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Time-Stepping Approximation of Rigid-Body
Dynamics with Perfect Unilateral Constraints.
II: The Partially Elastic Impact Case

L. PAaoLl

As in Paoli (Arch Rational Mech Anal, 2010), we consider a discrete mechani-
cal system with a non-trivial mass matrix subjected to perfect unilateral constraints
described by geometrical inequalities f,(g) = 0, @ € {1,...,v} (v = 1), but
we assume now that the transmission of the velocities at impacts is governed by
Newton’s Law with a coefficient of restitution e € (0, 1] (so that the impact is par-
tially elastic). We generalize the time-discretization of the second order differential
inclusion describing the dynamics proposed in Paoli (Arch Rational Mech Anal,
2010) to this case and, once again, we prove its convergence.

1. Introduction

Asin[11], we consider a discrete mechanical system subjected to perfect unilat-
eral constraints. More precisely, we denote by u € R? the generalized coordinates
of a typical configuration of the system, and we assume that the set K of admissible
configurations is described by v = 1 geometrical inequalities

faw) 20, aefl,...,v}

where f, is a smooth function (at least C') such that V f,, () does not vanish in a
neighbourhood of {u € R?; f, (u) = 0}.

Then, the dynamics is described by the following measure differential inclusion
(see [7] for instance)

Mu)ii — g(t,u,u) € =Nk (u) (1)



where M (u) is the mass matrix of the system and Nk («) is the normal cone to K
at u, given by

{0} if u € Int(K),
Ni () = {zaem gV futt), g <0 Va € J(u)} ifuedk,
0 ifué¢gKk,

with J(u) = {e e {l,...,v}; fu(u) <0} for all u € RY. We also define the
tangent cone to K at u by

Tk (u) = {w eRY: (Vfo(u), w) 20 Va e J(u)}

where (v, w) denotes the Euclidean scalar product of vectors v and w in R¥. Since
u(s) € K for all s and we infer that

u(t+0) € Tx (u()), u(t—0)e Tk (u@®) (>0

whenever i (¢t = 0) exists. It follows that the velocities are discontinuous at impacts
ifu(t —0) & Tk (u(t)), and (1) implies that

M (u(t)) (@ +0) —u —0)) € =Nk (u(?)) .

This relation does not uniquely determine (¢ + 0), so we should add an impact
law. Following MOREAU [8] and BALLARD [1], we consider in this article a more
general impact law, as in [11]: we assume that there exists a restitution coefficient
e € [0, 1] such that

u(t +0) = —eu(t —0) + (1 + &)Proj 1)) (T (u(@)), u(t —0)) 2

where Proj;(,, denotes the projection relatively to the Riemannian metric defined
by the inertia operator M (u).

It should be observed that this model is energetically consistent: indeed, the
kinetic energy of the system, given by E. = ||L't||%,[(u)/2, decreases at impacts if
e € (0, 1] and is conserved if e = 1. Moreover, when e = 0, we recognize the case
of “standard inelastic shocks” already studied in [11].

For admissible initial data (ug, vo) € K x Tx (ug) we consider the following
initial-value problem:

Problem (P) Find « : [0, 1] — R? ( > 0) such that:

(P1) uisanabsolutely continuous function from [0, t]to K andu € BV (0, 1; Rd),
(P2) the differential inclusion

M (u)ii — g(t,u,tt) € —Ng (u)

is satisfied in the following sense: there exists a (non-unique) non-negative
measure p such that the Stieltjes measure di = ii and the usual Lebesgue
measure df admit densities with respect to du, that is, there exist two du-
integrable functions v, and #,, such that ii = dit = v}, du, df =, dj and

M (u(1)) UIL () — g(t, u(r), ()t (1) € =Nk (u(t)) dpu almost everywhere, (3)



(P3) forallt € (0, 1)
ut +0) = —eu(t —0) + (1 + €)Projy )y Tk W(?)), ut —0))

(P4) u(0) = ug, (0 + 0) = vy.

For this model of impact (for any value of the restitution coefficient e € [0, 1]),
the existence and uniqueness of a maximal solution for the initial-value problem
has been proved by BALLARD [1], when the data are analytical. Uniqueness can-
not be expected for less regular data (see [2,14] or [1] for counter-examples) but
existence results have still been established in the single constraint case (that is,
v = 1): see [5,9,12] for a trivial mass matrix (that is, M (u) = Idga), and [13,15]
for a non-trivial mass matrix. All these results rely on the study of a sequence
of approximate solutions constructed either by a penalty method [12,15] or by a
time-stepping scheme [5,9,13].

As in the inelastic shock case, these techniques encounter a new difficulty for the
multi-constraint case since, in general, the motion is not continuous with respect to
the data. Nevertheless, in the framework given by the sufficient conditions ensuring
continuity on data established in [1, 10], we may expect some convergence results.
So, in this article we propose a generalization to the partially elastic case of the
time-stepping scheme introduced in [11] and we study its convergence.

More precisely, we assume the same kind of regularity for the dataasin [10, 11],
that is,

(H1) g is a continuous function from [0, 7] x R¢ x R¢ (T > 0) to R¥;

(H2) foralle € {1,..., v}, the function f, belongs to CY(R?), Vf, is locally
Lipschitz continuous and does not vanish in a neighbourhood of {u e RY;
falu) =0};

(H3) the set K is defined by

K:{ueRd;fa(u)go, ae{l,...,v}}

and the active constraints along d K are functionally independent, that is, for
allu € 9K the vectors (V fy (1)) ;) are linearly independent;

(H4) M is amapping of class C' from R to the set of symmetric positive definite
d x d matrices.
With this last assumption we may define M=), M2 (u) and M~1/2 (u)
for all u € R? and the corresponding mappings are of class C! from R? to
the set of symmetric positive definite d x d matrices.
Let F be a function such that

(H5) F is continuous from [0, 7] x R? x R4 x [0, h*] (h* > 0) to R? and is
consistent with respect to g, that is,

F(t,u,v,0) = M_l(u)g(t, u,v) V(t,u,v)el0,T]x R? x RY.

For admissible initial data (uq, vg) € K x Tk (o) we consider the initial-value
problem (P). We define a time-stepping scheme as follows:



e the initial positions U° and U are given by
U =ug, U' e Argming g |uo + hvo + hz(h) — Zll M) )

with limj,—,¢ z(h) = 0,
e forallne{l,..., L%J},let

n__ _ n—1 2 rn n _ yn—1
= 2V = A = QU 4+ W F":F(nh,U",—U hU h)

1+e
(%)
and
U = —eU" ' + (1 + ) 2" (6)
with
Z" € Argming g [|W" — Z|mwn) (7
where || - [|p(v) is the norm associated to the kinetic metric at U defined by

”Z”/ZW(U) = (Z, Z) ) with
(Z,ZYww) = (Z.MU)Z) = MU)Z,Z)

forall (Z, Z',U) € (R9)3.

For e = 0 we recover the scheme already studied in [11] and, if M («) = Idga
forall u € R? and K is convex, we recognize the scheme introduced in [9] for the
first time.

As in [11], we now define the approximate solutions uj, by

n+1 u"

up(t) =U"+(t — nh)T vVt € [nh, (n+ 1)h] N[0, T]
foralln € {0,..., [T/h]}and h € (0, h*].
Since the impact law (2) leads to some discontinuity with respect to the data,
as when the active constraints at impacts are not orthogonal when e # 0 (see [10]),
we cannot expect convergence of the approximate motions unless we add some
assumptions on the geometry of active constraints along K.
So, forall u € K and for all « € J(u), we define

M=Y2W)V £, (u)
IM=12u)V fo(u)l

eq(u) =

where | - | denotes the Euclidean norm in R?, and we assume that

(H6) for all compact subset B of R?, there exist Cg > 0 and rg > 0 such
that for all (g1, ¢2) € (K N B)? such that |g; — g2| < rg, and for all
(o, B) € J(q1) X J(g2), such that @ # B, we have

|(ea(q), es(q2))| < CBlg1 — qal. ®)



Let us observe that, for g1 = ¢2, (H6) reduces to the “angle condition” given
in [10], which ensures continuity on data. In particular, for all ¢ € K

(ea(@)rep(@) =0 Yo, B) € J(q)*, a # B

which means that the active constraints are orthogonal for the local momentum
metric defined by M~ 1(g).

Then, under assumptions (H1)-(H6) we prove the convergence of a subse-
quence of the approximate solutions () >}~ to a solution of problem (P). The
various steps of the proof are the same as in [11], but the non-trivial restitution
coefficient e € (0, 1] leads to considerably more technicalities in the estimates of
the velocity.

The paper is organized as follows. In the next sections we establish a priori
estimates for the discrete velocities and accelerations on a non-trivial time interval
[0, 7], with 0 < T < T. Then we pass to the limit when 4 tends to zero on [0, ]:
using Ascoli’s and Helly’s theorems we obtain the convergence of a subsequence
of (up) x>, to alimit u which satisfies (P1) and (P2). Next, by a local study in
the neighbourhood of any impact time, we prove that the limit u also satisfies (P3)
and (P4). Finally we conclude with some global results.

2. A priori estimates for the discrete velocities

As in [11], we begin the study with a priori estimates of the discrete velocities
for a more general scheme in which the initialization procedure involves an initial
time tp, depending on /. The purpose of this modification is to allow us, in the last
section of the paper, to extend the estimates of the discrete velocities, by consid-
ering as “new” initial data, the already constructed approximate positions at some
time steps #o, and oy, + h.

More precisely, let B be a given convex compact subset of R such that BNK #
(. Possibly decreasing h*, we may assume without loss of generality that

lz(h)| £ 1 Vh e (0, h*]. ©)]

For all & € (0, h*], let to, € [0, T), and U® and U be given in BN K and K,
respectively. For all n € {1, R L%J} we define

U = —eU" '+ (1 +¢) 2"
with
Z" € Argming g |W" — Z|lmwn)

and

20" — (1 —e)U™ ' + h2Fn
1+e

W=

U _Unfl
, F'=F (t0h+nh, u", — h) )



Forall i € (0, h*] and n € {o, o L%J},let

Un+1 —_y"r
Ve ————
h

Then, we observe that
Lemma 1. Forallh € (0, h*]andn € {1, ..., (T — ton)/ h]}, we have
MUV — V" £ hF") € Ng(Z").

Proof. The proof is the same as in Lemma 1 of [11], in which we simply replace
U™t by Z". More precisely, let 1 € (0, h*]and n € {1, ..., (T —tor)/h]}. By
definition of Z" we have

IW" = Z* 3 wm S W™ = Z13gmy
for all Z € K, which yields
1
W' —Z".Z — Z" pwm) < §||Z" = Zllyyum VZEK.
But, using formulae (5) and (6), we get

U — (1-— e)Un—l +h2Fn Un+1 + eU"_l

Wl’l _ Zn —
1+e 1+e
anl —Vh 4+ hF"
—h R (10)
1+e
Thus
2h n—1 n n n n 2
T34 —V'"+hF", Z = Zuwmn = 12" = Zlywny YZ€K.

and the rest of the proof remains identical. O

Let us introduce the same notation as in [11]. We define

1
Amax = ||M , Amin =——"V Rd.
(u) = [IM @)l (u) Tl ue

Since u — M (u) is continuous with values in the set of symmetric positive defi-
nite matrices, the mappings u > Amax(#) and u — Apin(#) are well defined and
continuous from R? to R?% . Moreover

Amin (@[] £ [wll370) £ Amax@|w]* Yw e RY, Vu e R

Since B is compact, there exists § > 0 such that, for all (g, ¢") € B x R such that
lg —q’| <8, we have:

’ 1.
’)\min(Q) — Amin(q )| < Ejggkmin(“)v

1
|)\max(CI) - )\max(q/)| S 5 Sug Amax (1).
ue



We define
Bo = [ueRd;dist(u,B)ga}. (11

Then By is also a convex compact subset of R?, and we have

1. . 3
— inf Amin (@) < inf Amin (1), SUp Amax (1) < - SUp Amax ().
2 ueB ueBy ueBoy 2 ueB

We let

1. 3
Amin = = I0f Apin(4), Amax = = SUP Amax (1). (12)
2 ueB 2 uelB

Of course, we have
0 < Aminlwl® £ (w370 S *maxlwl* Yw € RI\(0}, Vu € By.
Let Cp > 0 and CF be given by
Cr=sup{|F(t,u,v,h)|; 1€[0,T], ue ByU By, [v|<Cp, h €[0,h*]} (13)

with By = B(ug, CoT + 1). Since the mappings M, M=, MY2% and M~1/? are
of class C! on R?, they are Lipschitz continuous on By U By and we denote by
Ly, Ly-1, Lypi2 and L y,—172 the corresponding Lipschitz constants. Moreover the
functions V f,, 1 < o < v, are locally Lipschitzian. There exists also a positive
real number L ; such that

\VfulZ) =V fu(ZN| S Lp|Z = Z'| Y(Z,Z') € (BoU B))?, Vae{l,... v}

We can obtain, as in [11], some rough estimates on the discrete velocities V". More
precisely:

Proposition 1. Let Co > 0 and hj € (0, h*] such that

h{ < min —CO , i Amin
2CF 8Co\ Amax
where CF is defined by (13) and Amin, Amax are given by (12). Let h € (0, h(*;],

7, = min (8/(2Cy), T — ton) and assume that there exists n € {1, ..., |t/ h]}
such that

V<o VIe{o,...,n—1}.
Then
n Amax
[V <4 —Co. (14)
min
Moreover, foralll € {2, ..., n} such that J(Z') # ¥,

L¢h
(VfulZh, V! evi2) < 2

2 1
S sixe Va e J(Z)).

