorithm 3 shows in detail the symbolic sequences gen-
eration operation executed in each subspace. This allows auto-
matically generating all possible sequences in a command and
extract its global pre-conditions. This operation is quite simple
because it relies on the flexibility of the designed model,
compiled through the synchronous approach. We have applied
symbolic analysis (Boolean via BDD-analysis and numeric via
SupLDDs) from the local initial state (initial state of the com-
mand) to local final states of the specified subspace. For each
combination of registers, BDD and SupLDD manipulations are
applied to determine and characterize the next state and update
the state variables. Required preconditions for this transition
are identified as well. If these preconditions are global, then
they are inserted into the GPLIST of global preconditions to
be displayed later in the context of the generated sequence.
Otherwise, if these preconditions are local, then they are
pushed into a stack LPLIST, in conjunction with the previous
ones. If the result of this conjunction is null, then the generated
sequence is marked impossible and should be rectified. Outputs
are calculated as well and pushed into a stack OLIST. Finally,
the sequence is completed by the new established state. Once
the necessary global preconditions are extracted, a next step is
to backtrack the tree until the initial sequence fulfilling these
preconditions is found.

Algorithm 3 SSG operation

1: Seq ← sequence
2: BDS ← BDD State
3: BDA ← BDD awaited
4: BDAC ← BDD awaited context
5: OLIST ← Outputs list
6: GPLIST ← Global Precondition list
7: LPLIST ← Local Precondition list
8: BDS ← Initial state
9: BDAC ← 0

10: OLIST ← empty
11: GPLIST ← empty
12: LPLIST ← All the space
13: Push (BDS, OLIST, BDAC)
14: while (stack is not empty) do
15: Pull (BDS, OLIST, BDAC)
16: list(BDA)← Compute the BDD awaited expressions

list(BDS)
17: for (i=0 to |list(BDA)|) do
18: Input ← extract(BDA)
19: if (Input is a global precondition) then
20: GPLIST ← Push(GPLIST, Input)
21: else
22: if (Input is a local precondition) then
23: LPLIST ← SupLDD-AND(LPLIST, Input)
24: if (GPLIST is null) then
25: Display (Impossible Sequence !)
26: Break
27: NextBDS ← Compute future(BDS, BDA)
28: OLIST ← Compute output (BDS, BDA)
29: New-seq ← seq BDA | BDA
30: if (New New-seq size < maximum diameter) then
31: Push (NextBDS, OLIST, BDAC)
32: else
33: Display (GPLIST)
34: Display (New-seq)

F. Backtrack operation

Once the necessary preconditions are extracted, the next
step consists in backtracking paths from each final critical state
toward the initial state, finding the sequence fulfilling these
preconditions. This operation is carried by robust calculations
on SupLDD and the compilation process, which kept enough
knowledge to find later the previous states (Predecessors) that
lead to the initial state. Algorithm 4 details this operation in
two main phases: The first one (lines 11-20) labels the state
space nodes, which are not yet analyzed. From the initial state
(e← 0), all successors are labelled by (e← e+1). If a state is
already labelled, its index is not incremented. This operation
is repeated for all states until the whole state space is covered.
The second phase (lines 21-30) identifies the best previous
states. For each state St, the predecessor with the lowest label
is introduced into the shortest path to reach the initial state:
This is an important result of graph theory [31]. In other words,
previous states always converge to the same global initial state.
This approach easily favors the backtracking execution.

Algorithm 4 Search for Predecessors

1: St ← State
2: LSt ← List of States
3: LS ← List of Successors
4: LabS ← State Label
5: IS ← Initial State
6: S ← State
7: LabS(IS) ← 1
8: LSt ← IS
9: LP ← List of Predecessors

10: SMin ← Minimum Lab State
11: // Expansion
12: while (LSt != 0) do
13: for (all St of LSt) do
14: LS ← Get-Successors(St)
15: if (LS != 0) then
16: for (all S of LS) do
17: if (!LabS(S)) then
18: LabS(S) ← LabS(St)+1
19: NLSt ← Push(LS)
20: LSt ← NLSt
21: // Search for Predecessors
22: for (all St) do
23: LP ← Get-Predecessor(St)
24: SMin ← LabS(first(LP))
25: StMin ← first(LP)
26: for (all St’ in LP) do
27: if (LabS(St’) < SMin) then
28: SMin ← LabS(St’)
29: StMin ← St’
30: Memorise-Backtrack(St,StMin)

