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QUANTUM NON DEMOLITION MEASUREMENTS:

PARAMETER ESTIMATION FOR MIXTURES OF MULTINOMIALS

T. BENOIST, F.GAMBOA, AND C. PELLEGRINI

Abstract. In Quantum Non Demolition measurements, the sequence of observations
is distributed as a mixture of multinomial random variables. Parameters of the dy-
namics are naturally encoded into this family of distributions. We show the local
asymptotic mixed normality of the underlying statistical model and the consistency of
the maximum likelihood estimator. Furthermore, we prove the asymptotic optimality
of this estimator as it saturates the usual Cramér Rao bound.

1. Introduction

Measuring directly a small quantum sized physical system is done by letting it inter-
act with a macroscopic instrument. This procedure can result in the destruction of the
measured system. For example photons are absorbed to create an electronic signal. To
avoid the destruction of the measured system, one relies then on indirect measurements.
The system first interacts with an auxiliary system, or probe, that is then measured.
The goal is then to infer the system state from the information obtained through this
indirect measurement. Though, from the laws of quantum mechanics, this procedure
induces a back action on the system that may change its state. Moreover, the measure-
ment outcome being inherently random, the system state may become random itself.
Hence, if one aims at measuring indirectly a physical quantity of the system, the indi-
rect measurement must be tuned such that, if the system state corresponds to an almost
sure value of the physical quantity of interest, then, indirectly measuring it will not
modify its state. This kind of indirect measurements is called Quantum Non Demolition
(QND) measurements. It has been introduced in the eighties as a technique for precise
measurements [6]. Maybe one of the experiment illustrating best QND measurements is
Haroche’s group one. By sending atoms through a supra conducting cavity containing a
monochromatic electromagnetic field, and measuring the atoms, it is possible to measure
the number of photons inside the cavity whithout destroying them[8].

To increase the amount of information on the system state obtained through a QND
measurement, the procedure is repeated. The system evolution is then described by an
unobserved Markov chain (φn) (see Section 5 for the complete description). The only
handy observation is the sequence of the measurement results denoted by (Xn). Baye’s
law maps the information of (Xn) in the evolution of the Markov chain.

In general, the sequence of random variables (Xn) is not i.i.d. (even not Markovian).
Therefore, statistical inference for QND measurement cannot fully rely on standard
results on i.i.d. models. Efficient parameter estimation is of course crucial for these
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experiments. Particularly if one hopes to have a faithful estimation of the system state
Markov chain (φn).

In this paper, we show that the QND model enters perfectly in the framework of
the usual statistical asymptotic theory. More precisely, we provide a complete study in
terms of local asymptotic mixed normality (LAMN) of the model (we refer to [14] for the
whole theory). It is worth noticing that a quantum analog of local asymptotic normality
(LAN) called quantum local asymptotic normality (QLAN) has been developed in the
context of quantum statistics [9, 12]. Similarly quantum extensions of classical notions
such as Quantum Fisher Information and Cramér Rao bound have been developed [11,
Section 2.2.5]. Here, we will not follow this approach and will concentrate on more
classical statistical properties. Our results rely on the fact that our model, thanks to
the QND condition, is actually a mixture of i.i.d. statistical models. More precisely, it
has been show in [2, 3, 4, 5, 1] that the probability space describing these experiments
can be divided into asymptotic events (belonging to the tail algebra) such that (Xn)
conditioned to one of such asymptotic event is a sequence of i.i.d. random variables. So
that, the law of (Xn) is a mixture of i.i.d. laws. The weights involved into the mixture
depends on the initial state of the system.

The conditioning making (Xn) an i.i.d. sequence is highly exploited in order to derive
the LAMN property. To our knowledge this is the first time that the LAMN property
is shown in this context. After proving the LAMN property we study the maximum
likelihood estimation and prove that it is optimal in the sense that the Cramér Rao bound
is achieved asymptotically. Note that parametric estimation for indirect measurements
has been previously investigated in [10, 7, 13] with different assumptions. But, the theory
of asymptotic likelihood has not been studied therein.