V!4 evi—2



Proof. The proof is almost identical to the proof of Proposition 1 in [11]. More
precisely, for all/ € {0, ..., n} we have

-1
U= U £ D hIVH S 1hCo £ Cory £8 V1€ (0,....n),
k=0

and thus U’ € By. By definition of Z" we have
W™ — Z" [y < IW" = Z" Nmwm)

since Z"~! € K, with the convention Z° = U°. Recalling (10) we have

h
Wn _Zn — _(Vn—l _ Vn +th)’
I+e

and with formulae (5) and (6) we have also

T (V4 eV 2 4 hF") ifn 2 2,

W}’l _ Zn—l —
VO hF) ifn=1.
Hence
V™ I = 20V Mgy +ellV* 2 lmwn + 2k F yny ifn 2 2,
= 13IVOlm@ry + 280 F oy ifn=1,
(15)
and

max

A
v < A“““ (3Co +2hCp) < 4 Co.

min min

It follows that Z! € Bg foralll € {1, ..., n}. Indeed,

1+1 -1
1+e “1+e
1)
§Corh§§ ifle{l,...,n—1},
and
Uttt +eu!! h
7 v = | o< Ly

1+e 1+e

|
b (|Ul — U +eU! — U°|)
1+e

A 1)
< 4h maxC + Cotp S 2—|—C()Th<5 ifl =n.

min



Assume now that n > 2, and let [ € {2, ..., n} such that J(Z') # @. For all
a € J(Zh, we have

1
0< fu(ZY) = fu(Zh =/ (Vs (2412 =) 2 - 7).
0
But

7l-1 _ 7l _ Vg evis 2)

l+e(

and thus

1
(Vsul@h, V! +evi™?) < _/O (Vo (2 + 121 = 20)

— V2, V! ~|—eVl_2) dr

[IA

1
/ Vo (7 + 121 = 20) = 9 £ D)
0
x ’v’ +eVl’2‘ dr.
It follows that

(VfulZ) V! +evI=?) < V!4 eVIZ2P2,

_Lyn
2(1+e)

Now we prove a more precise estimate for the discrete velocities.

Proposition 2. Let Cy > 0 and assume that there exist C; > 0 and hi € (0, h*]
such that

<o [0 [ i ) !
= 2Cr 8Co\ Amax Co (v+4 Amax 72v3/2CeC0 (v+4 )\ma:
and
Ul _ o . —(v+1)
|V°|='— §C3<(4 ﬂ) Co Yh e (0, k]
min

where Cr is defined by (13), Amin and Amax are given by (12) and C, = max(Cp,,
C 2;0) with Cp and ’"1/90 defined at Lemma 15 (see Appendix).
Then there exists Ty > 0, depending only on B, Cy, C(’; and the data, such that

V" =

Un+l —_yn
- - < i — *
‘ < Cp Vnh € [0, min(zo, T — ton)], Vh € (0, hyl.

h




Proof. As in Proposition 1, let us define 7, = min (§/(2Co), T — ton). We begin
the proof with the study of the (v + 1) first velocities. More precisely, we prove
that they satisfy the announced estimate:

Lemma 2. For all h € (0, h{j] and for alln € {0, ..., min (v, |7,/ h|)} we have

n
A

v S Cil4, /=) <Co.
Amin

Proof. The result is almost a direct consequence of Proposition 1. Indeed, let
h € (0, hj]. By definition of Cj we have

UI_UO
h

A

Co

A

\ad =‘ Co,

and with (15), we already know that U I ¢ By and

IV < 31V + 200 F )

Hence
1 )Lmax 0 1 )\max % )\max %
VIS 5 (BIvOr+ 20 FY) < (3C} +2hCr) < 4. | "2y,
Amin Amin min
Now, letn € {2, ..., v — 1} and assume that
I
A
wviscl4 /=) viefo,...,n—1}.
)\min
Then |V!| < Co foralll € {0, ..., n — 1} and, once again using (15), we infer that
U" € By and
V" ey < 20V g + el VP2 lmwn) + 2h1F" [ mwn-
Hence
n—1 n—2
A A
vr < [ 2] 4 ) 22 +eCil 4| = +2hCF
)\min )\min min




Let us assume now that 4 € (0, hl,v+1 = n < |t;/h] and |V!| £ C for
alll € {0,...,n — 1}. We already know from Proposition 1 that

UleBy, Z'eBy Vlielo,...,n},

and

A
[V <4 [ 2.

min

But we may obtain a more precise estimate on V': using Proposition 3 (see
below) there exists a constant Cg, ¢,, depending only on B, Cp and the data, such
that

o

 7n—V

~n—l2 2 ~n—v—12
< max ‘V ,‘V ‘ + CB,c,h

where we define

3 T -4
vi=M"72ZHv! vie [0{ . 0’1”.

By an immediate induction, we infer that

min

[vr)? < ?max ()VO

min

2 |V”|2) + iB’CO(n—v)h,

and by defining

o Amin 15C3 8
7o = min S~ o~
Cp.c, 16 ' 2Co

[V"| < Co Vnh € [0,min(zo, T — ton)], Vh € (0, hgl.

we obtain

Proposition 3. Let us assume now that h € (0, hil, v+1=n < |1,/h] and
Vi <Cy VIefo,...,n—1}. (16)

There exists a constant Cg ¢,, depending only on B, Cq and the data, such that

e, VY 2,

7 i

2 Sn—1
< max (‘V"

- 2
V"’”’ll ) +Creh (A7)
with

vi= M'2ZHv! vie [o,..., L%” (18)



The proof of this result is rather technical and will be divided into several
lemmas. Let us recall here some useful relations about the Z"’s. By definition of
the scheme, we have

Un-H Un—l T — ¢
z":+ Vne[l,...,{T%J] (19)
e

and by convention Z% = U, It follows that

V"™ — V") Vne Hl, L%” (20)

Uﬂ _Zi‘l —

1+e

and

h T —t
7 — 7l = m(v" +eV" ) Vne {2, {T‘"’H . @D

Proof. First, we observe that (17) is obvious if J(Z") = @. Indeed, with Lemma 1,
we know that

MU™ (V"L — V" £ hF") € N (Z")
and thus
V= V" L hF if J(Z7) = 0.
With (21) we infer that
V2 = IV gy = V" azey + 20V F ez + 2 F" [y 2,

SV 4 Lyl Z" = Z7 VT A 2B | IV
+ W Amax | ™

~ A
S VP 4 hLy €Y, | T2 4 3hamax CrCo. (22)
min
From now on, let us denote simply J; = J(Z%) foralll € {1, ..., n} and assume
that J,, # (). We observe that there exists k € {1, ..., v} such that

k—1
Ik € | Ty
p=0

Indeed, for k = 1, Card (S g Ju-p) 2 Card (USZh Ju-p) + 1if Jys &

(Ul;;}) Jn_p) and we have J, # ¢, (Ul;;=o Jn_p) C {1,...,v}. We define k €
{1, ..., v} such that

k—1 m—1
ek €U dnep | and Jusw & [ Jup | Ymell,.. k—1}
p=0 p=0



With (16) and (14) we have that, forallm € {n — k, ..., n}

n
h A
7Zm — 7" < — VP 4+ eVP < (n—m)Coh + | 4] 2% 1 ) Coh
| = 2 < (n—m)Co p—- 0

p=m+1

A
< (4 - + v) Coh < min(rg,, rp) Vh € (0, h]. (23)

min

Thus, using Lemma 15, we may define

M=12(ZMV £, (2" ¢
o= IV I
|M=12(ZM)V fo(Z)] 220
We introduce the following notation:
k k—1
J, = U.ln_p = U Jp | » En:span{eg,aejn},
p=0 p=0

and

F" = M'>(Z"YF" Vm e {n—k,...,n}
Vi = Proj(E,, V™), V&' = Proj(E;-, V™) VYme{n—k—1,...,n},

where the projections are defined with respect to the Euclidean metric on R¢.
Now let us compare V" and V"*~¥~1 More precisely, we first compare V5 and

e
Lemma 3. There exists C1 > 0 such that

Vi = V=t = [proj (B, 77— V) < o
Proof. We know from Lemma 1 that, for allm € {n — k, ..., n}, we have
MU™V™ " = V™ £ hF™) € Ng(Z™).

Thus, there exist non-positive real numbers (i) )qcy, such that

MU™)(V" =V RF™y = > u M2l

aedy

with e} = eq(Z™) for all o« € J,,. Moreover, if J,,, 7 #J, assumption (H6) implies
that (e ) e, is orthonormal, thus

Iy = ‘(eg, M2z M@y vt — vy hF’”))(

§ HM—1/2(Zm)” ”M(Um)” |Vm—l —ym g thl



and with Proposition 1, we infer that

Amax Amax
gl = Co = —(2+4 Co (24)
A ~/ Amin Amin

forall B € J,, and forallm € {n —k, ..., n}. It follows that

ym=l _ym 4y (MI/Z(Zm—l) . Ml/Z(Zm)) ym=1 4 Z umen
aely,
> (Ml/z(zm)M*‘(U’")M‘/z(zm)egl — eg) .

acdy

(25)
By summation for m = n — k to m = n, we infer that

n
‘7}1 _ V}’l—k—l — Z Z (_MZL)MI/Z(Zm)M—l(Um)Ml/Z(Zm)eZ’l

m=n—k a€Jy,
n
+ > (Ml/z(Z’")—Ml/z(Z’”_l)) vl L REm (26)
m=n—k

But Zae!m unelr € E, since J,,, C Jy, 8O

Proj (E,Jl‘, vn— V”_k_l)

n
=Proj [EL D> >l (eg - MI/Z(Z’")M_I(Um)Ml/Z(Z’”)eZZ)

m=n—k aeJy,

n
+Proj(Eni, > (MI/Z(Z'”)—MI/Z(Z”’_I)) Vm—‘+hﬁ’")
m=n—k

which yields
]pmj (v - w—k—l)]

= Zn: Z|MZ'|(|€Z—€&"|+HMW(Z”’)HZHM‘l(Z’")—M—l(U’")”)

m=n—k aely,
n
m=n—k
Using the Lipschitz property of M'/2 and M~! on By we get

n
)Proj (EnL, \N/"—\N/"*kfl)‘ < Z z |/LZ1| (}eg—em—l—kmaxLMfl |Um—Zm|)

m=n—k a€Jy,

n
+ > LMI/ZCO‘Z'" —Z'”’l‘ + VrmaxhCr.

m=n—k



Butm 2 n—k =n—v 2 1, thus with (16), (14), (19) and (21)

‘Zm _ Zm—l‘ — h ‘Vm +€Vm_2‘
1+e
)\mix 1 j—
- hCo(l +dy /B it =, o
hCy if2<m<n-—1,
h
7! - 2% = = V! + V0| < 200,
I+e
and with (20)
1+e
)\max 1 —
- [#co (1+4 ifm=n, 08
hCy ifl1<m<n-—1.

It follows that

n
~ ~ A
(Proj (E,f, v"—v"—k—l)‘ <> h(LM./zc§(1+4 Am‘f")+\/1\maxcp)

min
m=n—k

n
+ Z Z |M(’31{1 (|eZ _627| +)\maxLM—1C0h

m=n—k aely,

Amax
1+4 .
( )\min ))

Since
A
|Z" — Z" < (n — m)Coh + (4 o 1)c0h < min(rg,, rj,)
min
forallm € {n — k, ..., n} (see (23)), we infer from Lemma 15 that

A
ey — ep| < Cp 12" — 2" < hc;%co(4 k- 1).
)\min

Finally, using (24) and recalling that k € {1, ..., v}, we may conclude with

=W+ 1)(LM1/2C3 (1 +4 /x )—i—\/)»maXCF)
min
/ Amax Amax
+ @+ DG Co| Cp | 4 +v—1 |+Amax L1 | 1+4 )
Amin Amin

O




In order to compare 171’\1, and 171’\1,7"71, we first prove that

Lemma 4. There exists C3 > 0 such that, for all B € Ju:

A

(Vn—k—l, eg) —C3h < (‘7”’ 6%) —e (\7"—/(—1’ eg,) + C3h.

Proof. With (26)

n
(eg,w_v"—k—l_h 3> Fm)

m=n—k

Z Z (eﬁ’ I/Z(ZM)M—I(Um)Ml/Z(Zm)eZl)

m=n—k o€y

+ Z ( (Ml/z(zm)—M”z(Z'”‘l)) V’”‘l) VB € J,.

m=n—k

But, for all € J,, there exists [ € {n —k+1,...,n}such that 8 € J;. Thus, if
o € Jy, and o # B, we get

(e ep)| = [ (et ch) |+ | (et =)
<c ‘Z’” Z’(+CBO 7zl — 7
)\‘maX
< Cp |11 —m|+4 —1)nc,
)\min

min

A
+Ch, ((n =D 44— 1)hc0

A
<2C, (k +4, 7 — 1)hc0, with C, = max(Cg,, Cp ).

min
If B = «, we have

(e et) = [l + (et — et i)

A
>1-Cy |2" - 2" >1—Ce(k+4 e —1)hc0.

min



It follows that

(Eg"}n_‘}n—k—l_h Zn: Fin)
=n—k
> — 2C. | k+4 1 )rC
o Y (Y
m=n—k ael,

n

DI | LA PP B Tl e]

m=n—k aeJy
_ ”MI/Z(Zm) M2 (zm= 1)H ‘Vm 1)
m=n—k

and using estimates (24), (27), (28) and the Lipschitz property of M~! and M~1/?
we get

_ _ A
(3 77) 2 (e V") = 0+ DLy CER( 144,22
Amin

— (4 D/AmaxCrh — Csh
with

. X [
C3=w+1)vCCoh | 2C | k+4, [ ™5 —1 )+ AmaxLp—1 | 1+4 Pmax )
Amin )»min

This is the left side of Lemma 4. For the right-hand side we consider / €
{n—k+1,...,n}suchthat € Jyand B & |J,,_; | Jm- Then,

n
(eg,w_v’_h 3 ﬁm)
m=I[+1

Z Z (eﬂ’ 1/2(Zm)M—1(Um)Ml/Z(Zm)e;n)
m=I+1aely,
n
+ Z (eﬁ, (MI/Z(Zm)_M1/2(Zm—1)) Vm—l)‘
m=Il+1

Since B & Uy,—;1 Jm-» We have
l(e%’eﬁ”)\é\(e%—eﬁ’ )|+l ex)

