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Formulation Variationnelle pour le Calcul de la Diffraction d'une Onde Acoustique par une Surface Rigide

. We give a space•time variational formula to the problem of the scattered acoutic wave by a hard body, using the double layer retarded potential technique. New schemes are constructed from this variationnal formula, for which we prove the stability and errors estimates. § 1

Introduction

Nous avons étudié dans [START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF] l'utilisation d'un potentiel retardé de simple couche pour calculer l'onde acoustique diffractée par une surface régulière soumise à une condition de Dirichlet. Nous avons dans ce cas obtenu une formulation variationnelle en temps et en espace de l'équation intégrale permettant de calculer la densité du potentiel cherché. Il en résulte aussi des résultats de stabilité et de convergence habituellement non traités dans les travaux numériques concernant ce problème.

Nous considérons ici le problème de Neumann:

Du(t,x)=O tER,xE.Q+ u(t,x) = 0 (P +) u 1 {t,x) = 0 au -{t,x) = g(t,x) (tER,xEr) av où .Q + est 1 'extérieur d'un domaine borné de R 3 , de frontière r. La fonction g(t,x) est nulle pour t ~ O.

La généralisation des résultats de [START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF] dans ce cas est facile en utilisant une représentation de u par un potentiel retardé de double couche. Nous donnons les résultats correspondants dans le § 2, où se trouve aussi une expression de la formulation variationelle qui ne contient pas d'intégrale hyper-singulière. Le § 3 est consacré à la discrétisation de cette formulation variationnelle, le § 4 aux résultats de stabilité et convergence. § 2 Le potentiel retardé de double couche Nous donnons dans ce paragraphe quelques résultats sur le potentiel retardé de double couche: en particulier, l'existence et l'unicité dans un cadre fonctionnel de Sobolev de la représentation de la solution du probleme (P +)par un tel potentiel, ainsi qu'une propriété de coercivité pour l'opérateur D (voir (2.3)) permettant de calculer la densité de ce potentiel. Ces résultats sont obtenus grâce à une transformation de Fourier-Laplace, et sont absolument analogues à ceux déjà obtenus dans le cas du problème de Dirichlet. La différence essentielle concerne le caractère singulier de D, et sera traité à la fin de ce paragraphe.

Resultat d'existence et d'unicité

On cherche donc à résoudre le problème (P +) en cherchant une représentation de sa solution éventuelle par un potentiel retardé de la forme:

u(t,x) = ~ J v • \lx (fP(t -lx-yi, y)) da 41try lx-yi Y (2.1)

= ~S vy. (y -x) [afP (t -lx -yi,y)

41tr iy-xl 2 at

+ fP(t -lx-yi, y) 1da lx-yi J Y pour t > 0, xe Q + • v y étant la normale vers Q + du point y er.
ce qui revient à associer au problème (P +) un problème intérieur (P _) de même donnée frontière au . La densité(/) du potentiel (2.1) est alors:

av (/)(t,x) = u_ (t,x)-u+ (t,x) (teR, XE n.
où, de façon générale on écrit f + la trace sur r d'une fonction f définie dans ~ (-) + .

(-) La même notation s'étend aux distributions quand cette trace est définie. La formule de représentation de Kirchoff permet ensuite de calculer (/) comme solution de l'équation:

(2.2) DfP = g où pour tout tE R, xE r:

. J

(fP(t -lx'yi, y) (2.3) 

(6 + w 2 )û = 0 dansD:r (~ ( aû) --surr - -g av :1: ÛE H 1 (Q:r)
cette dernière condition exprime le fait que u solution de (P :r) est à énergie finie. La formule de Green permet de vérifier facilement l'existence et l'unicité de la solution u de(~). qui est alors représentée par un potentiel de surface de double couche:

1 a ( -eiwlx-yl) û(w,x) = -f - fp(w, y)day (xe R\F) 4rtravy lx-yi
où la densité fp, égale à û_ -û+, est aussi solution de l'équation intégrale:

(2.4)

avec (2.5) D !). ôû - w Y ' s -= g av ( a ( eiwlx-yl) ) Dwf(x) = vx •'lx l -- f(y)day (xel).
r ôvy 4rtlx-yJ De plus, l'examen de la dépendance en w de û, fp donne les inégalités: par une exponentielle en t.