The paper is organised as follows. In Section 2, we discuss the model of multinomial
mixture studied along the paper. In Section 3 we show the local asymptotic mixed
normality. Section 4 is devoted to the results for the maximum likelihood estimator
(consistency and saturation of the Cramér Rao bound). Finally in Section 5 we work
on the QND model underlining the link with multinomial mixtures. Further, some
numerical simulations illustrate our results on a QND toy model inspired by [8].

2. Mixture of multinomials

Let A = {1, . . . , l}, P = {1, . . . , d} and Θ be a compact subset of RD with a non empty
interior. For any α ∈ P and θ ∈ Θ, the quantity (pθ(j|α))j∈A denotes a probability
distribution over A, that is pθ(j|α) ∈ (0, 1) and

∑

j∈A pθ(j|α) = 1. In the sequel for any

j ∈ A and α ∈ P the notation p.(j|α) holds for the function θ 7→ pθ(j|α).
Let P be a probability distribution, we will use the notation

L−P
= to mean equality in

distribution when the underlying probability space is endowed with P. This notation

will also be used for convergence in distribution writing sometimes
L−Pn= when a family

of probability measures (Pn) is involved. In the paper the notation N (m,σ2) is used for
the Gaussian distribution of mean m and variance σ2. For any x ∈ RD and any subset
A ⊂ RD, the set A+ x will denote A+ x = {y + x, y ∈ A}.

Let us now describe the probability model that we will study. Let Ω = AN and let
F be the smallest σ-algebra containing the cylinder sets {ω ∈ Ω|ωk = jk,∀k ≤ n}. All
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the measures introduced afterwards are defined on the measurable space (Ω,F) without
mentioning it.

For any θ ∈ Θ and for each α ∈ P, let Pθ|α be the multinomial probability measure
built on the weights (pθ(j|α))j∈A. Namely, for any n-tuple (j1, . . . , jn) ∈ An,

Pθ|α(j1, j2, . . . , jn) =
n
∏

k=1

pθ(jk|α).

Let (q(α))α∈P be a probability measure on P, we denote by P
q
θ the probability measure

defined as a convex combination of the measure Pθ|α with weights (q(α))α∈P :

P
q
θ =

∑

α∈P
q(α)Pθ|α

Without loss of generality, we shall always assume that q(α) > 0 for all α ∈ P. Indeed,
one can reduce the set P if needed.

We study the statistical model (Pq
θ, θ ∈ Θ). As we shall see, under the identifiability

condition below, our results will be independent of q. Hence, in the sequel we shall
alleviate the notation replacing P

q
θ by Pθ.

Our main assumption on the different multinomials is the following:
Assumption ID: For any (α, θ) and (β, θ′) ∈ P×Θ such that (α, θ) 6= (β, θ′), ∃j ∈ A

such that,
pθ(j|α) 6= pθ′(j|β).

Remark: If for every θ ∈ Θ, Assumption ID does not hold for two couples (α, θ)
and (β, θ), it can be enforced by reducing P, identifying the elements giving the same
distributions pθ(·|α/β).

From now on, we will denote by θ∗ ∈ Θ the true value of the parameter θ. We assume
that θ∗ is in the interior of Θ. The following definition will be usefull.

Definition 1. For any θ∗ ∈ Θ and γ ∈ P, let,

Ωθ∗|γ := suppPθ∗|γ and Γθ∗ :=
∑

γ∈P
γ1Ωθ∗|γ .

When it does not lead to confusion we may omit the index θ∗ for both the sets Ωθ∗|γ
and the random variable Γθ∗ .
Remark: It is a direct consequence of Assumption ID that

Pθ∗(Ωθ∗|γ) = Pθ∗(Γθ∗ = γ) = q(γ).

At this stage we need to introduce some quantities quantifying the information and
proximity in our models. In particular, we shall use many times the Shannon entropy
given a parameter θ and the Kullback–Leibler divergence given θ with respect to θ′. For
α, β ∈ P and θ, θ′ ∈ Θ, let

(1) Sθ(α) := −
∑

j∈A
pθ(j|α) ln pθ(j|α),

be the Shannon entropy and

(2) Sθ|θ′(α|β) :=
∑

j∈A
pθ(j|α)

(

ln pθ(j|α) − ln pθ′(j|β)
)

,
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be the Kullback–Leibler divergence. In Eq (2), when θ = θ′ we just write Sθ, that is for
α, γ ∈ P and θ ∈ Θ

(3) Sθ(α|γ) = Sθ|θ(α|γ) =
∑

j∈A
pθ(j|α) ln

pθ(j|α)
pθ(j|γ)

.