((n —D4+m—-01)+38 / Amax 2)C0h
<2c, ((n D) +4 / 1)c0h (29)




forallm € {{ +1,...,n}, forall @ € J,, and thus

n
(\7", eg) < (Vl, eg) +h > (Fm eg)

m=I[+1

A
+( =G 2C | (n =D +4 |22
Amin
)\max
+Ly-1Amax | 1+ Coh
Amin
2 Amax
+ M —=DLypCohy1+4 [ — .
Amin

Moreover, B € Jyand! = n — k + 1 = 2 thus, with Proposition 1,

L+h
(Vf,g(Zl), v! +evl*2) < 2(1—16)

‘Vl +evl*2‘2

and
Lsh 2
(eig,Ml/z(Z’)(Vl +eVH)) < =/ ‘Vl +eV’*2’
2m30
With (16), (14) and (21) it follows that
- - Lh
(V’+evl_2,efs) < f |Vl~|—eVl_2|2
2m30

te ((M1/2(z’—2)—M1/2(z’)) vi=2, efs) < Cyh

2
L f 2 Amax 2 Amax
Cy= —Cil4. | ——+e ) +elLy12Ci 4 +3).
2mB() 0 ( Amin ) M 0 Amin

Recalling that |ef§ — e§| < C,|Z" — 7"|, we infer that

with

(\7’ +ev!2, eg) < Csh

with

/2 A
Cs=Ca+Co|n—D+4 ]2 1 )34,/ + e )V Amax-
Amin Amin

Finally, again using (25), we get

1-2
vi-2 _ k=1 _ Z WEm — (M1/2(Zm71) _ M1/2(Zm)) ym—1

m=n—k

-2
_ Z ZM:;[" (MI/Z(Z’")M_l(Um)M1/2(Z’”)e(’f)

m=n—k ael,



and with (H6) (see (8)), we obtain
S1-2  On—k—1 -2
(V N )
2 _(k/ + DV AmaxCrh — (k/ + DHvCy

A
x (ZCe (k’ +4 )\”‘f‘" — 1) + ,\maxLM_l) Coh
min

—2(k' 4+ 1) LynpC3h

with k' =11 — (n — k) — 2. Hence, with (29)

~ - Ama
(vl—2 - V"—k—l,eg) > —(K'+Dh (VC2C0 (ZCe (k’ +4 /0 - 1)
min

HMLMI)HLMM@ +mcF)

A
—2C3C.h (n —l+1+4 /\ma‘)\/,\max.

min

Observing thatn — v < n — k < [ < n, the conclusion follows with

A~ A
C3 = max(C3, C3) + (v + DV/AmaxCr + (v + DLy, , C5 (1 +4 “‘“)

min

and

. [ /A
Cy=w—1wCCo2C{v+4 = —2 )+ hmax Ly [ 14+4 | 72
Amin Amin
2 )Vmax )Vmax
+Cs+2C3C v+ 1+4 = W4 ) 43¢ )V max
)Lmin )Lmin

Now, we may apply the following lemma.

Lemma 5. There exists Cs > 0 such that, for all w € E,, we have

> = D" (w, el)*| < Csh D (w, eh)”.

aein aei,,

- ¢ RCad/n gych

Proof. Let w € E, = span [eg,a € fn}. There exists ('uﬁ)ﬁej,,

that

w= > upgep,

BeJn



and for all @ € fn

(w, ey) = Z npley, eg) = o + Z mpley, eg).
/Sejn ﬂejn\{“}

But J, = U’;_:h Jep = U’;ZO Ju—p, and there exists (p,q) € {0,...,k — 1)2

suchthate € J,—p and B € J,,—4. Hence,

g4

+ ‘(6271)7 ez_q)

‘(e,’f,, eg)| = ‘(efi —ey Toef)
< |eg—ez_P|+’(eZ_p,eg_q)‘+ q’-

b5

We recall that, for all (m, 1) € {0, ...,k — 1}2 we have

[\
|Zn—m _ Zn—l| < (v +4 % — 2) Coh < min(rp,, r;;o).
min

Thus, with (8) and Lemma 15 we get for all g € fn\{(x}

Y
el — el P| < (p +4 Amax - 1)C330C0h,

min

A
(q +4 Xma" — 1)Cgoc0h,

min

n

_ n
6/3 eﬁ

A

_q’

min

- A
‘(eZ_”,eZ q)‘ < (Ip —ql 4 - I)CBOCOh’

and

A
< 3(k +4 [ 2) C.Coh.

min

et e

Let us denote

Mg
Cs =3CeCo(v~|—4 s —2).

min
We infer that

(w,el) —pal £ D Inpliteh, €l < Ceh D~ gl
Bedu\(a) Bedn\far}

and since Card(J,,) < v and k < v we get
172

[, ) = pa| < Cehvv =T > lugl

Bedn\le}



On the other hand, we also have

lw|? = Z ,uauﬁ(eg,eg) = z /Li + Z Mauﬁ(eZ,eg)

(@B, ael, (@.pred,’ atp

and, with the same arguments as above, we get

T 0 =S S Y (R

SCh DL iangl

acy (@B, atp (@B)ek, atp
< Ceh(v—1) D .
wel,

It follows that

wi* = D . )| < |lw = D ud+ | D ul — w.ep)?
ael, ael, ael,
S Cohv =1 > w2+ > [ud = w, e)?]

acl, acl,
and for all € fn

2 = (w,e?| = e = (w, )| |1a + (w, )] £ [aa = (w, €|

X (2|/Loz| + |/Loz — (w, €Z)|)

1/2
< e — woeD] [ 2 D Il + s — (. el
Be,
< Cgha/v — 1 (2+C6h\/v — l) Z ,ulzg.
pedu
Since
hi =
72032, Cy (v + 4,/ hums
we get

HE = (w, el S 3ChVv =1 i

Bed
forall « € fn Thus

(w, e(’f[)2 > (1 —=3Cghvi/v —1 ug > 1 ui
2

aei,, aed, aed,



which yields finally

w2 = > (w, e)? <C6h((v—1)+3v - )Z“a

acl,
< 4¥2Ch D (w, ep)*.

D(Ein
The conclusion follows with C7 = 4v3/2Cy. O

Now we can prove that

V"2 < max (|V’”|2, VTR

2
- ( ) +Cp.eyh

where Cp, ¢, is a constant which depends only on B and Cy.
Indeed, if J,, = ¥, we have (see (22))

)‘«max

V2SIV hLyCo4

+ 3hAmaxCrCo.

min

If J, # ¥, we have with Lemma 3 and Lemma 4

i

< W,H‘ 4 ‘Proj (Enl, - Vn—k—l)\ < ‘V;,k,l‘ +Cih

and, for all 8 € fn

(77265) [ = |(7<5)

With Lemma 5 we get

< |7t ) [+ o= | (B )

+ Csh.

V"2

~ 12
+‘V;;

~ 2 -~ - 2
< [Vt 20 [T 4+ A+ Oy D (Vi ef)

Bedy
But
“7#71(71‘ < ‘Vn—k—l} < Cov/Amax
and
‘(Vnk 18/3) )Vnk "<Com
Thus
[0 < 741 2CunCorm + €117

~ 2
+ 1+ C7h) Z ((V,’;"“l, eg) +2C3Cov/ Amaxh + (C3h)2) )

Ben



i << 1
Since Ay = 30, We have

1+ Coh
1= Cyh >0 and — 7h§1+3C7h.
— L7
Thus
~ 12 - 2 1 C+h |~ 2
7| <[] 1+C7h‘v;;—"—1‘ + Cov/Amaxh 2C1 + 20C5(1 + C7h))
— L7

+(C1h)* + (C3h)* (1 + C7h)v.

Finally, in both cases (J, = @ or J,, # (), we have

’Vn

2 ~ 1 2
< max ‘V”_

‘7"“"1‘2) + Cp.ch
B,Co

g e ey

with

min

Ao
Cp.c, = max (LMC34 )\“‘“ + 3xmaxCFCo, Cov/Amax (2C1+2vC3(1+C7h*))

+ C%h*+c§h*(1+c7h*)v+3c7,\maxc§)

which allows us to conclude the proof. 0O

Let us now consider the initialization procedure given by formula (4), that is,
let g, = 0 and

U =up, U' e Argming g lluo + hvo + hz(h) — Zl puy) » ]}i_%z(h) =0,

forall i € (0, h*]. We choose B = B(ug, C + 1) with C > 0. By applying the pre-
ceding results, we get a uniform estimate of the discrete velocities on a non-trivial
time interval:

v+1
Theorem 1. For all C 2 2,/ %2 (|vo| + 1) and for all Co > (4 %) c,
there exist hg € (0, h*] and 1y > 0, depending only on B, Cy and C(’)‘ and the data,
such that

V"=

Un+1 —_yn
|— < Cy Vnh € [0, min(zp, T)], Vh € (0, hg].

Proof. LetCj = 2 iﬁ’z‘;‘ (lvo|+1),and let Cp and h(; be defined as in Proposition 2.
With (9) we have

lz(W] =1 Vh e (0,h"]

and by definition of U I we have

wo +hvo +hz) = U= o v+ hah) = Zly VZ € K.
uo



By choosing Z = U° = ug, we get

IV s < 2 (10 Dbty + 120D ar ) -

Since ug € B C By, we infer that

A
Vo <2 %uvowl) < Cy Vhe (0,h*].

min

It follows that

. —(v+1)
Vo <cE < (4 kma") Co Vh € (0, h]

min

and we may apply Proposition 2, which yields the announced result. O

3. Convergence of the approximate solutions (u)+>}.¢

Before passing to the limit as / tends to zero in the sequence (u)p«>j,-0, WE
prove an estimate for the discrete accelerations. -

Proposition 4. Let us assume that there exist Co > 0, to > 0, hj € (0, h*] and a
subsequence (h;);enN, decreasing to zero, such that

|[V"| < Co Vnh; € [0, min(rg, T)], Vh; € (0, hgl. (30)

Then there exist h} € (0, h§] and C(y > 0 such that, for all h; € (0, h7]
N .
T
Z‘Vn_vn—l‘§c(l)7 WithNZ\‘%J-
n=1 L

Proof. We begin the proof as in [11] Proposition 3. More precisely, let B =
B(ug, C + 1) with C > 0, By be defined by (11) and Cr be defined by (13).
Without loss of generality, possibly decreasing A, we assume that Cohj < 1 and
Crh} < Co. We denote K1 = K N B; = K N B(ug, CoT + 1) and

1

Supyep, M@’

Amax,B; = SUP Amax(u) = sup |[M ()]
ueB ueB

)&min,Bl = 1211; Amin (1) =
ueB

Let h; € (O, h(’g]. By definition of the scheme, we have Z" € K for all n €
{0, ..., T/ h;]} and assumption (30) implies that

n—1
‘U”—UO‘ ghiZ‘V"‘ < nhiCy < CoT Vnel0,....N+1)
k=0



and with (20)

72— v°| < |ur - v + _1]:: v — eyt
e

< CoT + Cohi < CoT + 1 Vne{l,...,N},

thus Z" € Ky foralln € {1,..., N}.

The continuity of the mappings f,,« € {1, ..., v}, implies that, forall g € R,
there exists 7, > 0 such that
(q) =
falq) 2 faTq >0 Vq' €B(q,ry), Yo &J(q). 3D

Without loss of generality, we may assume that 7, < min (rB1 , r%} , 1/(41;2Ce,31 ))

where C, g, = max(Cg,, C;Bl) and Cp,,rp,, Cj_,;l and r%l are the constants defined
at assumption (H6) and Lemma 15 for the compact set B;. Then, the compactness

of K implies that there exists (¢;);<;<; such thatg; € K forall j € {1,...,[}
and o

l

K C UB(CH, ;’)

i=l1

We define
r = min ri.
1<t 2

Lethi € (0, min (h(*;, r/(ZCO))] and h; € (0, hT]. Using (21), we infer that for
all (n,m) € {1,..., N} such that n < m — 1 we have

m
h; _
zn—z< > e ‘Vk tevk 2‘ < (m — n)h; Co.
k=n+1
Let p = |r/(Coh;)] and letn € {1,..., N — 1}. Then, there existsi € {1,...,1}
such that Z" € B(qi,rqi/2) and Z"™ € B(qgi,rg) for all m € {n,...,
min(N, n + p)}. With (31) we infer that

fa(Z™) >0 VYa & J(g;)) VYm € {n,...,min(N,n+ p)}

thatis, J(Z™) C J(g;) forallm € {n, ..., min(N, n + p)}.
Letm € {n+1,...,min(N,n + p)}. Since |Z" —g;| S 1y, = min(rBI,r;gl),
we may define

M=YV2(ZM)V fo(Z™)

ey =ey(Z™) = |M—1/2(Zm)Vfa(Zm)|

o

Vo € J(qi)

and we let u = 0ifa € J(g;)\J(Z™). It follows (with Lemma 1) that

MU™V™ =V L F = Y ppMUAEZMep,
BeJ(gi)



with Mg < 0 for all B € J(g;). From assumption (H6) we know that, for all
(, B) € J(Z")?

S i
Thus for all 8 € J(Z™)
(M2 ZmMUm VT =V h P, e ) = S0
and
gl = (M7 REMOV = VI = F, e )

< ‘M’]/Z(Z’")M(U’”)(V’" —yml h,-F”‘)‘

< M2 | || v - vt — e,
On the other hand, for all « € J(g;)\J(Z™)

(M’I/Z(Z’")M(U’”)(V’”’l VM 4 R FT ,eg;) = > wpey e
BeJ(Z™)

and since (o, B) € J (q,-)2 with @ # B, we get with assumption (H6) (see (8)) and
Lemma 15

(ewtan. )]
< (Ch, + Ce)IZ™ = il = 2Ce.pi7g;-

It follows that, for all @ € J(g;)\J(Z™)

e em| < |(e e = eutan) | +

‘(M’I/Z(Z’")M(Um)(vm’l SRV ,e;"))
< D0 Il
peszm)

< 20C, 5,17, ’M_I/Z(Z’")M(Um)(v’" _yml h,-F”’)’ .