Let us consider the example in Fig .9. From the initial local
state ”IL” (initial state of a command), the symbolic sequences
generator applies BDDs and SupLDDs analysis to generate
all possible paths that lead to final local states of the tested
subspace. Taking into account ”LF” as a critical final state
”FS” of the tested system, the backtrack operation is executed
from ”LF” state until the sequence that satisfies the extracted
global preconditions. Assuming state ”I” as the final result of

this backtrack, the sequence from ”I” to ”LF” is an example
of a good test set. However, considering the representation
of Fig .8, a test set from ”I” to ”LF” will be performed by
generating all paths of the tree. Such a test becomes unfeasible
if the number of steps to reach ”LF” is greatly increased. The
Backtrack operation includes two main actions:

- Global backtrack: It verifies the execution context of the
tested subspace. It is based on Boolean global preconditions to
identify the list of commands that should be executed before
the tested command.

- Local backtrack: Once the list of commands is estab-
lished, a next step is to execute a local backtrack. It determines
the final path connecting all commands to be executed to reach
the specified final state. It uses numeric local preconditions of
each command from the list.

Fig .10 details the global backtrack operation: Given the
global extracted preconditions (GP1, GP2, etc.) from the SSG
operation at this level (Final state FS of command C1), we
search in the global actions table for actions (Commands
C2 and C3) that emit each parsed global precondition. Next,
we put on a list SL the states that trigger each identified
action (SL= {C2, C3}). This operation is iteratively executed
on all found states (C2,C3) until the root state I with zero
preconditions (C4 with zero preconditions) is reached.

Figure 10. Global Backtrack.

The identified states can be repeated on SL (C2 and C4
are repeated on SL) as many times as there are commands that
share the same global preconditions (C1 and C3 share the same
precondition GP1). To manage this redundancy, we allocate a
priority P to each found state, where each state of priority P
should precede the state of priority P+1. More specifically,
if an identified state already exists in SL, then its priority
is incremented by 1 (Priority of commands C2 and C4 are
incremented by 1). By the end of this operation, we obtain
the list SL (SL= { C3,C2,C4 }) of final states referring to
subspaces that should be traced to reach I.

A next step is to execute a local backtrack on each
identified subspace (C1,C3,C2,C4), starting from the state with
the lowest priority and so on to trace the final path from FS
to I. The sequence from I to FS is an example of a good
test set. Fig .11 presents an example of local backtracking in
command C3. In fact, during the SSG operation each state
S was labelled by (1) a Local numeric Precondition (LP)

Figure 11. Local Backtrack.

presenting numerical constraints that should be satisfied on its
ongoing transition and (2) a Total Local numeric precondition
(TL) that presents the conjunction of all LP along the executed
path from I to S. To execute the local backtrack, we start from
the ongoing transition PT to FS to find a path that satisfies
the backtrack precondition BP initially defined by TL. If the
backtrack precondition is satisfied by the total precondition
{TL ≥ BP}, then if the local precondition LP of the tested
transition is not null, we remove this verified precondition
LP from BP by applying the SupLDD projection function.
Next, we move to the amount state of PT and test its ongoing
transitions, etc. However, if {TL < BP}, we move to the test
of other ongoing transitions to find the transition from which
BP can be satisfied. This operation is iteratively executed until
reaching the initial state on which the backtrack precondition
is null (fully satisfied). In short, if the context is verified, the
generated sequence is considered correct. At the end of this
process, we join all identified paths from each traced subspace
according to the given priority order from the global backtrack
operation.