Remark: Note that assumption ID ensures that (2) and (3) are strictly positive.
We now state a technical lemma which is a key tool to all our proofs (the arguments

are closely related to the one used in [3]).

Lemma 1. Assume that ID holds.

(1) Almost sure convergence Let (Xγ
n), be a sequence of random variables de-

pending on γ ∈ P. If for any γ ∈ P
lim
n
Xγ

n = Xγ , Pθ∗|γ − a.s.

Then

lim
n
XΓθ∗

n = XΓθ∗ , Pθ − a.s

(2) Convergence in distribution Let (θ∗n) be a sequence in Θ and (Xγ
n) as in (1).

If for any γ ∈ P

lim
n
Xγ

n

L−Pθ∗n|γ
= Xγ

Then,

lim
n
XΓθ∗

n

L−Pθ∗n= XΓ,

where Γ is a r.v. whose distribution is given by Pr(Γ = γ) = q(γ).

Proof. Assume that (Xγ
n) converges almost surely towards Xγ w.r.t Pθ∗|γ . Then,

Pθ∗|γ(∩N ∪n0
∩n≥n0

{|Xγ
n −Xγ | < 1/N}) = 1.

Since Γ = γ Pθ∗|γ-a.s.,

Pθ∗|γ(∩N ∪n0
∩n≥n0

{|XΓ
n −XΓ| < 1/N}) = 1.

This is true for any γ ∈ P. Since Pθ∗ is convex combination of the measures Pθ∗|γ ,

Pθ∗(∩N ∪n0
∩n≥n0

{|XΓ
n −XΓ| < 1/N}) = 1

and (1) holds.

Assume that (Xγ
n) converges weakly towards Xγ w.r.t. (Pθ∗n|γ). Then,

lim
n→∞

Eθ∗n|γ(f(X
γ
n)) = E(f(Xγ))

for any continuous and bounded function f . Since Pθ∗n|γ(Γθ∗n = γ) = 1 and Pθ∗n =
∑

α∈P q(α)Pθ∗n|α,

lim
n→∞

Eθ∗n(f(X
Γθ∗
n )) =

∑

α∈P
q(α)E(f(Xα)).

That convergence yields (2). �
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In the sequel we shall use the process (Nn(j))j∈A where for all n ∈ N and all j ∈ A

Nn(j)(ω) =
n
∑

k=1

1ωk=j,

for all ω ∈ Ω, which counts the number of times the result j appears before time n.
Remark that

∑

j∈ANn(j) = n. The strong law of large number for i.i.d L1 random
variables involves that

(4) lim
n→∞

Nn(j)

n
= pθ(j|α), Pθ|α − a.s.,

for all α ∈ P, all j ∈ A and all θ ∈ Θ.

3. Local Asymptotic Mixed Normality

We first prove that the statistical model (Pθ, θ ∈ Θ) is asymptotically equivalent to a
mixture of Gaussian models. Let us first recall the definition of local mixed asymptotic
normality that we shall prove for our model.

Definition 2 (Local Asymptotic Mixed Normality(LAMN)[14]). A sequence of statis-

tical models (Qθ|Fn |θ ∈ Θ) is said to be LAMN at θ∗ if, there exits ∆θ∗ and Jθ∗ two

random variables such that for any h ∈ Θ− θ∗

lim
n→∞

ln
Qθ∗+h/

√
n(ω1, . . . , ωn)

Qθ∗(ω1, . . . , ωn)

L−Qθ∗= hT∆θ∗ −
1

2
hTJθ∗h,

where the law of ∆θ∗ conditioned on Jθ∗ = J is N (0, J).

The LAMN property for our model follows from next lemma. It reduces the problem
to local asymptotic normality for i.i.d. multinomials.