(e ey

Then we infer that

=| D> —upep| < D gl

'BGJ(Z)?I) ﬂe](zﬂl)

=3 (M’l/z(Zm)M(U’")(V’” — vl Py, eg)
BeJ(Z™M)

g Z (M_1/2(Zm)M(Um)(Vm _ Vm—l _ hl‘Fm), ezl)
BeJ(qi)

+202Ce 1, [MTAEZMUVT = VI = |



Thus, forallm € {n+1, ..., min(N,n + p)}

(1 = 202Ce 7)) )M—l/z(zm)M(U’")(v’" _yml h,-F’”)(
<y (M’I/Z(Zm)M(Um)(V”‘ S e:;’) .

BeJ(qi)

But ry; < 1/(4v?Ce,p,), so we get

% )M—l/Z(z’")M(U'")(vm _ym=l hiF”’)‘

g Z (Mfl/Z(Zn’l)M(Um)(Vm _ VWZ71 _ h,’Fm), ezl)
BeJ(qi)

forallm e {(n+1,..., min(N,n + p)}.
Now, we rewrite the right-hand side in order to obtain a telescopic sum. More
precisely

(M2 ZmMUm T = Vit =, )
< - (M@ M@t et
+ (M2 zmmumve, e
— (W= 2Emm™ - = Pz vt )
- (M_l/z(Z’")M(U’”)V’”_l, e - eg—l)
—hi (MTREZ MU F", e ).

1/2

Using the Lipschitz properties of M~ "/~ and M on B; we get

g LM—|/2|Zm _ Zm—ll ”M(Um)” |Vm—l|

+LM|Um _ Um—1| HM—I/Z(Zm—l)H |Vm—l|

Ly
< (LM—I/z?»max,B. + —)C(%hi

vV )\min,Bl

and with Lemma 15

‘(M’I/Z(Zm)M(Um)Vm’l, ey — eg“l)‘

)»max,Bl

RV )Lmin,Bl

<M1z | im@mnve e, s 1z -2 < Ce., Cihi.



Finally we obtain

% ‘M_I/Z(Zm)M(Um)(Vm —yml g, F’")‘
3 (- o)
peT @
+ (M—I/Z(ZM)M(U’")V’",eg))

2

LMC 2 Amax By
+h;v C2LM71/2X B +—0+(C B Cy+Cp)——
i ( 0 max, b /7)\min, B, e, b /;)Vmin, B,

forallm e {(n + 1, ..., min(N, n + p)}. It follows that

min(N,n+p) 5
> @M - vt )| < 4t

m=n+1 vV Amin, By

Ly C? A
+2p/vhi (C(%LMI/Z)\max,Bl + oMo + (Ce,BICg 1+ Cp) max, B; )

Co

Vv )\min,Bl RV )Vmin,Bl

with p’ = min(N, n + p) — n. Let

= vV )\max,Bl 2 LMC(%
CO = 2\)— COLM*I/Z)Lmax,& + [y —
)&min,Bl v/ )\-min,B|
)Lmax B
+ (Co.p,C} + Cp) =221 ),
o \/)\min,B1
We have
min(N,n+p) min(N,n+p)
>owvrevrlis e+ Y |utwm| ||
m=n-+1 m=n+1
x ‘M_I/Z(Z’")M(U’")(Vm —ym=l hiF’”)‘
Amax B 3/2 ~
<4 ("‘—) Co+ p'hi(Cr + Co).
)\min‘B|
Finally,

IN/p]=1 (k+Dp

N N
Z‘Vm_vmfl‘g Z Z ‘Vm_vmfl‘_i_ Z ‘Vm_vmfl‘

m=1 k=0 m=kp+1 m=|N/p|p+1

N 2 3/2 .
({—J 4 1) 4 (—maX’Bl ) Co+ Nhi(Cr + Co).

P min, By

A



Since p = Lﬁj and N = L%@J we get L%J < rngThT forall h; € (0, h7]

and the conclusion follows with
CoT Amax, B 32 =~
C) = (— + 1)4 (—‘) Co+ T(Cr+ Cp).
0 r— COhT )\min,Bl

O

Now we can pass to the limit as 4 tends to zero. The steps of the proof are quite
similar to [11]. For the sake of self-sufficiency, we state the main results here.
Let us recall the definition of the approximate solutions (i) ,«>p~¢

n+1 _ un"
u,(®) =U"+(t — nh)T vVt € [nh,(n + )R] N[0, T] (32)
and let us define
Un+l _yn
v(t) = V" = — Vt € [nh, (n+ 1)h) N[0, T] (33)

foralln € {0, ..., [T/h]}and h € (0, h*].
Let us assume from now on that

(H7) there exist Co > 0, 7o > 0, o5 € (0, h*] and a subsequence (h;);en,
decreasing to zero, such that

[V £ Co Vnh; € [0, min(tg, T)], Vh; € (0, hg]l.

We define B = B(ug, C + 1) with C > 0. Let By and Cr be defined by (11)
and (13), respectively. We assume (without loss of generality) that Cohg < 1 and
Crh{y < Co. Let us denote T = min(zo, T).

From assumption (H7) and Proposition 4 we know that (i, );s>p,~¢ 1S uni-
formly Co-Lipschitz continuous on [0, 7] and (v;) W 2h; >0 is uniformly bounded

in L®(0, t; ]Rd) NBV (0, t; Rd). Hence, (up, )hT >h;=0 is equicontinuous and, using
Ascoli’s and Helly’s theorems, we infer that there exist a subsequence, still denoted
(hi)ien, u € CY ([0, T]; ]Rd) and v € BV (0, t; RY) such that

up, — u strongly in co ([O, T]; Rd), (34)
and
v, — v pointwise in [0, T]. 35)

Moreover we have
t
up, (t) = ug +/ vp,(s)ds Ve €[0,T], Vh; € (0,h"].
0

Thus, with Lebesgue’s theorem, we get

i

t t
u(t) = hl_iglo (uo +/0 vp, () ds) = ug +/0 v(s)ds Vre[0,7]. (36)



We infer that u is Co-Lipschitz continuous and
un, (1), u(t) € B(ug, Cot) C By = B(ug, CoT + 1) Vt € [0, 7], Vh; € (0, h7].

Moreover, u is absolutely continuous on [0, 7], thus # admits a derivative (in the
classical sense) almost everywhere on [0, 7] and & € L0, t; R?). From (36) we
infer that it (z) = v(¢) forall ¢ € [0, ] such that v is continuous at 7. Possibly mod-
ifying & on a countable subset of [0, T], we may assume without loss of generality
that it = v.

As usual, we adopt the convention

(0 —0) =v(0—0) =v(0) =u(),

. . 37
u(t+0)=v(rt+0) =v(r) = u(r).
Then we observe that

Lemma 6. Forallt € [0, ], u(t) € K.

Proof. Lett < (0, 7). For all h; € (0, min(¢, T — t)) there exists n € {1, e, L,%J}

such that ¢ € [nh;, (n + 1)h;) C (0, 7). Then, observing that Z" € K we get
dist (u(t), K) < |u@) — Z"| < |u(®) — up, ()| + |un, 1) = U"| + |U" = Z"|.

But
|up, (1) = U"| = |un, (1) — up, (nhi)| < |t — nhi||V"| £ Coh;,
h.
U" = 2" = ——|V" —eV"!| < Coh,
1+e
thus

dist (u(t), K) < |u — up, ”CO([O,r];Rd) +2Coh;.

By passing to the limit as /; tends to zero, we obtain dist (u(z), K) < 0, that is,
u(t) € K forallt € (0, 7).

Since K is a closed subset of R¢ and u is continuous at 7 = 0 and t = T, the
same property holds on [0, t]. O

3.1. Study of property (P2)

Now, let us prove that u satisfies property (P2), that is, the differential inclusion
(3). First, we observe (as in [11]) that there exists at least one non-negative measure
w such that both the Stieltjes measure ii = diz = dv and the Lebesgue measure
dr admit densities with respect to . Indeed, let i be defined by du = |du| + dt:
w is non-negative and the measures ii = du and dr are absolutely continuous with
respect to L.

Let now u = |dit| + dt. We denote by v;L and tl’L the densities of diz = dv and
dr with respect to die. We have to prove that

M (u(t)) v, (1) — g (t,u(t), u(1)) 1, (t) € =Nk (u(r)) dp almost everywhere.



By Jeffery’s theorem (see [4] or [6]) we know that there exists a du-negligible
set N C [0, t] such that, for all ¢ € [0, T]\N:
du (1 dr (I
o ()= tim S0 gy o iy 3
" emotdu (I) H e—0t du (1)

with I, = [t,t + €] N[O, T].
We define

N' ={r €0, 7]; it(t + 0) = is(t — 0) # (1)}

(we may observe that the convention (37) implies that 0 ¢ N" and T & N’). Since
i = v belongs to BV (0, t; Rd), N’ is at most a countable subset of [0, T] and we
infer that N’ is negligible with respect to |dit|.

Finally, let No = {r € {0} U {t}; & is continuous at ¢}. The set N is finite (it
contains at most the two points # = 0 and t+ = 7), so it is negligible with respect
to |dit|, and it follows that N U N’ U Nj is also negligible with respect to du. We
have:

Proposition 5. Let 1 € [0, T]\(N U N’ U Ny) such that u is continuous at t. Then
M (u(1)) vy, (1) — g (z,u(r), (1)) 1, (t) € =Nk (u(?)). (38)

Proof. We begin the proof in the same way as in the proof of Proposition 4 in [11].
More precisely, let £ € [0, T]\(N U N’ U Np) such that i is continuous at 7. Then
t € (0, 7) and, for simplicity, we will denote u = u(¢) in the remainder of the
proof. By definition of Nk (i), (38) is equivalent to

(gt i, (1) 1, (1) — M(@)vy, (1), w) =0 (39)

forall w € Tx (@) = {w € R (V fo (1), w) = 0, Yo € J (@) }.
Let us consider f‘K (u) defined by

~ {weRd;(Vfa(ﬁ),w)>0VoeeJ(12)} if J(u) 0,
TK (Lt) = d .
R otherwise.
Since~7~"K () is dense in Tk (u), we only need to prove that (39) holds for all
w € Tk (u). As in the proof of Proposition 4 in [11], we define r; > 0 such that

J(q) C J(i1) Yq € B(ii, ra),

and, for all w € fK (u), we define r,, € (0, rz] such that w € Tk(gq) for all
q € B(it, ry).

Using the continuity of # and the uniform convergence of (u;);eN to u on
[0, 7], we also infer that, for all w € Tk (&), there exists &, € (0, min (z, 551)),
such that for all ¢ € (0, &, ] there exists &, € (0, h’f], such that

J— _ rw
u(s) € B (u ?) Vs e [t.1 +¢l,

. r & r
h{;‘ g min (%1 5)9 ”M - uhi “CO([O,T];Rd) g ?w Vhl € (Oa hS]



It follows that for all ¢ € (0, £,,] and for all #; € (0, h¢]

—f_ 2ry
up,(s) € B M’T Vs € [t,t + €],

and
Z" € B(ii, ry) Vnhj €[t,t+¢€l,
since

2" —wy, (k)| = 12" = U"| £ Cohs < Cohe < 72

Now let w € TK(L?), e € (0,gy] and h; € (0, he]. We define j and k by
t t+e¢
i=|—1|, k= .
! \JhJ { hi J

O<tj=jhiSt<tjy1<---<tr=khi St+e<nq <T.

We have

From Lemma 1 we know that, foralln € {j + 1, ..., k}, we have
V" =V B P w)mm £ 0
since w € Tk (Z™). Next we continue the proof exactly asin [11]. O

Letus now consider the case of discontinuities of the velocity. Lets € [0, T]\(NU
N’ U Np) such that # is discontinuous at ¢. Then, (¢ + 0) # (¢t — 0) and du pos-
sesses a Dirac mass at {¢t}. Thus {z} is not negligible anymore with respect to du
and (3) is equivalent to

M (u(t)) @ +0) —u —0)) € —Ng (u()) .

This property is a direct consequence of the following result:
Proposition 6. For all t € [0, t] we have

M (u(1)) (u(t +0) —u(t — 0)) € =Nk (u()).

Proof. Once again, the proof is similar to the proof of the analogous resultin [11].
More preci§ely, let # € [0, t] and for simplicity denote u = u(¢). Thanks to the
density of Tk (i) in Tk (1), we only need to prove that

(M (i) (it — 0) — i(t + 0)), w) S0 Vw e Tk ().

Let w € Tk (it). As in the proof of the previous proposition, we define r,, > 0
such that

J(g) Cc J@@) and w € Tx(q) forall g € B(ii, ry).



We also define &,, € (0, t/2) such that for all ¢ € (0, &,] we have
u(s) eE(ﬁ,%w) Vselt—er+elNo, 7],

and there exists i, € (O, min(47}, ry/3Co, 8/3)] such that

w

(.2
uhi(s)eB(ﬁ,%) Vselt—ei4+eN[0, 7], VA € O, hel,

and
Z" € B(ii,ry) Vnhj€lt—e,t+¢e]1N[0,7], Vhi € (0, he],

(we recall that 70 =y° by convention). Now we consider ¢ € (0, £,] and h; €
(0, he]. We define 1, = max(f — &, 0), ;- = min(¢ + ¢, ) and

N N
J = n | =\ n

Ogthjhj§t87<tj+1<--~<tk=kh,'§t£+§‘[.

that is, we have

It follows that
o (t7) = VI, o, (6h) = vE

and we have w € Tx(Z") foralln € {j + 1, ..., k}. Then, we continue the proof
exactly as in Proposition 5 of [11]. O

3.2. Transmission of the velocity at impacts

With the previous proposition, we observe that u(r — 0) = u(¢r 4+ 0) for all
t € [0, t] such that J (u(¢)) = @. That is, u is continuous at ¢ if u(z) € Int(K) and
in this case the impact law (2) is satisfied. Thus it remains only to prove that

(i +0) = —eii(F — 0) + (1 + &)Projy iy (T (D) i@ —0))  (40)

forall 7 € (0, 7) such that J (u(7)) # ¥.