J (j \7û(w,x)l 2 + lwû(w,x)j 2 )dx ~ Cjwg(w,.
On notera 1 f lu,s,r pour la norme de H~(R+, Hr(T)). On a alors le Théorème 1 a) Sous l'hypothèse

(2.8) geH 0 170 (R+,H-112 (T))
pour un a 0 > 0, le problème (P +)admet une solution unique dans Ha 0 0 - La densité cp de ce potentiel, qui dépend linéairement de g, vérifie:

1 (R +, H 1 (.Q +)).
(2.10) lcplu,r 0 -l,l/2:::;; C(ao.Diulu,r 0 ,-l/2 Va~ ao • On peut préciser que la dépendance en a 0 des constantes C(a 0 ,T) dans (2.9) et (2.10) est de la forme 1/aÔ max(11a5, 1). Nous n'aurons pas besoin dans la suite de cette expression explicite des constantes. Gardons nous cependant en tête le fait que celles-ci ne restent pas bornées quand a 0 --> 0, ce qui correspond d'ailleurs à l'impossibilité bien connue de représenter la solution du problème de Helmholtz (P'!) par un potentiel de double couche quand w est réel quelconque.

Formulation variationnelle espace-temps pour l'équation en cp

Occupons nous maintenant de l'équation (2.2) en cp. Les propriétés de l'opérateur D sont de nouveau étudiées grâce à sa transformée de Laplace 

Autrement dit:

(2 13 ) [ID(!? la.o. -112 ~ C(ao,D lço lu,2,tt2 Il nous reste à traiter le problème de l'hyper-singularité de l'intégrale D. On revient encore sur Dw, pour lequel le même problème est maintenant bien maîtrisé (cf. [START_REF] Bendali | Approximation par éléments finis de surface de problèmes de diffraction des ondes électromagnétiques[END_REF], [START_REF] Ham Di | Une formulation variationnelle par équations intégrales pour la résolution de l'équation de Helmholtz avec des conditions aux limites mixtes[END_REF], [START_REF] Nedelec | Approximation par potentiel de double couche du problème de Neumann extérieur[END_REF]). La formule-clé est: rotrço(x) = VxAgradço(x) (xeF) où iP est défini dans un voisinage tubulaire de r par:

(ÏJ(x + avx) = ço(x) pourxer, lalassezpetit. Si rp = q,(w,x) et 1./1 = fi;(w,x) sont des transformées de Laplace de rp(t,x) et 1./1 (t, x), on peut alors revenir à celles-ci par la transformation inverse. Plus précisément, multipliant les deux membres de (2.16) par iw puis intégrant de -oo + ia à + oo + ia, la formule de Parseval nous donne: Nous suivons la même démarche que dans [START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF]. La différence essentielle vient de la forme bilinéaire. Il nous faut donc préciser la discrétisation de celle-ci. Nous découplons le temps et l'espace, et commençons par une discrétisation en espace par une méthode de Galerkin. Ceci donne le problème semi-discrétisé suivant: +co { <Ph E H;(R+, Vh) tel que (3.1) b(çoh,l/lh) = J,. e-lat(gh(t,.),l/f},(t,.))dt Vl/fh E H~(R+, Vh) où V h est un sous-espace de dimension finie de H 112 (n, et gh une approximation de g.