Lemma 2. Assume that ID holds and that for any (j, α) ∈ A× P the function p.(j|α)
is continuous in θ∗. Let (θn) ∈ Θ be a sequence of random variables such that limn θn =
θ∗, (Pθ∗|γ − a.s). Then,

(5)

∣

∣

∣

∣

Pθn(ω1, . . . , ωn)

q(γ)Pθn|γ(ω1, . . . , ωn)
− 1

∣

∣

∣

∣

= o(n−1/2), Pθ∗|γ − a.s.

Proof. We prove the stronger result that the convergence is exponential but we will only
need the convergence at order o(n−1/2).

From the definition of Pθn ,

Pθn(ω1, . . . , ωn)
∏n

k=1 pθn(ωk|γ)
= q(γ) +

∑

α6=γ

q(α) exp





∑

j∈A
Nn(j)(ω) ln

pθn(j|α)
pθn(j|γ)



 .

The strong law of large numbers (4) and the continuity assumption on the functions
p.(j|α) imply

lim
n→∞

1

n

∑

j∈A
Nn(j) ln

pθn(j|α)
pθn(j|γ)

= −Sθ∗(γ|α), Pθ∗|γ − a.s.
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Recall that Assumption ID implies Sθ∗(γ|α) > 0 for any α 6= γ. Therefore, there exists
s > 0 independent of γ, α and of the sequence (θn) such that,

lim
n→∞

ens
∑

α6=γ

q(α) exp





∑

j∈A
Nn(j) ln

pθn(j|α)
pθn(j|γ)



 = 0, Pθ∗|γ − a.s.

Now,

Pθn(ω1, . . . , ωn)

q(γ)Pθn|γ(ω1, . . . , ωn)
− 1 =

1

q(γ)

∑

α6=γ

q(α) exp





∑

j∈A
Nn(j) ln

pθn(j|α)
pθn(j|γ)



 ,

so that the result follows. �

Now we state our main result.

Theorem 1 (LAMN). Assume that ID holds and that for any (j, α) ∈ A × P the

function p.(j|α) is differentiable at θ∗. Then, the sequence (Pθ|Fn |θ ∈ Θ) is LAMN in

θ∗ with

Jθ∗ :=
∑

j∈A
pθ∗(j|Γ)

(

∇θ ln pθ(j|Γ)(∇θ ln pθ(j|Γ))T
)

|θ=θ∗
=: Iθ∗(Γ).

Proof. Fix γ ∈ P. From standard results on parameter estimation for i.i.d. models, the
sequence of models (Pθ|γ |Fn |θ ∈ Θ) is locally asymptotic normal in θ∗ (see [14]). Namely,
there exists a r.v. Zγ ∼ N (0, Iθ∗(γ)) such that, for any h ∈ Θ− θ∗,

lim
n→∞

n
∑

k=1

ln
pθ∗+ h√

n
(ωk|γ)

pθ∗(ωk|γ)
L−Pθ∗|γ

= hTZγ − 1

2
hTIθ∗(γ)h.

From Lemma 2 setting θn = θ∗ and θn = θ∗ + h/
√
n,

lim
n→∞

ln
Pθ∗+ h√

n
(ω1, . . . , ωn)

Pθ∗(ω1, . . . , ωn)
−

n
∑

k=1

ln
pθ∗+ h√

n
(ωk|γ)

pθ∗(ωk|γ)
= 0, Pθ∗|γ − a.s.

It follows that,

lim
n→∞

ln
Pθ∗+ h√

n
(ω1, . . . , ωn)

Pθ∗(ω1, . . . , ωn)

L−Pθ∗|γ
= hTZγ − 1

2
hTIθ∗(γ)h,

so that Lemma 1 yields the Proposition. �

4. Maximum likelihood estimation

This section is devoted to the study of the maximum likelihood estimator. For ω ∈ Ω
at step n the log likelihood is defined as

ℓn(θ)(ω1, . . . , ωn) =
1

n
lnPθ(ω1, . . . , ωn).

We study the maximum likelihood estimator defined as

θ̂n := argmaxθ∈Θ ℓn(θ).
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4.1. Consistency. We define the function

(6) ℓθ∗,γ(θ) = −Sθ∗(γ)−min
α∈P

Sθ∗|θ(γ|α),

for all γ ∈ P and all θ ∈ Θ.
The following Lemma shows the almost sure uniform convergence of the sequence of

log likelihood functions.