Let 7 € (0, 7) be such that J (u(7)) # . For simplicity, let us denote it = u(7)
and 4t = u(f +0), 1~ = i(f — 0). With Proposition 6 we already know that
M (u) (i~ —u™) € Nk (i), that s, there exist non-positive real numbers (io )y e /(@)
such that

M'2@@) (5 — i) = D paeq i), (41)
ael ()
where we recall that
M= @)V £, (it)
|M=12@@)V fo ()|

e (il) = Ya € J ().



Then (40) reduces to

it +en” e Tx@), (i~ —uat,at +ei”) =0,

M (i)
that is,
(Vful),i" +ei™) 20 Vo € J(ir)
and
(M1/2(ﬁ)(u— — ity MV2@ Gt + eu—)) —0.
From (41) we infer that (40) is equivalent to
(ea(ﬁ), M2 @y Gt +eif)) >0 Va e J(i)

and

> e (ea(ﬁ), M@ Gt + eir)) —0.
ael ()

But iy £ 0forall @ € J (&), so (40) is satisfied if and only if
(ea(ﬁ), M2 @y@t +eu—)) >0 foralla € J(it) such that o = 0,
(ea(a), M2 @y Gt +eu—)) — 0 foralla € J (@) such that g % 0.
First we observe that, for all @ € J (), we have with (41) and assumption (H6)
(ea), M2 @i™) = (eal@, M2 @i ) + ia,
and, since #T € Tx (u) and i1~ € —Tx (i1),
(eo,(ﬁ), Ml/z(zz),ﬁ) >0, (eo,(ﬁ), Ml/z(ﬁ)d_) <0.
It follows that
(ea(ﬁ), Ml/z(ﬁ)it+) = (ea(ﬁ), Ml/z(ﬁ)if) =0

if « € J(u) such that ;, = 0 and it remains only to prove that (ea @), M2 (@)
(i +ei™)) = 0 forall € J(it) such that pe # 0.
As in [11], we construct a neighbourhood of i, B(ii,r;) with r; €

(0, min(rBl,r’Bl)/z), such that J(g) C J(@) for all ¢ € B(i, ra), and d Lips-
chitz continuous mappings vy, o € {1,...,d}, such that, for all ¢ € E(ﬁ, ri)

,,,,,

eq(q) forall @ € J(q), forall g € B(ii,ri) N K. o
We define the dual basis (wy (9));<,<, forall g € B(u, rz). The mappings wy

(1 £ a < d) are also Lipschitz continuous on B(it, r7): we let

Ci = sup {lva(@)]. lwa(q)l:q € B, rg), e € {1,....d}}



and L; € R be such that, for all & € {1, ..., d} and for all (¢, ¢’) € B(ii, r7)*

[va(@) — va(¢)| £ Lilg —q'l.  |wa(q@) — walg))| < Lilg — 4’|

Since the mappings V f, (« € {1, ..., v}) arelocally Lipschitz continuous, possibly
modifying C;, we may assume without loss of generality that

IVfa(@)| = Ca,

forall o € {1, ..., v} and forall (¢, q’) € B(i, ri)>.
From the continuity of « and the uniform convergence of (i, );en tou on [0, 7],

we infer that there exist £ € (0, min(f, T — t_)/2) and h3 e (0, min (hT % 6’50)],

where h] is given by Proposition 4, such that
— (- Tu - -
u(t) € B(u, ?) Vielf—&i+3]
.
llu — Il co(go,rmey = ? Vh; € (0, h3].
It follows that
unttun, 2", 2"t € B(ia, rz) Vnhi € [f —&,1+E], Vh; € (0,h3].  (42)

Furthermore, we infer from Lemma 1 that, for all nh; € [t — &, + £], for all
hi € (0, h3]

MU (V"' = V" 4 b F") € Nx(Z").
If J(Z") # @, there exist non-positive real numbers (,u,%) peJ(zn) such that
MU (v"—1 SV h,~F”) = > WMV (ZMep(2)  (43)
BeJ(ZM)

and observing that eg(Z") = vg(Z") for all B € J(Z"), we get with assumption
(H6) (see (8))

| < [(MWnHVI = v M 22|

)\max,Bl

RV )\min‘B| ‘

)\max,Bl
vV )\min,Bl

From now on, let us denote

(44)

A

(v"=' = v+ hicr) <36

Amax,Bl

Vv )\min,Bl .

Ch =3Co

We begin with the following lemma.

Lemma 7. Let « € J (i) such that gy # 0. Then, for all 1 € (0, €] there ex-
ists hg, € (0, min(h%, 81/3)] such that for all h; € (0, hg,], there exists nh; €
[f — &1, + &1] such that fo(Z™) £ 0.



This result is analogous to Lemma 3 in [11]: it means that on any neighbour-
hood [f — &1, +¢e1] of  (with g1 € (0, £]), the constraint numbered « is saturated
by at least one discrete average position Z", if h; is small enough.

Proof. As in the proof of Lemma 3 in [11], we assume that the announced result
does not hold, that is, assume that there exists 1 € (0, €] such that, for all 4., €
(0, min(h}, 81/3)] there exists h; € (0, hg, ] such that fo,(Z") > O for all nh; €
[t —e1, 1+ ¢e1].

Hence we can extract from (4;); < a subsequence denoted (h;)); ey decreasing
to zero, such that hyy € (0, min(h3, £;/3)] and

fa(Z") >0 Vnhyiy €[t —e1, 1+ 1] (45)

foralli e N.
For all ¢ € (0, 1], let us establish the following estimate:

‘(Ml/z (“hw) (ts_)) Uy (e ) — Mm'? (“hwm (’:)) Vhy ) (tj)’ w"‘(ﬁ))‘
g O (8 + h(p(,') + ||M — th(l-) ||C0([0,‘L’];Rd))

where 17 = max(f — ¢,0) = — ¢ and 17 = min(7 + ¢, T) = 7 + . Then, by
passing to the limit when i tends to +o0o, we will infer with (34)—(35) that

(M7 (7)) 07y = M2 () v wa@))| £ OC)
and, when ¢ tends to zero, we will obtain
(M2 (3G = 0) = i +0)) , wa@)| = 11l €0

which gives a contradiction.
Let ¢ € (0, &1]. There exists iy € N such that, for all i = i, we have heiy €
(0, £/2) and we define

A
n; = , pi= .
l bw(z’) Y Lhga

Then,n;+1 < p; andforalln € {n; +1,..., p;} we have nhy) € [, , 1;7]. With
(20) we infer that

[U" = Z"| = Cohy) (46)
and with (45) we know that o« ¢ J(Z"), thus with (43) and (44)

’(Ml/z(Z") (v”—1 v h(p(l-)F") , wa(Z”))‘

=| > wp (MM UMYAZ (2, we (27)
Bel(ZM)
BeJ(Z")
< vCéCﬁAmaX,B,LMﬂZ” -U" < UCéCﬁCO}\.maxVBILMflh(p(i)

A

2
i |p=tzy = = @ [op 2| fwa (2|

‘M1/2(Zl’l)




foralln € {n; +1,..., p;}, it J(Z™) £ @. If J(Z™) = @, this inequality remains
true, since V=1 — V" + h,) F" = 0 in this case.
It follows that, for alln € {n; + 1, ..., p;}

(Ml/Z(Z”iJFl)V”i — M2 (zPithyyri wa(ﬁ))

Pi
— Z (MI/Z(ZH)V)’l*l _ M1/2(Zn+1)vn’ wa(ﬁ))
n=n;+1

Pi
2 (MW(z")(v"‘1 — VI by FY), wa(Z1)

n=n;+1
n=n;+1

Pi
> i) (Ml/z(Z”)F”, wa(Z"))

n=n;+1

pi
+ D (M@ =V, ) — wa(Zh).

n=n;+1
Then, using (20), we obtain

|L_t - Zn' § |1/l(t_) - ul’lw(l') (lT)‘ + |uh(p(,') (ZT) - uhw(;)(nh(p(i))| + |Un - Zn'

. 10) _1
<llu—u 4 Colf — nhyiy| + 2L yn _ pyn
< ol ol + 75 |

By “ CcO([0,7];RY)

é Hu — Uhyg) CO([O,T];Rd) + Co(e + /’l(p(i)),

foralln € {n; + 1, ..., p;} and we estimate |wy (1) — wy(Z™)| as

L; (Hu — Uy, CO([0,71:RY) + Co(e + h(p(i))) .

Hence, with the estimate of the discrete accelerations obtained at Proposition 4
and (21), we get

‘(Ml/z(z’““)v”" - 1‘41/2(ZIJz'+1)VPi7 wa(ﬁ))’

pPi
Z vCéCﬁCO)\maX,BlLM*IhW(l’)
n=n;+1
pi Di
+ Z CoCaLyp|Z" — 2" + Z ot CaCr/ hamax.
P— n=n;+1

Pi

-1
- '\max’B‘Lﬁ(””_”hwo‘)||c°([o,r];R")+C0(8+hw<i>)) 2 =y
n=n;+1



< (2e + hyi))Ca (vcgcoxmax, 8 Ly + C3Lop2 + Cr/Aoman, Bl)

+ Co/Rman. Lt ([ = g | oo epmey + Coe + ho)) - 47)

But V" =y, (t;) and VP = v, . (2;") and
‘(Ml/z (g0 (1)) Vg 1) = MY () (1) vy, (1), w“(ﬁ))
_ (MI/Z(Zn,-+1)Vn,- — M2 (zPitlyypi, wo{(ﬁ)))
< (‘Ml/Z (th,(,-)(fg_)) _ Ml/Z(Zn,-+1)‘
M2 (un g (0) = M1 2P ) Co e @)
S CoCiLypp (|”hw<z‘) () =ty ((ni + l)hw(i))i + ‘Uniﬂ - ZniH)
+ |tthy (1) = ) ((pi + Dho)| + ‘Upiﬂ - zr! ‘)
<4C3CiL by (48)
Finally, from (47)—(48) we obtain
(M2 (a0 1) w0 = M2 (1, 0) g, (055, w0 @)
=0 (hw(i) +e+ |u— Uhy) ”c0(|o,f];Rd))
which enables us to conclude. O
Let us prove now that
Lemma 8. For all o € J (i) such that uy # 0, we have
(M2t va(@)) < —e (M2 @i~ va@)
Proof. Let ¢ € (0, £], thus 7 + ¢ € (0, t). We apply the previous Lemma, with
&1 = &/2: there exists hg)p € (]O, min(h%, 8/6)] such that, for all #; € (0, he /2],

there exists nh; € [t_ — 5.t 4+ 5| suchthat f,(Z") < 0, thatis, a € J(Z").
Let h; € (0, hey2]. We define P;, p; and n; by

P r+e¢/2 | t+e | t-e
i = hi , Di = hl‘ , N = hi .

Let us recall that & € (0, min(7, T —7)/2) sof —¢ 2 and T —f — & = &. Thus
h; € (0,¢/6] C (0,&/6] C (O, min(f —e, 7 — 1 — 5)/2]. It follows that

O<nihi§t_—8<(ni+l)hi<t_<P,~hi§t_+§<(P,~+1)hi<p,-h,-
§{+8<(pi+1)hi<f

and vy, (T — &) = V", vy, ([ +5) = V.



Let N; be the last time step in [ — §, 7 + 5] such that f,(Z") < 0, that is,
_ e _ ¢
N; = max {n e N;nh; € [t — E’H_ 5] and f,(Z") < O} .
Then, recalling that #; € (0, ¢/6] we get N; = n; + 2571 > n; + 3 and with the

same computations as in Proposition 1, we obtain that

L+h;
(Vfa(ZNf), yNi +eVNi_2) < =S

2
~2(1+e) ’

VN4 ey Nim2T < L ki CE

and with Lemma 15

L¢C?
(va(ZN"),Ml/z(ZN")(VN" +eVNf*2)) < S0y,
mBl

It follows that
(ve (2", M2V £ —e (ua(ZV ), MUA(ZN 2y N2

LfC(%

mp,

— M2y, Co.