b(ço,l/l) = J e-2 u 1 dt JI x Y <P"(t -lx-yl,y)l/l'(t,x) +co [ V • V -oo rxr 4rt lx-YI (2.
On renvoie à [START_REF] Nedelec | Approximation des équations intégrales en mécanique et en physique[END_REF] pour la construction de Vh. Disons simplement que Vh est constitué de fonctions qui sont images sur r de fonctions polynômiales par morceaux, de degré m 1 ;;a, 1, définis sur des domaines triangulaires de R 2 de taille h. Nous ne discuterons pas non plus le remplacement de (F) par une surface approchée (Fh), qui introduit des erreurs dominantes, celles dûes à l'approximation de W 12 (r) par Vh. Voir Je §6 de [START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF]. Au point de vue de la marche des calculs, rien ne change cependant.
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Soit donc (ço~) 1 .;, 1 .;;Nh une base de Vh, Comme çoh e Hu(R+, Vh) peut s'écrire:

Nh . çoh(t,x) = L ap)rp~(x) j • l
avec aie H~(R+,R), on peut écrire b(({Jh,Vfh) sous la forme:

+<» b(lph,Vfh) = 1: r e-latpj(t) H [K).,(x, y)af'(t -lx-yi) j,l -<» rxr + K}. 1 (x, y)a 1 (t -ix -yi)] daxdaydt où, pour simplifier les écritures, on a posé:

K], 1 (x, y) = K},t(X, y) = vx . vy rp'(y)rpj(x) 47tjx-yl h h rotr({J: (Y) • rotr({J1 (x) 41tlx-yi
On approxime ensuite les fonctions de H~(R+, R) par celles du sous-espace H"' 2 (M; R) constitué de fonctions polynômiales de degré m 2 ~ 2 dans chaque intervalle.ln = (nL1t,(n + 1)6.!).

Posant alors

(/)h,t.,t(t,x) = 1: aj,t.t(f)rpj(x), j le problème discrétisé de (2.15) consiste à chercher: a 1 , 61 e 11'; 2 (6.!; R), 1 = 1, ... ,Nh telles que +<» }: J e-2 a 1 /3j, 61 (t) H [K).t(X, y)af.'o.t<t -lx-yj)

1 -<»
rxr .

+<»

= J e-latP},ll.t(t) J gh,ll.t(t,x)({J1(x)daxdt -<» r V/Jj,ll.t e H'; 2 (L1t; R), 1 ~ j ~ Nh. Nous détaillons ici les calculs dans le cas m 2 = 2, pour montrer qu'avec un choix convenable de fonctions de base Pj,ll.to (3.2) permet effectivement de calculer les a 1 , 61 , c'est-à-dire finalement la fonction approchée (/)h,ll.t• La généralisation à m 2 quelconque est, comme dans [START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF], simple dans le principe mais plus longue à écrire.

Dans ce cas, af.',;. 1 est une constante dans .ln. Notons la aï, et un calcul simple donne: 

{ al,ll.t(t) = _!_(t-tniaï + M nt (t-tm + _!_M) ai (3.
f M<n-k) Ak = Bn k•O
où, au ler membre, A k est le vecteur (af, . .. , a~kl et les matrices M<n-k), ne dépendant que den -k, sont nulles pour n -k > [ d~?]; d(F) désigne le diamètre de r. Pour obtenir (3.5), la même technique de décomposition des intégrales doubles, déjà exposée dans [1], est réutilisée. Aussi, nous nous contentons de vérifier que pour t!.t assez petit, la matrice~ est inversible. On a: où, après le changement de variables s = t -ln et simplifiant par le facteur e-zurn qui existe dans tous les termes aux deux membres de (3.5), et conservant la notation~ pour e-2 u 1 n~; on a:

1 àt 1 XM 0 X= f e-2 us(M-s)l(s)ds 0 avec I(s) = ! 1 (s) + I 2 (s) et
Considérons la Ière intégrale: I , (s) = J v_..Xh(x)da ... • J v,X"(y) da, r :yEr: Jx-yJ < s: 41t lx -YI pour s < M suffisamment petit, on peut assimiler l'ensemble {y eT; ix -YI< s} au disque de centre x, de rayon s dans le plan tangent à r en x, ce qui donne: par suite, pour s assez petit

l 1 (s) ~ c,s lX~tliz<n. De même / 2(s) ~ c2 • s 3 1 ~rXIt liz<n .
En intégrant, on obtient le résultat.