Lemma 3. Assume that ID holds and that for any couple (j, α) ∈ A × P the function

p.(j|α) is continuous. Then for any γ ∈ P,

lim
n→∞

sup
θ∈Θ

|ℓn(θ)− ℓθ∗,γ(θ)| = 0, Pθ∗|γ − a.s.,

and ℓθ∗,γ is such that, for any ǫ > 0

(7) ℓθ∗,γ(θ
∗) > sup

θ:d(θ,θ∗)≥ǫ
ℓθ∗,γ(θ).

Proof. Since Θ is compact and that for any (j, α) ∈ A × P the function p.(j|α) is
continuous and positive, we get

max
(j,α)∈A×P

sup
θ∈Θ

| ln pθ(j|α)| <∞.

Furthermore, the strong law of large numbers (4) implies that for any α ∈ P,

lim
n→∞

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∑

j∈A

Nn(j)

n
ln

(

pθ(j|α)
pθ∗(j|γ)

)

+ Sθ∗|θ(γ|α)

∣

∣

∣

∣

∣

∣

= 0, Pθ∗|γ − a.s.

Hence,

lim
n→∞

sup
θ∈Θ

∣

∣

∣

∣

1

n
ln

Pθ|α(ω1, . . . , ωn)

Pθ∗|γ(ω1, . . . , ωn)
+ Sθ∗|θ(γ|α)

∣

∣

∣

∣

= 0, Pθ∗|γ − a.s.

It follows then from a repeated application of Lemma 5 (its statement and proof are
postponed to the Appendix), that

lim
n→∞

sup
θ∈Θ

|ℓn(θ)− ℓθ∗,γ(θ)| = 0, Pθ∗|γ − a.s.

Since ℓθ∗,γ(θ) = −Sθ∗(γ) −minα∈P Sθ∗|θ(γ|α), Assumption ID implies the inequality
(7) and the lemma is proved. �

The consistency of the maximum likelihood estimator follows now from standard ar-
guments.

Proposition 1. Assume that Assumption ID holds and that for any (j, α) ∈ A×P the

function p.(j|α) is continuous. Then,

lim
n→∞

θ̂n = θ∗, Pθ∗ − a.s.

Proof. From Lemma 3, classical results of parametric estimation (see [14, Theorem 5.7])
give,

lim
n→∞

θ̂n = θ∗, Pθ∗|γ − a.s.

So that, Lemma 1 yields the consistency w.r.t. Pθ∗ . �
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4.2. Saturation of Cramér–Rao bound. It is well know that if a model is LAMN,
it verifies an asymptotic Cramér-Rao bound. Namely if (Tn) is a sequence of estimators
such that

lim
n→∞

√
n(Tn − (θ∗ + h/

√
n))

L−Pθ∗+h/
√

n
= T

for any h ∈ Θ − θ∗, then, E(T TT) −∑α∈P q(α)I
−1
θ (α) is positive semi definite [14,

Corollary 9.9].
We now prove that the maximum likelihood estimator saturates this asymptotic

bound. We prove it comparing θ̂n with θ̂γn defined by

θ̂γn := argmaxθ∈Θ ℓ
γ
n(θ),

where

ℓγn(θ)(ω1, . . . , ωn) =
1

n
lnPθ|γ(ω1, . . . , ωn)

for all θ ∈ Θ and all ω ∈ Ω.

Lemma 4. Assume that ID holds and that for any (j, α) ∈ A× P the function p.(j|α)
is twice continuously differentiable in a neighborhood of θ∗. Assume further that for each

γ ∈ P, Iθ∗(γ) is not singular. Then,

lim
n→∞

√
n(θ̂n − θ̂γn) = 0, Pθ∗|γ − a.s.