+ =Ly e M2y (M)

Thus, using the estimate (21) twice and the Lipschitz property of M 172 on By and
vy on B(u, rj), we obtain

(va(zNi), M1/2(ZNf)VNi) < e (va(szfz), M]/Z(ZN"’Z)VN"’z) + Clh;

with

LC2
nf 0 +2C8(LM1/2 +LQM)-
B

By definition of N;, we have fy(Z") > Oforalln € {N; + 1, ..., P;}, thus

i =

(M2 ZPV P a(z)) = (MMRZY VY (M)
< (M@ w27 = va(2M))|

Pi
+ Z ‘(M1/2(Zn)vn_M]/Z(Zn—l)vn—l,va(ZPi))‘
n=N;+1

< |(M12@¥VN 02" = va(ZY))|

+ i (M2 = M2z ) vt 2|
n=Nj+1

+ i hi| (M2 F" v (Z))|

n=N;+1

P;
+ > ‘(Ml/Z(Z”)(V"—V”*‘—hiF"),va(ZP"))‘-
n=N;+1



With the definition of P; and N;, we have immediately P;h; < 1 +¢&/2 and N;h; 2
f—e/2,50 (P, — Nj)h; < ¢ and with (21), we get | ZFi — ZNi| < Cye. Further-
more, using the Lipschitz property of M'/? on B; and recalling that the mappings
ve (@ € {1, ..., v}) are Lz-Lipschitz continuous on B (i1, rz), we get

(M 2PV (z) = (M2 VY Z) )|

< C3/Amax.B, Lae + (L1 2C3 4 /Amax.8, CF)

P;
+ > (M@= v = E, v ). 49)
n=N;+1
Moreover, for alln € {n; + 1, ..., p;} we have
MUHV" =V b FY = Y ppM (22" (50)
pes(zm)
with (see (44))

2 A
Og—uﬁ<M(IV”—V"_1I+hiCF) §C§=3C0L’B1 (51)

- / Amin, B, / Amin, By
and the last term of (49) can be estimated as

P;

Z ‘(MI/Z(Zn)(Vn e va(ZP"))’

n=N;+1

Sy > -

n=N;+1 BeJ(Z")

ZZI—

n=N;+1 BeJ(Z")

P;
+ > D> I—ul

n=N;+1 Bel(Z")

A
Z > SmBL (v v G ) s (2, v (2)|
n= N+1/3€J(Z” v/ Amin, By

(Ml/z(Z")M*(U")MI/Z(Z")vﬂ(Z"), va(zf’f))‘

A

), v (Z")|

? HM—l(U") — Mz

’MI/Z(Zn)

+ 3¢ maXBlL \u" — z"|.
Z Z \/)\mmBl -

n=N;+1 Bel(Z")
But, with (20) we have

|U" = Z"| < Cohi (52)



and, recalling that 8 € J(Z") and « € J(ZNi), we infer from (8) and Lemma 15
that

p(Z"), 10 (Z)| £ |@Wp(Z"), 0 Z") | + |Wp(Z"), v (Z7) = 0 (Z')|

< Cp|2" = Z"i| + Cp |1 2" — ZNi| £ 2C. 5, Coe

with C, g, = max(Cp,, C%I). Using the estimate of the discrete accelerations
obtained at Proposition 4, we obtain

P

Z ’(M1/2(ZI‘L)(V}1 _ VI‘L—] _ hl'Fn), Ua(ZPi))‘
n=N;+1
2
<2vC,. Coem(q@ +eCp) + 3VMC§LM e
= e, —-1&.
' V4 )Lmin,B| RV )\min,B1

Hence

(MR2ZPOV P uy(27)) £ —e (MREZN VY, 0y (ZV72) + 0 + hi)
(53)

But N; —2 = n; + 1 and
(MI/Z(ZN,-—Z)VN,-—Z’ va(ZN"_z)) B (MI/Z(Zn,-)Vn," va(Z"i))

Z > -y (M@ UM A2 0p(2), v (Z7)

n=n;+1 /SEJ(Z”

+ Z (M2 = M2 H) vt g (2h)

n=n;+1

N;—2
+ Z (MI/Z(Zn—l)Vn—l’Ua(Zn)_Ua(zn—l))
n=n;+1
N;—2
+ > b (M@ uzh)
n=n;+1
N; =2
> > (M@ M UM A2 0p(2), v (Z7)

n=n;+1 BeJ(Z")

3
_ (LMl/zcg + Vrman 8 LiC3 + /omax. 51 CF) Se. (54)



We rewrite the first term of the right-hand side as follows

N; =2
> > (M P@H M UM A2 0p(2"), v (Z7)
n=n;+1 BeJ(Z")

N;—2
= > D —uh (@M va(Z)

n=n;+1 BeJ(Z")
N;i—2
+ > > (MI/Z(Z”) (M—l(U")
n=n;+1 eJ(Z")
=M ZM) MYAZ (), va(Z1)
Then assumption (H6) [see (8)] implies that, foralln € {n; + 1, ..., N; — 2}

1 ifa =8,
0 otherwise

(vp(Z"), v (Z")) = {

if @ € J(Z"), and with (8) and Lemma 15

|02, v (Z)| £ | (192, 00 (Z) | + | (052", v Z") = 0 (2™
< Cp,|Z" = ZV1| 4 Cp |1 2" — ZV1) £ 2C, 3,12 — ZM]
< 3Ce, B, Coe

if o & J(Z"). From (52) it follows that

N;—2
> > g (M@ M UM 22, va(2)
n=n;+1 BeJ(Z")

A 3 3
> —3UM (C6 + —&‘CF) Ce B Coe — Vcékmax,BlLM*ICOE& (55)

RV Kmin,Bl 2

Thus, combining (53), (54) and (55)
(M2, 0 (Z7)) < —e (MVAZ)V™, 0y (Z7)) + Oe + ).
Recalling that
Vi =y, (r‘+ %) . Vi = —e)
and
27—y, (T4 3)| S 2C0hi, |27 =y, = )] = 2Coh.
we can pass to the limit as A; tends to zero, then as ¢ tends to zero, we get

(MW(L;),#, va(ﬁ)) < e (Ml/Z(ﬁ)u—, va(ﬁ)).



It remains for us to prove that, for all « € J () such that p, # 0, we have
(MY 2@t v @) 2 —e (M2 @i~ va (@)

Let us observe that the result is immediate if (M 2(ya—, v, (12)) = 0 since we
have, already, (M'/2()i™, vy (1)) = 0.

So we assume now that o € J (i) such that j1q # 0, (M (@)ii~, vy (1)) < 0
and we adopt the same notations as in the previous lemma. Since fy () = 0,
(V fu@),u™) < 0and lim, ;- () = it~, we infer that, possibly decreasing &,
we have

(t—1t) Vtelt—g,1).

Jo (u(0)) 2 }(Vfa(—Z),u"H

Then, the Lipschitz property of f, on Bj implies that

|(V o), 7]

Ja (uh,- (t)) 2 B

(T —1) = Lyl —up,llco(jo,c1:rey

forallt € [f —&,1). As a consequence, forall ¢ € (0, &], forallt € [f —¢&, —&/2]
we have

-\ -\ €
fOl (uhi (t)) g ’(Vfa(”)’ u )| Z - Lf”bl — Up; ”CO([(),-[];Rd)
and, for all nh; € [t —&,1 — ¢/2]
7 2 (V)i )| S — L L +Coh:
Fa(Z™) Z |(V fulit), i) i sl —=unllcoo,o1;rey — L sCohi.
It follows that, for all ¢ € (0, ] there exists fzs € (0, h;] such that

fu(Z") >0 Vnhj e[i—e, 1 —e/2], Vhi € (0, h).

Now, we consider ¢ € (0, €]. Let h, = min(fzg, hes2) and let h; € (0, h]. We
define p;, n; and m; by

r+e¢ r—e r—e/2
;= N n;, = s m; = .
pl hl L hl 14 hl

O<ni/’li§t_—8<(l’l,'+l)hi<mihi§l_—§<(mi+l)h,‘<p,'h,'

Thus

St+e<(pitDhh <t

Then we have f,(Z") > Oforalln € {n; +1,..., N/ — 1}. Moreover,



Lemma 9. There exists a constant C) > 0 such that, for all ¢ € (0, g] and for all
hi € (0, hl,], we have :

(M2 = VN, (2| < Cle.
Proof. With (43) we have

(M2 = v, 0 (2

N/-1
= > (MPENHE - v, e 2)
n=n;+1
Nl./—l
=—hi > (MPPENF" v (ZM))
n=n;+1
N/—1

+ X >y (MA@ M UM RZ (), v (2.
n=n;+1 BeJ(Z")

The first term of the right-hand side can be easily estimated:

N/—1
h Y (MA@ F vlZ)| £ bV = ni = DCrrmas,
n=n;+1
3
é ECF\/ kmaX,BIE- (56)

We rewrite the second term of the right-hand side as follows:

N/-1

> > g (MPEH M UM A2 up(2"), v (Z))
n=n;+1 BeJ(Z")

N/-1
<> |

n=n;+1 peJ(Z")
N—1

P

n=n;+1 BeJ(Z")

‘MI/Z(ZNI/)M—I(Un)Ml/2(Zn) _ Id”

(262, va (™)) . (57)

Sincea & J(Z™) foralln € {n; +1, ..., Ni/ — 1}, assumption (H6) and (21) imply
that, for all 8 € J(Z™)
N
(062", va(Z) | £ Cop 2" = Z¥1 £ Copy D o IVE HeVE
k=n+1

A

3
é ECe’Bl COS.



Using estimate (51) for | ,u%| and the estimate of the discrete accelerations obtained
in Proposition 4, we get

Z S (vﬂ(z") Ve (ZV ))‘

n=n;+1 BeJ(Z")
N/-1

)»max,Bl (|V" _ Vn_ll +hCF)
i

3
§ —Uce,BICQS
n%—] 2 VvV )\min,Bl

3 Ame 3
< 20C,. g, Cos —2axB1 (Co - SCF) (58)

—2 vV )"min,Bl 2

It remains to estimate the first term of the right-hand side of (57). Using the Lipschitz
property of M 12 and M~1, we get

N/-1
> 2
n=n;+1 peJ(Z")
N1
> 2

n=n;+1 BeJ(Z")

l/Z(ZNI/)M_l(Un)Ml/2(Zn) _ Id”

HMA WMz

M'f; (HMl/z(ZN;) — M2z

2)
N/-1

,B
> 3 (o - S s
n=n;+1 BeJ(Z") m1n B

N’ 1

3/2
DS _sLM./Zco(mBl) (v = v micy)

n=ni+1 BeJ(Z") Amin. By

l(Un) _ M—l(zn)

HMI/Z(Zn)

+‘M‘

A

A

3
+ ESVCé)‘mHX’Bl Ly-1Cy

3 Ao 3/2 3¢ 3
< ZeLynpCov ( ““‘X’B‘) (C{) + —CF) + ZevChimax. B, L -1 Co.
2 min, Bj 2 2

Combining this last estimate with (56), (57) and (58), we may conclude. O
Now let us prove that

Lemma 10. There exists a constant Cg > 0 such that, for all ¢ € (0, €] and for all
hi € (0, h,], we have:

fu(ZNTH) < Cin?



Proof. If @ € J(ZNi*!) the result is obvious. Otherwise,
)(VN{ _ YN o PN M1/2(ZN;+1)UQ(ZN,.’+1))‘

N/+1 _ ’ ’ ’
< z Iy |‘(M LUNHY M2z (2N,
ﬂGJ(ZNI./+1)

Ml/z(ZNI.H)Ua(ZN,.H))‘

N./+l _ ! _ / ’ 2
< Z I HM LNty — m 1(ZN,.+1)H HMl/z(ZN,.H)H

Bes(zNith

N.’+l / /
> ey (s @, w2
ﬂeJ(ZNi,H)

Since @ € J(ZN;) ando ¢ ](ZNi/H), assumption (H6) and Lemma 15 imply that

(s, v 2MH) | < [ (vp2H), va(2))|
v (Z) = a2V
< 2C,.5,Cohi.

Using the Lipschitz property of M~!, we get finally
‘(VN,.’ — yNHL M1/2(ZN{+1)va(ZN{+1))‘
< hin/hmax, 5, CF + hivCyCo (hmax, 3y Lag—1 +2Ce ) -
With exactly the same computations, we also obtain
‘(VN;—z _yNi-t, Ml/Z(ZNi’—l)Ua(ZNi’—l))‘
< hin/hmax, 8, CF + hivC5Co (hmax,8, Lys—1 +2Ce.p;)
since (recall that @ € J(ZNi,) and @ ¢ J(ZNI,’I))
(2@, 02N D) | < |(0p 2%, 00 (2Y))

+] (v (Z%) = a2 7h))|
< 2C, 5 Coh;.

We define

Cé = v/ max.,CF + vC5Co (Amax, 8, Lyy—1 +2Ce.5,) -

(59)

(60)



Then, using a Taylor’s formula, we get
S ZNHY) = £ (2 + (V 12V, 2V - ZN)

1
+/ (Ve (2% 4 0zt = 2Y0)
0

— V[, (ZN, ZNiH sz’) dr.

But £,,(ZY) = 0 since @ € J(ZV) and

! / h / /
ZN[+1 _ ZN[- — 1-;6 (VN’+1 +€VN’.71) .

Moreover,
(Vfa(ZN/), yNi+L evN,-’—l) - (Vfa(ZN/), yNAH VN;)
+(V a2V, VN 4 eV Ni2)
o (VAuz¥), VET = V) 6D

The second term of the right-hand side is estimated with Proposition 1:

/ / I L +h; / I_
(V a2V, VN 4 Vi) < —2(1f+‘e) (VN 4 evNiT22 < Lphi 2.

The first and third terms of the right-hand side of (61) can be estimated by using
the Lipschitz property of V f,, on B; and (59)—(60). Indeed,

(Vfa<ZN5>, yNE va) = (vfa(zNh — V fu(ZNiF, y N vN/)
M@ fu2)
x (MV2EN g (N, YN - v

i

vV )\min,Bl

< 2LfC§hi + Céh,‘

and similarly
(V a2, VNt = VNZ2) = (£ (2N = 9 fu(ZN7h, VN - v N2
x (MY (zNh, v - yN2)

C,
< 2L pC3hi + ——=——Cih;.

VvV )\min,Bl



Moreover,

1
| (98 (2% 40201 = 29) = 9 12, 2V = 2V)
0

1 , , C2L
§/ Ly|zN+ — zNPrdr < OTfhl?.
0

Thus
fo(ZNiHY) < CLh? Vh; € (0, R3]
with
=40 G g
=5C0 ——=C¢-
> 2 \/)Lmin,Bl

It follows that, for all ¢ € (0, £] and for all &; € (0, ], we have

0= fu(ZNTY) = fo(ZV) = fu(ZNF) £ Cli}
since ZNit! e K by construction. But, with the same computations as in Proposi-
tion 1, we also have

/ 7 h / / /__
SaZNE) = Jo(ZM) = 7 (VA2 VN eVt

h' 1 / !/ /
b [ (aa (2 12V - 2)
0

l+e
= Vfu(ZN), VN 4 vV ar.

We can estimate the last term of the right-hand side by

1
/ (Vi (2 4 0@ = ZV) =V £ 20, VI 4 V)
0

YN+l +6VN;—1‘2
2(1+e)

< Lysh; < LyChhi

and thus
—LpC3hi £ (Vfu(ZM), VR 4 eVYiT) £ G40 + by + L Cih.

Using Lemma 15, we finally get

LyC3+ CL(1+ e)h.

1

’(MI/Z(ZI\’I/+1)UM(ZNI/+1)7 VN’/+1 +eVN’!71)) g
mp,

= Clh;. (62)

Now we will estimate (Ml/z(Z”"“)va(Z”"“), N+l _ V”").