• Remarques .l 0 /Commel ;:;trXh iLl(f) = o(:} xh IL2(f) (cf. [4]), les deux termes de J(s) sont en fait de même ordre si 6.t/ h reste borné.

2° 1 On peut donner un argument fonctionnel à ces calculs approchés avec le lemme suivant: Lemme 3 Posons pour fe L 2 (n, .lsf(x) = _!.._ J /(y) day. S {yeT; Jy-x J< s: lx-YI Alors il existe une constante C > 0 telle que

(3 .7) l .!s f ILl(f) ~ Cl f ILl(f)
et quand s -+ 0, .fs f --+ f dans L 2 <n.

Démonstration. On peut écrire d'après l'inégalité de Cauchy-Schwarz:

l .l.f(x)l2<_ 1 ( slf<Y>I21• . da)(sl{ix-yl<s} da ) s 2 1 1 ,Jx-yf < s, Y 1 1 Y s r x -y r x -y
la dernière intégrale est majorée indépendamment de x par un 0 (s), par suite Il est d'autre part clair que pour f régulière, ~/(x) ~ f (x) pour tout xe r, et J.!sf(x) 1 ~ max 1 f(x) 1 • O(s), par suite .lsf ..... /dans L 2 (F) pour ces fonctions. r Il ne reste plus qu'à passer par le densité dans L 2 (F) des fonctions régulières pour 00~~-

•

L'application de ce lemme dans / 1 (s) est immédiate. Ainsi, la relation (3.5) constitue bien une équation linéaire permettant de calculer de proche en proche les valeurs des A k. § 4

Resultat de stabilite et de convergence Les principes de ce schéma ressemblent en tous points à ceux déjà analysés dans le cas du problème de Dirichlet résolu avec un potentiel de simple couche (1]. Aussi nous nous contentons d'énoncer ci-dessous les résultats obtenus. Théorème 3 a) (Stabilité). Si Bh,t:..r est une approximation consistante de g dans H~(R +, H-112 (F)), le schéma proposé au § 3 est stable au sens suivant: 2) J (/J -(/Jh, 6.1 Ja,O,I/2 ~ C lj g -gh, M la,!, -1/2 + tJ.t J (/J la,2,m 1 + 1 + tJ.tmz-2J (/J la,mz+!,l/2].

Enfin, si (/Jh,M est utilisé à la place de qJ dans (2.1) pour calculer u, nous obtenons une solution approchée uh, 61 du probème (P +) dont 1' écart avec la solution exacte est estimée dans le: Théorème 4 Dans les conditions du Théorème 3, on a:

{ 1 e-Zac E(u -uh,t:..c)(t)dt ~ Cj g -gh,M la,!, -td (/J -(/Jh,M la,0,!/2 (4.3) oùj({J-(/Jh,t:..cla.o,tnestmajorépar(4.2).

Conclusion

Nous avons proposé une formulation variationnelle espace-temps pour le calcul d'une onde acoustique diffractée par une surface rigide, utilisant un potentiel retardé de double couche. Cette formulation conduit aussi après une discrétisation de type éléments finis, à un schéma de calculs des valeurs de la