IV. USE CASE

To illustrate our approach, we studied the case of a contact-
less smart card for the transportation sector manufactured by
the company ASK [32], a world leader in this technology. We
specifically targeted the verification of the card’s functionality
and security features. Security of such systems is critical:
it can concern cards for access security, banking, ID, etc.
Card complexity makes it difficult for a human to identify
all possible delicate situations, or to validate them by classical
methods. We need approximately 500 000 years to test the
first 8 bytes if we consider a classical Intel processor able
to generate 1000 test sets per second. As well, combinatorial
explosion of possible modes of operation makes it nearly
impossible to attempt a comprehensive simulation. The prob-
lem is exacerbated when the system integrates numerical data
processing. We will show in the next session the results
of applying our tool to this transportation card, taking into
account the complexity of data manipulation. We compared

our testing approach to that of ASK. We also compared our
results to those obtained with a classical approach.

The smart card operation is defined by a transport standard
called Calypso that presents 33 commands. The succession
of these commands (e.g., Open Session, SV Debit, Get Data,
Change Pin) gives the possible scenarios of card operation.
We used Light Esterel [13] to interpret the card specification
(Calypso) into hierarchical automata while taking advantages
of this synchronous language. We designed the generic model
of the studied card by 52 interconnected automata including
765 states. Forty-three of them form a hierarchical structure.
The remaining automata operate in parallel and act as ob-
servers to control the global context of hierarchical automaton
(Closed Session, Verified PIN, etc.). We show in Fig .12
a small part of our model representing the command Open
Session. Each command in Calypso is presented by an APDU
(Application Protocol Data Unit) that presents the next byte-
code to be executed (CLA,INS,P1,P2, etc.). We expressed
these parameters by SupLDD local preconditions on various
transitions. For instance, AUTSEGINT(h10 < P1 < h1E)
means that the corresponding transition can only be executed
if (10 < P1 < 30). Back-Autseg-Open-Session and Back-
Autseg-Verify-PIN are examples of global preconditions that
appear as outputs of respectively Open Session and Verify PIN
commands when they are correctly executed. They appear also
as inputs for other commands as SV Debit command to denote
that the card can be debited only if the PIN code is correct
and a session is already open.

Figure 12. Open Session Command.

According to the Calypso standard, several card types and
configurations are defined (contact/contactless, with/without
Stored-Value, etc.). Typically, these characteristics must be
initially configured to specify each test. However, changing
card parameters requires recompiling each new specification
separately and re-running the tests. This approach is un-

realistic, because this can take many hours or even days
to compile in industry. In addition, this would generate as
many models as system types, which can highly limit the
legibility and increase the risk of specification bugs. Contrary
to this complex testing process, our approach yields a single
appropriate generic model for all card types and applications.
The model’s explicit test sets are to be filtered at the end
of the test process through analysis of system preconditions.
For instance, Autseg-Contact-mode is an example of a system
precondition specifying that Open Session command should
be executed in a Contactless Mode. In this context, checking
a contactless card involves evaluating Autseg-Contact-mode
to 0 and then verifying the corresponding execution context.
Accordingly, sequences with the precondition Autseg-Contact-
mode are false and should be rectified!

V. EXPERIMENTAL RESULTS

In this section, we show experimental results of applying
our tool to the contactless transportation card. We intend to
test the security of all possible combinations of 33 commands
of the Calypso standard. This validation process is extremely
important to determine whether the card performs to specifi-
cation. Each command in the Calypso standard is encoded on
a minimum of 8 bytes. We conducted our experiments on a
PC with an Intel Dual Core GHz Processor, 8 GB RAM.

We have achieved a vast reduction of the state space due
to the quasi-flattening process on the smart card hierarchical
model. Compared to classical flattening works, we have moved
from 9.6 1024 states in the designed model to only 256 per
branch of parallel. Then, due to the compilation process, we
have moved from 477 registers to only 22. More impressive
results are obtained on sequences generation and test coverage
with data processing. A classical test of this card can be
achieved by browsing all paths of the tree in Fig .13 without
any restriction. This tree represents all possible combinations
of 33 commands of the Calypso standard.

Figure 13. Classical Test of Calypso Card.

Such a test shows in plot C1 of Fig .14 an exponential
evolution of the number of sequences versus the number of
tested bytes. We are not even able to test just a simple sequence
of two commands. Our model explodes by 13 bytes generating

3,993,854,132 possible sequences. That’s why AUTSEG tests
only one command at once, but it introduces a notion of
preconditions and behavior backtracking to abstract the effects
of the previous commands in the sequence under test.