Lemma 11. There exists a constant Cé > 0 such that, for all ¢ € (0, €] and for all
hi € (0, hl,], we have:

(M@0 (20, vV — V) < Cite + hy).

Proof. Leth; € (0, h]. First we observe that N/ +1 < p; since h; < hj, < hejp <
. With (50) we have

i—1
yN+ _ypri — —h; [’Z: FlH1
[=N/+1
pi—1
+ Z Z M%HM_I(U[+1)M1/2(Zl+1)v,3(21+1)
[=N/+1 BeJ(Z!*1)

and

(VN,-’-H —yri, M1/2(2Pz+1)va(zpi+1))

pi—1 pi—1
=—h > (FL M@ heezrth)+ 3 > !
I=N/+1 I=N/+1 el (ZI+))

X (M_l(UI+I)M1/2(Z[+1)U/3(Zl+1), Ml/z(zpi""l)va(zpi""l))
pi—1
< Z Z ‘M%H‘ HMI/Z(Zp,--H) _ M1/2(21+1)H
[=N/+1BeJ(ZH1)
% ”M—I(Ul+1)H HM1/2(21+1)H
pi_l 2
i Z z M;l‘ HM1/2(Z1+1)”
I=N!+1BeJ(ZI+1)
% ”Mfl(UlJrl) _ M"(ZZH)H
pi—1

+ 2 > g (v vz )

I=N/+1 BeJ(Z!+1)

+hi(pi — Ni/ - 1)\/ Amax,BlcF
—1
3 Pi . B 3
< SeVhmamCrt Y D || LR aco e

F
I=N/+1 ped(zI+1) min, By



pi—1
+ Z I)Cé)\max,gl Ly-1Coh;
[=N]+1

pi—1
+ > > Mg“(v,g(z’“),va(zl’f“)). (63)

I=N!+1BeJ(ZI+1)

We estimate the second term of the right-hand side by using (51) and Proposition 4,
that is,

plz_l Z ‘ [+1‘ /Amax, By

3
Ly12Co=e
mm B 2

I=N{+1BeJ(Z!*1)

pi—1 A 5 3/2 3
> co (M) Luinse (|Vl+1 —Vl|+h,'CF)

l=N.’+1 min, B|

3 A 3/2 3
< 3¢ eCov (M) Ly (C() + Eecp). (64)

min, B

A

For the last term, we observe that, if « € J(Z/*!), then u/'! < 0 and

i (v (), 0 (2P D)) S !

0 (2P = g (2]

< WG, ‘Z”'“ Z’“‘ < HmaxBy
© \/)\mm B
x (V1= V! |4hiCr) Cepy Colpi —Dhi

)\max‘B|

VvV )Lmin,Bl

A

3
(|v’+1 v+ hiCF) Ce.t Co3e.

On the other hand, if 8 € J(Z!"H\{a}, recalling that o € J(ZNi/), assumption
(H6) implies that

! (062, vz D) | £ [ (o2 = a2

+| (22, vp 2 h) )

g ‘M1+1 Ce,Bl (|Zp;+1 _ZN[/|+|ZN[/ —Zl+1 |)

)\max,Bl

vV )\min,Bl

x (|V’+1 _— +hicp).

3
2Ce,3| Co (58 + hi)



Finally,

pi—1

> > ! (v vz )

I=N/+1 peJ(Z!+1)
A 3 3
< 2B ¢, Cov (-s + h,-) (c() + -scF) (65)
V4 )\min,Bl 2 2
and, combining (63), (64) and (65) we may conclude with

3
cl = % (Cp + vcg./xmax,BlLMflco)

3 J 3
+ 2 (o B X L 12 + 2Ce (c6 + —écF) .
2 RV )\min,B| )\min,Bl 2

Now, for all ¢ € (0, £] and for all #; € (0, h/s], we get, using estimate (62),
(Vp,-’ M1/2(Zm+1)va(zm+1)) > (VN,-’+1, Ml/z(zl’i“)va(Z”f“)) —Cg(e + hi)
2 (109, 20
i (VN;+1’ (MI/Z(Zp,-+1) _ M1/2(2N5+1)) va(ZNi’—H))
n (VN,-/+1, M2 (zPit (va(Z”"“) _ va(ZNl-’-i-l))) — Cl(e + i)
2 —e (VN M2V 2N)

— (Lypt/2 + /Amax B, Ce,p, ) Col ZP 1 — ZNiH|
— C{(e + h;) — Chh;

and

(VPi7 Ml/z(ZPi+1)va(ZPi+1))

2 —e (VNI!_I, M1/2(ZNI',)UO((ZN’!)) — Cé({:‘ + hl) - Céhl
— (Lypi2 4 Vrmax, By Ce.) ) Co(e| ZNiH! — ZNi| 4 |zpitt — ZNitl)y
>

—e (VN M 2(ZNwe(Z)) = Cile + i) - Ciy

— (Lypi2 + Vomax. B, Ce.8,)C3(pi — N/ + Dh;.
So, with Lemma 9

(Vpi, M1/2(Zpi+1)va(zpi+1))
> e (v"f, MI/Z(ZN/)va(zNZ)) — C(e + hi) — Ch;

3
—eChe — (Lpp/2 + /Amax. 8, Ce.8,)C3 (§s+h,-) , (66)



for all ¢ € (0,¢] and for all o; € (0, h,]. Observing that VP = vy, (f + ¢),
V" = vy, (f —¢) and

|ZPH — i) 12PN = UPH 4 Jug, ((pi 4 Dhi) = g 8] + [y (0 = u(@)]
< Cohi + Co |(pi + Dhi — ] + llun, — ullco(go,r1:re)
= lupn, — u”CO([O’T];Rd) 4+ Co(e + 2h;)

and similarly

|ZN,-/ —i| < llun, — M||C0([0,T];Rd) + Cy (%8 + hi)
we can pass to the limit in (66) as &; tends to zero. Then as € tends to zero, we get
(M2t v @) 2 —e (M2 @i~ va @)
Combining this inequality with the result of Lemma 8 we obtain
(M2 a@ict, va@) = —e (M2 @i~ va(@))

for all @ € J (i) such that i, # 0, which concludes the proof of the impact law.

3.3. Study of the initial conditions
Let us prove now that property (P4) holds. We begin with the following lemma:
Lemma 12. Forall k € {0, ..., v}, we have

lim VK = vg.
hi—>0

Proof. Observing that the definitions of U? and U are the same as in the inelastic
case, we obtain immediately that (see Lemma 5 in [11])

lim VO = lim vy, (0) = v(0) = vy.
h,‘—)O

hi—

As in the previous subsection, we define r,, > 0 such that J(q) C J(uop)
for all g € B(uo, Ty,)- Possibly decreasing r,,, we may assume without loss of
generality that r, < min(rp,, r;gl) /2. From the continuity of u# and the uniform
convergence of (”hf)h’fzh»O to u on [0, ], we infer that there exist € € (0, 7/2)

and ﬁ’f € (0, min (h’lk, %, 6%%)] such that
= (- Tuo -
ut) € B (uo, ?) Vi € [0, &),
7 ~
llu = un llcoro,rre)y = 70 Vh; € (0, hf].
It follows that

umttun, 2", 2" € B(ug, ryy) Vnhi €10,8], Vh; € (0, k).



Let us now distinguish between the two cases uo € Int(K) and ug € K.

Case 1: ug € Int(K).

Then, B(uo, ruy) C Int(K). With Lemma 1 we infer that, for all nh; € (0, €],
for all h; € (0, h]

MU")(V"™' = V" £ b F") € Ng(Z") = {0}
and thus
vt =yl 4 op F
It follows that
k
VE— VO <D hilF'| < khiCr
=1

for all k € {1, ..., v} and for all h; € (0, fz*{] (let us recall that ﬁ’l" <&/(v+ 1)),
and the conclusion follows.

Case 2: ug € 0K.

Let us prove by induction on k that

lim V¥ =
forall k € {0, ..., v}. More precisely, let k € {1, ..., v} and assume that
lim Vi=vy VIe€{0,..., k—1}. (67)

h,’*)()

Since vg € Tk (1) and TK (uo) isdense in Tk (1), we may consider a sequence
(vp) pen+ converging to vg and such that

vy € Tx (ug) = {w e RY: (V f(up), w) > 0 Vo € J(uo)} Vp e N*.
Asin Lemma 5 in [11], we infer that there exist t, > 0 such that
uo+tv, € KN By Vi e (0,1,]
By definition of the scheme

IW* — ZM gy S IWE = Zllygry YZ € K.

. 1 .
Let h) = min (h*, %) By choosing Z = ug + (I%e + (k — 1)) hivp,

we get for all h; € (0, hp]

' U — (1 — U + h7F* 2
Wt —Z7 = 1+e — M0+ 1_-|—e+(k_1) hiUp

k=2
h.
=" f2vF1 41 Vit FF— @2+ k—1
1+e( +( +e)l§ + 24 (1+e) ) v



and with (10)

IV = vE 4+ hF )y on
k—2

vkl 4 +e)ZV’+h,~Fk — Q2+ U +e)k—1)v,
=0

=

M(Uk)
with the convention that Zf;g vl =0ifk = 1, and thus
lvo — VEllywey < 20 I F¥ o) + 1V = voll oy
+2+1 + o)k — 1) (Ilwe—voll yrty Fllvo—vpllpruty)

with
k-2

_ 1 k—1 [
wk_2+(1+e)(k_l)(2v +(1+e)ZV).

=0

It follows that

A
oo — VEI £ [T (20| F¥) 4 VA — g
min, By

+ 2+ A +e)k =) (Jwe = vol + lvo = vpl)) Vhi € (0, hpl.

But the assumption (67) implies that limy, .o wx = vo and we get

max, By

A
lim sup |VK —yp| < /\—(2+(1 +e)(k — 1)) [vo — vl

hi—0 min, B}

This last inequality holds for all p € N*, and passing to the limit as p tends to 400,
we obtain

lim sup |V¥ —vo| £0
h1—>0

which implies lim;, .o VK = vp. O
Now we can prove that
Lemma 13. The initial conditions (ug, vo) are satisfied in the following sense
u(0) =ug, u0+0)=uvg.
Proof. The first equality is trivial, since

u(0) = hlimo up, (0) and uy, (0) =U° =up VieN.

In order to establish the second equality, we first observe that we already know with
Proposition 6 that

M (uo) (@(0+0) — (0 —0)) € —Ng (uo).



Moreover, with convention (37) and the previous Lemma, we have
(0 —0) =u0) =v(0) =g
and thus
M (uo) (4(0 + 0) — vo) € —Nk (uo).

If up € Int(K), then Ng (uo) = {0} and we may conclude.
Let us assume now that #g € dK. Since vy and (0 + 0) belong to Tk (1g) we
obtain

(@00 + 0) — v, it(0 + 0)) 7 u = O.
(10 4+ 0) — vo, V) pr(ug) = 0

and thus
1000134 0g) S @O0 +0), v0) prugy = 10+ 0) 34 - (68)

But with Proposition 3 we obtain
IV Brzny < max (1VOB g0y - 1V Byzny) + Co.conh

for all nh € [0, 7], for all h € (O, fz’f], where T = min (§/(2Cy), T) is defined at
Proposition 2.

Lett € (0,7) and h; € (O, fz’l‘] We define n = [¢/h; | and with the Lipschitz
property of M on Bj we get

2 2 2 2
” Uh; (t)”M(uo) = ” V" ”M(uo) = ”Vn”M(Z") + LulZ" —uolCy
< max (IV By - - 1V By ) + C.coh

+ max (LM|ZI _ u0|c(%) + Lyl Z" — uo|C2.

1SSy

But, for all k € {1, ..., n}

UMl eyt 1
1+e 1+e
= (k + 1)Coh; (69)
and Z° = U° by convention. So
2
o sy = M5 (1B 1V By ) + 0+ DCLashi

+Cp.cot + LuCa(t + hy).
By passing to the limit as /; tends to zero, we get

10O 130 = 10013y + CB.cot + LuCit ¥t € (0, 7)



and, by passing to the limit as ¢ tends to zero
. 2 2 2
|22 (0 + 0)||M(u0) = |lv(0+ O)”M(uo) < ||v0||M(u0)-
With (68) it follows that
190130y = (0 + 0). v0)rcug) = 120 + 0) 134
and thus #(0+0) = vg. O
Finally, with these results, we can state the following theorem.

Theorem 2. Let us assume that there exist Co > 0,79 > 0, hg € (0, h*] and a
subsequence of the approximate positions defined by (4)—(7) such that

Un+1 _yn
hi
with (h;);eN decreasing to zero. Let uy, and vy, be defined by (32) and (33). Then,

there exist a subsequence, still denoted (h;);cn, and (u, v) € CO([O, min(tg, T)];
R?) x BV (0, min(tg, T); ]Rd) such that

vV = ‘ = Co Vnh; € [0, min(zo, T)], Vh; € (0, hgl,

up, — u strongly in cO ([O, min(tg, T)]; Rd),
vy, — v pointwise in [0, min(zo, T)],

with
t
u(t) = ug +/ v(s)ds forallz € [0, min(tg, T)],
0

and u is a solution of problem (P) on [0, min(tg, T)].

Combining Theorem 2 with the a priori estimate of the discrete velocities ob-
tained in Theorem 1, we immediately obtain a local convergence result for the
numerical scheme, and thus a local existence result for problem (P).

4. Energy estimates and global results

As in the inelastic case, we observe now that we have some energy estimates
for the solutions of problem (P).

Proposition 7. Let C > ||voll p(ug)- Then there exists T(C) > 0 such that, for any
solution u of problem (P) defined on [0, t] (with T € (0, T]), we have

lu(t) —ugl £ C Vt € [0, min(z(C), 1)],
NN prucey) < C dr almost everywhere on [0, min(z(C), 7)].

Proof. Since property (P3) implies that
et + ) pruceyy = et — OVl prcueyy ¥t € (0, 7)

the proof remains the same as in [11] Proposition 6. O



As a consequence, we can prove a “global” convergence result. More precisely,
for any given energy level C > [lvoll p(uq), We Will prove the convergence of the
time-stepping scheme on a time interval [0, T(C)] depending only on C and the
data.