  )J:_t/2 Q+vQ_ (2.6) pour tout w e Imw = a 0 > 0 La constante Cne dépend que der de a 0 w,.)lt/2:::;; Clw §(w,.)l-112Imw == a ~ a 0 > 0 où l'on a notél f ls pour la norme deje Hs(T), espace de Sobolev classique. Voir[START_REF] Bamberger | Formulation Variationnelle Espace-Temps pour le Calcul par potentiel Retardé de la Diffraction d'une onde acoustic (I)[END_REF]. Avec la formule de Parseval, on traduit aisément tout cela en des résultats pouru et sa représentation (2.1). Le cadre fonctionnel choisi est défini par les espaces de type Sobolev:H~(R+,E) == [jeL'(E); ::s:::lwJ 2 sil}(w)ll~dw < oo] où E étant un espace de Hilbert (essentiellement Hr(T) et Hr(.Q ±)),L' (E) désigne les distributions sur R, à valeurs dansE, nulles pour t :::;; 0 et majorées à t--> + oo

  [1}. Lemme 1 a) Pour Imw > 0, Dw est un isomorphisme entre H 112 (F) et H-112 (F).Sa norme vérifie la majoration:(2.11) I!Dw!!~ C(a 0 ,F)Iwl 2 pourtoutimw ~ a 0 > O.b) De plus, l'inégalité de coercivité suivante a lieu: (2.12) Re <Dwf, -iwf> ~ C(ao.nl/lr/2 vfe H 112 Cn. Puis par la formule de Parseval: Théorème 2 a) D est un opérateur linéaire continu de H~ (R +, H 112 (T)) dans ~(R+ ,H-112 (F)), dont la norme est majorée indépendamment de 0' ~ a 0 > O.

1 [

 1 -w 2 v • v <Dwrp, 'Il) = -SJ l x l Y (!?(y)tii(x) 41t rxr xy (2.16) --} rotrrp(y) • rotrlii(x) iw\x-y\d d + e ~ ~lx-YI où rotrço est le rotationnel vecteur de surface d'une fonction ço définie sur r. Il peut être défini par:

  tn-1 OUt~ ln+l tn-1 < t < ln ln< t< tn+1 et substituant (3.3), (3.4) dans (3.2) on obtient un système de la forme: (3.5)

Lemme 2

 2 MJ. 1 = f e-2 u 1 (ôt-s) H [Kj, 1 (x, y) La matrice~ est symétrique, définie positive.Démonstration. Il est clair d'après les expressions de K},1 et KJ. 1 que West symétrique. Soit en suite X = (x 1 , ••• ,xNh) e RNh, et posant Xh = E X/Ph e Vh,

2 O

 2 sf iLz(f) ~-2 -JJ l l l :lx-y J<s!dO'y s rr xy ~ 0(~) }1 f (y) 12d0', f da ...

  s r :x. lx-y J<s! lx-YI d'où(3.7).

( 4 . 1 )

 41 j({Jh,t:..tla,0,!/2 ~constante quand h, M ..... O. b) (Estimation d'erreurs). Sig est suffisamment régulière, le schéma converge quand m 1 ~ 1 et m 2 ~ 3 et l'on a l'estimation suivante:

  Sig e H~ (R +, H-112 (T)), la solution (!? de (2.2) est aussi l'unique solution du problème:

	•	2 V(!?eH.,.(R+,H (F)) et a~a 0 >0 1/2	.
	b) On a l'inégalité de coercivité suivante:
	(2.14)	-oo	•
				complexes
	correspondants.	
	L'inégalité (2.14) donne donc la formulation variationnelle suivante du
	problème (2.2):	
	rp e H~(R+,H+ 112 (F)) tel que: Proposition 1 +oe +oe (2.15) _J"" e-2 a' (Drp(t),ll/'(t))dt = _J"" e_ 2 .,.'(g(t),ll/'(t))dt
	{	Vlj/EH~(R+,H 112 (F)).

{ +r e-2 a 1 (D(!?(t, .),ço' (t, .)) dt~ C(ao ,T) j(!? l~.o,112

V(!? e H~(R +, H 112 (F)), a ~ a 0 > 0.

Le crochet(,) désigne ici la dualité entre les èspaces réels H-112 (T) et W 12 (T) tandis que dans (2.12) il s'agit de l'antidualité pour les espaces