Figure 14. SSG Evolutions.

Hence, a second test applies AUTSEG V1 (without data
processing) on the card model represented in the same manner
as Fig .9. It generates all possible paths in each significant
subspace (command) separately. Results show in plot C2 a
lower evolution that stabilizes at 10 steps and 1784 paths,
allowing for coverage of all states of the tested model. More
interesting results are shown in plot C3 by AUTSEG V2 tests
taking into account numerical data manipulation. Our approach
enables coverage of the global model in a substantially short
time (a few seconds). It allows separately testing 33 commands
(all of the system commands) in only 21 steps, generating a
total of solely 474 paths. Covering all states in only 21 steps,
our results demonstrate that we test separately one command
(8 bytes) at once in our approach thanks to the backtrack
operation. The additional steps (13 bytes) correspond to the
test of system preconditions (e.g., AUTSEG-Contact-mode,
etc.), global preconditions (e.g., Back-Autseg-Open-Session,
etc.) and other local preconditions (e.g.,AUTSEGINT(h00 ≤
buffer−size ≤ hFF)). Whereas, only fewer additional steps
(2 bytes) are required within the first version of AUTSEG
that stabilizes at 10 steps. This difference proves a complete
handling of system constraints using the new version of
AUTSEG, performing therefore more expressive and real tests:
we integrate a better knowledge of the system.

Plot C4 in Fig .15 exhibits results of AUTSEG V2 tests
simulated with 3 anomalies on the smart card model. We
note fewer generated sequences by the 5 steps. We obtain
a total of 460 sequences instead of 474 at the end of the
tests. Fourteen sequences are removed since they are unfea-
sible (dead sequences) according to SupLDD calculations.
Indeed, the SupLDD conjunction of parsed local precondi-
tions AUTSEGINT(01h ≤ RecordNumber ≤ 31h) and
AUTSEGINT(RecordNumber ≥ FFh) within a same path
is null, illustrating an over-specification example (anomaly) of
the Calypso standard that should be revised.

Figure 15. AUTSEG V2 SSG Evolutions.

We show in Fig .16 an excerpt of generated sequences by
AUTSEG V2 detecting another type of anomaly: an under-
specification in the card behavior. The Incomplete Behavior
message reports a missing action on a tested state of the
Update-Binary command. Indeed, two actions are defined
(Tag = 54h) and (Tag = 03h) at this state. All states
where Tag is different from 84 and 3 are missing. We can
automatically spot such problems by checking for each parsed
state if the union of all outgoing transitions is equal to the
whole space. If this property is always true, then the smart
card behavior is proved deterministic.

Figure 16. Smart Card Under-Specification.

As explained before, we get the execution context of each
generated sequence at the end of this operation. The next
step is then to backtrack all critical states of the Calypso
standard (all final states of 33 commands). Fig .17 shows a
detailed example of backtracking from the final state of the SV
Undebit command that emits SW6200 code. We identify from
the global extracted preconditions Back-Autseg-Open-Session
and Back-Autseg-Get-SV the list of commands (Open Secure
Session and SV Get) to be executed beforehand. Then, we
look recursively for all global preconditions of each identified
command to trace the complete path to the initial state of

Figure 17. SV Undebit Backtrack.

the Start command. We observe from the results that the
Verify PIN command should proceed the Open Secure Session
command. So, the final backtrack path is to trace (local
backtrack) the identified commands respectively SV Undebit,
SV Get, Open Secure Session and Verify PIN using local
preconditions of each command. At the end of this process,
we generate automatically 5456 test sets that cover the entire
behavior of the studied smart card.

Figure 18. Tests Coverage.

Industry techniques, on the other hand, take much more
time to manually generate a mere 520 test sets, covering 9,5%
of our tests as shown in Fig .18.