Theorem 3. Let C > ||vollp(ug) and ©(C) > 0 such that, for any solution u of
problem (P) defined on [0, t] (with T € (0, T]), we have

lu(t) —uol = C V¥t € [0, min(z(C), 7)],
NN aguey) < C dr almost everywhere on [0, min(z(C), 7)].

Let uy and vy, be the approximate positions and velocities defined by (32) and
(33). Then, there exists a subsequence (up,;, Vi, )ieN, T € [min(r(C), T), T] and
(u,v) € CO([0, tI; RY) x BV (0, t; R?) such that

up, — u strongly in C° ([0, Tl; Rd),

vy, — v pointwise in [0, 7],

with
t
u(t) = ug +/ v(s)ds Vr e |0, 1]
0

and u is a solution of problem (P) on [0, T].

Proof. The proof is analogous to the Proof of Theorem 3 in [11]. More precisely,
let C > ||vollp(ug)- We define B = B(ug, C + 1) and By, Amin, Amax by (11) and
(12), respectively. Let Cr be defined by (13), Cj and C’ be given by

min

A
Cy = max(2 Kmax (lvol + 1), C’) (70)

c’=(c+1)sup[

Mg 1 g € Buo. € + 1} an

and C( be chosen as in Theorem 1, that is,

v+1
A
Co >(4 /\m) cy. (72)

min

Then, with Theorem 1, we know that there exist 2j € (0, h*] and 79 > O,
depending only on B, Co, C; and the data, such that

Un+1 _yn

A < Co Vnh €[0,min(zg, T)], Vh € (0,hgl. (73)

IV"|=‘

Mpreqver, with Proposition 2, we also know that for all 7o, € [0, T') and for all
(U° U e (BN K) x K such that

‘01 - 00‘ < hCE Vh e (0, ],



the approximate positions defined by

Ut = —eU" '+ (1 4+ e)2"

with
2" € Argming g [W" = Zll 3y m,
and
. 20n — (1= [}n—l h213~n . . 0/1 _ 011—1
W = ( lei + , F”:F(t()h +nh, U
e

forall n € {1, [%J} and for all 1 € (0, hf], satisfy

0n+l _ On

A < Cyp Vnh € [0, min(tg, T — ton)], Yh € (0, hS]

Let t(h) = m(h)h be the maximal discrete time step such that estimate (73)
holds, that is, for all & € (0, hg]

m(h):max{ne{O,...,LT/hJ};|Vk|§C0 Vke{O,...,n}}.

We define t1 = liminfy_.ot(h) = liminf,_.om(h)h. Theorem 1 implies that
71 = v/ = min(t, T).

Lete € (O, 7'/ 8). Then, there exists a subsequence (%;); <N, decreasing to zero,
such that (z (h;));cy converges to 7 and there exists 1} € (0, min(h}, ‘L'//S)] such
that m(h;)h; = 11 — e forall h; € (0, h]. We may apply Theorem 2 with h§j := h}
and 19 := 11 — &: we infer that there exists a subsequence, still denoted (%;);¢cN,
such that (uy, , v, );eN converges to a solution of problem (P) on [0, 71 — ¢]. Thus,
with Proposition 7 we get

lu(t) —uol = C Vt € [0, min (z(C), 11 — &)],
NN prucey) < C dt almost everywhere on [0, min (z(C), 11 — ¢)].

Now we prove that:

Lemma 14. We have

lim sup sup {” %4 ||i/1(zn), 0<nh; <1 — 8}
hi—>0+

< ess sup {103y 0 1 S 71 —e)



Proof. The proof is quite similar to the proof of Lemma 6 in [11]. More precisely,
we prove this result by contradiction. Assume that

lim su+psup {” %4 ”?\/I(Z")’ 0<nh; <t — s} > S

hi—0

with § = ess sup {||it(t)||i,1(u(t)) ,05r <1 — 8}. Then, there exist y > 0, ﬁ;“ €

(0, k%] and a subsequence (/4 (;));cN decreasing to zero such that
Sup {”Vn”ixl(zn)’ 0= nhpi) =11 — 8} > S+y Vhya € (0,1
It follows that there exists ny () € {0, ..., | (t1 — €)/hy) |} such that
[V |2y o, Z S+ Vh € (0. K2].

Possibly extracting another subsequence, still denoted (%4 (;));eN, We may assume
without loss of generality that the sequence (ny)hy(i))ieN converges to a limit
Te[0, 71 — ¢l

First, we observe that T > 0. Indeed, with the same computations as in Propo-
sition 3, we can prove that there exists a constant C, ¢, > 0, depending only on
By and Co, such that, for all i; € (0, h}]

IV Bazny Smax IV gy IV 0 ) +Crchi (74)
foralln e {v+1,..., [(r;1 — &)/ hi]}, thus

IV Byizny < max (V01 0,0 - 1V Wiz + Corconhi

for all nh; € [0, T — ¢].
With the Lipschitz property of M on B; and (69), we infer that, for all A,y €
0, 1]
S+vy § ”Vnw()“M(Z"(p(i))
< max (V0100 > 1V )
+C31,c0n(p(i)h¢(i) + (v + l)CgLMh(p(i).
At the limit when i tends to +o00, we get with Lemma 12

S+ v < ol + Caicot

But the right continuity of ||li(- + 0)|| s, implies that ||v0||%w(uo) = |u0 +
O)||%,I(u0) < S (see Lemma 13), and finally T > 0.

We infer that, possibly reducing /%, nyi)hy) = T/2 = 2vhyq) for all hyg) €
(0, h}]. Then, once again using estimate (74), we obtain
Sy S max (IO P12 g VO )
+Cry.coPhei)



forall p € {0, ..., nyq) — v}, forall hyqy € (0, h¥]. It follows that

4 k2 k=2
S+ 2 S max (IVEE, ey IV By i)
for all khy () € [max (ngo(i)htp(i) - ZCtZ,Co’ vh¢(i)) ,n(p(i)h(p(,-)]. Moreover, using

(20), we infer that for all ¢ € [kh(p(,-), (k + l)h(p(i)), foralll € {0, ..., v}

2 2
”vh(p(l‘) (t - lh(p(l)) ”M(Zk_[) - “vh(p(,') (t - lh(p(l))”M(uh (.)(t))
e

< M@ = M (w0, )| VTP < Ly |25 =, 0] €F
< LyC?(|zFt — ykt k —Dhyi) —

= LuC + [t (€ V(@) = hy (0]

< LMCS(V + 2)h¢(,').

Since (nq,(i)h(p(i)),-eN converges to T > 0, there exists an interval I C [0, 7| — €],
with a non-empty interior, such that

Y
I C [max ((nq)(i) + Dhoi) = 55— Vhw(i>)7 ”w(i)hq)(i)}
2Cp.c,
and
s+ 2 < max (Jlun,, 013 00 ¢ = V)13 )
4 = 9@ N M Gy ()2 = Whg) eI MM (up, ;) ()

forall t € I.But the sequence (vp,);eN converges pointwise to v on [0, 71 — ] and
v = u almost everywhere on [0, 71 — ¢]. Thus, Lebesgue’s theorem implies that
(vp,; )ieN converges strongly to i in LY(0, 11 — £; RY). We may extend vy, (i € N)
and # by zero outside [0, 71 —&] and we denote vy, and i the extended functions. Of
course ||vy; —MT”LI(R’Rd) = |lvg; =l 10,7, —e:Rey and (Up; )jeN converges strongly
to i in L'(R, RY). The compactness criteria in L'(R, RY) (see [3]) yields that

lim sup/ |, (t — 0) — T, (1)| dt = 0.
0-0;eNJR

Thus, (ﬁh,- (-— lhi))ieN converges to it strongly in LY(R, R?) foralll € {0, ..., v}.

It follows that (D, (- — lh<ﬂ(i)))ieN also converges to 1 strongly in L'(R, RY)

forall/ € {0, ..., v} and, possibly extracting another subsequence, still denoted

(he(i))ien, we have forall / € {0, ..., v}

’7h¢<i) (t —lhyi)) — ft(t) almost everywhere in R.
By passing to the limit in (75), we get

S+ % < 4135y almost everywhere in 1.



Recalling that / is an interval included in [0, t; — €] with a non-empty interior, we
get

. 2 .
S 2 ess sup {”u(t)llM(u(t)), t e I}
which yields a contradiction. 0O
With the previous lemma, possibly decreasing /) we get

U" € Bluo, C+ 1), [V"llmzn < C+1 Vnhi € [0, min (7 — &, T(C))],
Vh; € (0, h].

Let us now distinguish two subcases.
Case l: T(C) < T.

Let us prove that 7y > 7(C) = min (t(C), T') by contradiction. Hence, assume
that t; < 7(C). It follows that t/ = min(tg, T) S 11 £ 17(C) < T and v/ = 10.

- . n+l n—1 .
Furthermore, recalling that Z"* = % ifn > 1and Z° = U9, we infer that

Z" € B(ug, C + 1) forall nh; € [0, 7] — & — h;] and

Vi = €+ Dsup (| M @)

;qeﬁ(uo,c+1)}=c/§cg<co

for all nh; € [0, t1 — & — h;], for all h; € (0, k], where C’, C{; and Cy are given
by (70), (71) and (72). We now choose [(h;) € {0, ..., | T/h;]} such that

/ /

T T
I(hi)h; € |:751 -5 T Z] Vh; € (0, h¥]

and let

A

00 =yl gt = gt o g = 1(hi)h;.
‘We have
01— 0% = h; [VI®| < con

and U°, U belong to BN K, for all ; € (0, h%).
Then, for all n € {l(hi), e, L%J}, yn = gn-itho and, with Proposition 2,
we obtain
{n—lhi+1 _ {n—1(h)
hi

IV =

for all (n — I(h;)) h; € [0, min (zo, T — I(h;)h;)], for all h; € (0, h}]. Thus

/
m(hiYh; > 1(hi)hi + min (70, T — 1(hi)h;) — h; > min (n n % T) — .

It follows that limp, .o m(h;)h; = 71 = min (rl + %/ T) which gives a contra-
diction.



Thus 7; > 7(C), and there exists fz”g € (0, hg] such that

71 — 1(C) T +7(C)
2 - 2

m(hih; = t(h;) 2 11 — > 7(C) Vh; € (0, ﬁz‘;].
Then, we apply Theorem 2 with t( replaced by t = %ﬂc) and hg by hi, which
yields the announced result.
Case2: t(C) 2 T.

Since m(h)h = t(h) £ T, we have 11 < T. We choose as previously /(h;) €
{0, ..., T/h;]} such that

/ !/

I(hi)h; € |:T1 - % T — TZ] Vh; € (0, h¥].

Then, we again have

/

m(hiYh; > (i Yhi +min (o, T — 1(h;Yhi) —h; >min (n n % T) —hi (76)

for all h; € (0, h}]. Thus, if 71 < T, min (n + %, T) € (11, T] and (76) yields a
contradiction with the definition of 7y = limy, ,om(h;)h;. We infer that 71 = T
and (76) implies thatm (h;)h; > T —h;, thatis,m(h;) 2 |T/h;]forallh; € (0, h}].
Hence we may apply Theorem 2 to obtain the convergence of a subsequence of
(U, , vp,)ieN, still denoted (uy,; , vp;)ieN, to a solution of problem (P) on [0, T']. O

Appendix

Lemma 15. For all compact subsets B of R%, there exist mg > 0, C 23 > 0 and
ré > 0 such that for all ¢ € K N B and for all « € J(q) we have

M~V fulq)| Z mp V' € B(q.rp)
and the mappings

g M@V al)
(M=12(q)V fulq)]

are defined and C z-Lipschitz continuous on B(q, R)-

Proof. Let 3 be a given compact subset of R¢. With the same arguments as in [11]
Lemma 7, we first obtain that there exist mp > 0 and ré > 0 such that for all

(q,9") € (KN B) x R? such that |g — ¢’| < ri» and for all « € J(g) we have

1M~V fu(g] Z mp.
Hence, for all ¢ € K N B, the mappings

o M@V fulg)
M=)V fal@)]

o€ J(q)

are defined on B(q, rp).



Now letus prove that there exists Cjz > Osuch that, forall (¢’, ¢”) € B(q. rig)z,
and for all « € J(g), we have

‘ 2@V g MTY2(@")V fulq”) o — |
\M=12(g"\V fo (g IM~12(q")V fulq")] Cpla '

We define B = {q e R?; dist(q, B) < rB}. The set B is also compact. Moreover,
from assumptions (H2) and (H4) we know that the mappings V fi, (1 £ @ < v) and
M~Y2 are locally Lipschitz continuous on R4, Thus, for all & € {1, ..., v} there
exits Cy > 0 such that

M=V fulq) — M7V GV fulq”)
Letq € BN K and (¢',q") € B(q.,rp)*. Then
M=12@HV fulg)  MTY2G)V fulq”)
|M 2NV fulgh]  [M=12(q")V fulq")]
M=12@NV fou(q) — M~Y2(G")V fu(q")
|M=172(q")V fu(q)]
M2V fulg”) M@V fulg")
|M=12(q")V fu(q)|  |M~Y2(q")V fu(q")|
|M 2@V fulq) — M7V2(g"MV fo(q")|
|M=12(g")V fu(q)|
|M=12(q")V fou(g")| — [MTV2(G)V fu(q)|
|M=12(q")V fo(g)]| |M~12(q")V fulg")|

< Colg' — 4"l V(' q") € B~

A

+| M@V fata

o

C C
<9 —-q¢"1+—Iq' - q"I.
mpg mpg

By defining

we may conclude. O

Lemma 16. Let us recall the definition of Tk (q):
Ti@) = fv e R (Vfo(@).0) 2 0Va € (@)} Vg e R
with
J(@)={ae(l,...,v}; fulg) =0}.

Then,_for all gy € K, there exist § > 0, r > Qand a € RY such that, for all
q € B(qo, 20):

B(a,r) C Tx(q).
Proof. See Lemma 8in[11]. O
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