VI. CONCLUSION

We have proposed a complete automatic testing tool for
embedded reactive systems that details all features presented
in our previous works AUTSEG V1 and AUTSEG V2. Our
testing approach focused on systems executing iterative com-
mands. It is practical and performs well, even with large
models where the risk of combinatorial explosion of state
space is important. This has been achieved by essentially (1)
exploiting the robustness of synchronous languages to design
an effective system model easy to analyze, (2) providing an
algorithm to quasi-flatten hierarchical FSMs and reduce the
state space, (3) focusing on pertinent subspaces and restricting
the tests, and (4) carrying out rigorous calculations to generate
an exhaustive list of possible test cases. Our experiments

confirm that our tool provides expressive and significant tests,
covering all possible system evolutions in a short time. More
generally, our tool including the SupLDD calculations can be
applied to many numerical systems as they could be modelled
by FSMs handling integer variables. Since SupLDD is imple-
mented on top of a simple BDD package, we aim in a future
work to rebuild SupLDD on top of an efficient implementation
of BDDs with complement edges [33] to achieve a better
library optimization. More generally, new algorithms can be
integrated to enhance the LDD library. We aim as well to
integrate SupLDD in data abstraction of CLEM [13]. More
details about these future works are presented in [34]. Another
interesting contribution would be to generate penetration tests
to determine whether a system is vulnerable to an attack.

REFERENCES

[1] M. Abdelmoula, D. Gaffé, and M. Auguin, “Automatic Test Set Gen-
erator with Numeric Constraints Abstraction for Embedded Reactive
Systems: AUTSEG V2,” in VALID 2015: The Seventh International
Conference on Advances in System Testing and Validation Lifecycle,
Barcelone, Spain, Nov. 2015, pp. 23–30.

[2] M. Abdelmoula, D. Gaffé, and M. Auguin, “Autseg: Automatic test
set generator for embedded reactive systems,” in Testing Software and
Systems, 26th IFIP International Conference,ICTSS, ser. Lecture Notes
in Computer Science. Madrid, Spain: springer, September 2014, pp.
97–112.

[3] B. Seljimi and I. Parissis, “Automatic generation of test data generators
for synchronous programs: Lutess v2,” in Workshop on Domain specific
approaches to software test automation: in conjunction with the 6th
ESEC/FSE joint meeting, ser. DOSTA ’07. New York, NY, USA:
ACM, 2007, pp. 8–12.

[4] L. DuBousquet and N. Zuanon, “An overview of lutess: A specification-
based tool for testing synchronous software,” in ASE, 1999, pp. 208–
215.

[5] B. Blanc, C. Junke, B. Marre, P. Le Gall, and O. Andrieu, “Handling
state-machines specifications with gatel,” Electron. Notes Theor.
Comput. Sci., vol. 264, no. 3, 2010, pp. 3–17. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2010.12.011 [Accessed 15 November
2016]

[6] J. R. Calam, “Specification-Based Test Generation With TGV,” CWI,
CWI Technical Report SEN-R 0508, 2005. [Online]. Available:
http://oai.cwi.nl/oai/asset/10948/10948D.pdf [Accessed 15 November
2016]

[7] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva, “Stg: A symbolic test
generation tool,” in TACAS, 2002, pp. 470–475.

[8] L. Bentakouk, P. Poizat, and F. Zaı̈di, “A formal framework for service
orchestration testing based on symbolic transition systems,” Testing of
Software and Communication Systems, 2009.

[9] D. Xu, “A tool for automated test code generation from high-level
petri nets,” in Proceedings of the 32nd international conference on
Applications and theory of Petri Nets, ser. PETRI NETS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 308–317.

[10] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 443–446.

[11] G. Li, I. Ghosh, and S. P. Rajan, “Klover: a symbolic execution and
automatic test generation tool for c++ programs,” in Proceedings of
the 23rd international conference on Computer aided verification, ser.
CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 609–615.

[12] C. André, “A synchronous approach to reactive system design,” in 12th
EAEEIE Annual Conf., Nancy (F), May 2001, pp. 349–353.

[13] A. Ressouche, D. Gaffé, and V. Roy, “Modular compilation of a
synchronous language,” in Soft. Eng. Research, Management and Ap-
plications, best 17 paper selection of the SERA’08 conference, R. Lee,
Ed., vol. 150. Prague: Springer-Verlag, August 2008, pp. 157–171.

[14] C. André, “Representation and analysis of reactive behaviors: A syn-
chronous approach,” in Computational Engineering in Systems Appli-
cations (CESA). Lille (F): IEEE-SMC, July 1996, pp. 19–29.

[15] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Sci. Comput.
Program., vol. 19, no. 2, Nov. 1992, pp. 87–152. [Online].
Available: http://dx.doi.org/10.1016/0167-6423(92)90005-V [Accessed
15 November 2016]

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language lustre,” in Proceedings of the IEEE,
1991, pp. 1305–1320.

[17] A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M. Vidal,
“Modeling and testing hierarchical guis,” in Proc.ASM05. Universite
de Paris 12, 2005, pp. 8–11.

[18] A. Wasowski, “Flattening statecharts without explosions,” SIGPLAN
Not., vol. 39, no. 7, Jun 2004, pp. 257–266. [Online]. Available:
http://doi.acm.org/10.1145/998300.997200 [Accessed 15 November
2016]

[19] I. Chiuchisan, A. D. Potorac, and A. Garaur, “Finite state machine
design and vhdl coding techniques,” in 10th International Conference
on development and application systems. Suceava, Romania: Faculty
of Electrical Engineering and Computer Science, 2010, pp. 273–278.

[20] M. Fujita, P. C. McGeer, and J. C.-Y. Yang, “Multi-terminal binary
decision diagrams: An efficient datastructure for matrix representation,”
Form. Methods Syst. Des., vol. 10, no. 2-3, Apr. 1997, pp. 149–169.

[21] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams
for multi-level hierarchical verification,” in Proceedings of the 29th
ACM/IEEE Design Automation Conference, ser. DAC’92. Los Alami-
tos, CA, USA: IEEE Computer Society Press, 1992, pp. 608–613.

[22] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits
with binary moment diagrams,” in Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, ser. DAC ’95. New York,
NY, USA: ACM, 1995, pp. 535–541.

[23] L. Arditi, “A bit-vector algebra for binary moment diagrams,” I3S,
Sophia-Antipolis, France, Tech. Rep. RR 95–68, 1995.

[24] E. Clarke and X. Zhao, “Word level symbolic model checking: A new
approach for verifying arithmetic circuits,” Pittsburgh, PA, USA, Tech.
Rep., 1995.

[25] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Transactions on Computers, vol. 55, no. 9, 2006, pp. 1188–1201.

[26] J. Møller and J. Lichtenberg, “Difference decision diagrams,” Master’s
thesis, Department of Information Technology, Technical University of
Denmark, Building 344, DK-2800 Lyngby, Denmark, Aug. 1998.

[27] A. J. C. Bik and H. A. G. Wijshoff, Implementation of Fourier-Motzkin
Elimination. Rijksuniversiteit Leiden. Valgroep Informatica, 1994.

[28] P. Bouyer, S. Haddad, and P.-A. Reynier, “Timed petri nets and
timed automata: On the discriminating power of zeno sequences,” Inf.
Comput., vol. 206, no. 1, Jan. 2008, pp. 73–107.

[29] S. Chaki, A. Gurfinkel, and O. Strichman, “Decision diagrams for linear
arithmetic.” in FMCAD. IEEE, 2009, pp. 53–60.

[30] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select a formal system for
testing and debugging programs by symbolic execution,” SIGPLAN
Not., vol. 10, no. 6, Apr. 1975, pp. 234–245. [Online]. Available:
http://doi.acm.org/10.1145/390016.808445 [Accessed 15 November
2016]

[31] D. B. Johnson, “A note on dijkstra’s shortest path algorithm,” J.
ACM, vol. 20, no. 3, Jul. 1973, pp. 385–388. [Online]. Available:
http://doi.acm.org/10.1145/321765.321768 [Accessed 15 November
2016]

[32] “Ask.” [Online]. Available: http://www.ask-rfid.com/ [Accessed 15
November 2016]

[33] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a bdd
package,” in Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, June 1990, pp. 40–45.

[34] M. Abdelmoula, “Automatic test set generator with numeric constraints
abstraction for embedded reactive systems,” Ph.D. dissertation, Pub-
lished in ”Génération automatique de jeux de tests avec analyse sym-
bolique des données pour les systèmes embarqués”, Sophia Antipolis
University, France, 2014.