Proof. Standard results of parametric estimation for i.i.d. random variables and our
assumption ID imply limn→∞ θ̂γn = θ∗ Pθ∗|γ-a.s. From the definition of the maximum
likelihood estimators,

(8) ∇ℓγn(θ̂γn)−∇ℓγn(θ̂n) = ∇ℓn(θ̂n)−∇ℓγn(θ̂n)
Let O be a sufficiently small neighborhood of θ∗ (on which p. is regular). The consistency

of θ̂n and θ̂γn ensures that Pθ∗|γ-a.s., for n large enough, the likelihood estimators θ̂n and

θ̂γn belong to O. Hence, since by assumption ℓγn is twice differentiable in a neighborhood
of θ∗, there exists a sequence of random variable ξn lying in the segment with extremity
θ̂n and θ̂γn such that Pθ∗|γ − a.s., for n large enough,

∇2ℓγn(ξn)(θ̂n − θ̂γn) = ∇ℓγn(θ̂n)−∇ℓn(θ̂n).
The last equality comes from (8) and the Mean Value Theorem.

Now note that using explicit derivation and the strong law of large number (4), we
have

lim
n→∞

∇2ℓγn(ξn) = Iθ∗(γ),Pθ∗|γ − a.s.

Since Iθ∗(γ) is assumed to be non singular and θ 7→ Iθ(γ) is continuous in a neighborhood
of θ∗, the previous convergence implies that for n large enough ∇2ℓγn(ξn) is invertible. It
follows that for n large enough,

(9) |θ̂n − θ̂γn| = |[∇2ℓγn(ξn)]
−1(∇ℓγn(θ̂n)−∇ℓn(θ̂n))| Pθ∗|γ − a.s.

Let us now prove that ∇ℓγn(θ̂n)−∇ℓn(θ̂n)) = o(n−1/2) Pθ∗|γ-a.s.
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Explicit differentiation leads to,

∇ℓγn(θ̂n)−∇ℓn(θ̂n) =
∑

α∈P

∑

j∈A

Nn(j)

n

(

∇pθ̂n(j|γ)
pθ̂n(j|γ)

−
∇pθ̂n(j|α)
pθ̂n(j|α)

)

q(α)Pθ̂n|α(ω1, . . . , ωn)

Pθ̂n
(ω1, . . . , ωn)

.

From the consistency of θ̂n and the continuous differentiability of p.(j|α) in a neighbor-
hood of θ∗, it follows that, there exists C > 0 such that for n large enough,

|∇ℓγn(θ̂n)−∇ℓn(θ̂n))| ≤ C

(

1−
q(γ)Pθ̂n|γ(ω1, . . . , ωn)

Pθ̂n
(ω1, . . . , ωn)

)

Pθ∗|γ − a.s.

Equation (9) combined with the Pθ∗|γ-a.s. convergence limn→∞∇2ℓγn(ξn) = Iθ∗(γ), and
with the Lemma 2 yields the result. �

Proposition 2. Assume that ID holds and that for any (j, α) ∈ A × P the function

p.(j|α) is three times continuously differentiable in a neighborhood of θ∗. Assume further

that for any γ ∈ P, Iθ∗(γ) is not singular. Let Z ∼ N (0, Id) and Γ be a random variable

independent of Z and taking value in P such that Pr(Γ = γ) = q(γ).Then, for any

h ∈ Θ− θ∗,

lim
n→∞

√
n(θ̂n − (θ∗ + h/

√
n))

L−Pθ∗+h/
√
n

= Iθ∗(Γ)
− 1

2Z.

Proof. From standard results in parameter estimation[14], under Assumption ID the sta-
tistical model (Pθ|γ , θ ∈ Θ) is LAN. Moreover, for any h ∈ Θ−θ∗, under the assumptions
of the proposition,

(10) lim
n→∞

√
n(θ̂γn − (θ∗ + h/

√
n))

L−Pθ∗|γ
= Iθ∗(γ)

− 1

2Z − h.

Actually, the proof of (Pθ|γ, θ ∈ Θ) being LAN and the weak convergence (10) are based
on the same Central Limit Theorem. It follows that,

lim
n→∞

(√
n(θ̂γn − (θ∗ + h/

√
n)), ln

Pθ∗+h/
√
n|γ(ω1, . . . , ωn)

Pθ∗|γ(ω1, . . . , ωn)

)

L−Pθ∗|γ
=

(

I
− 1

2

θ∗ (γ)Z − h, hTIθ∗(γ)
1

2Z − 1

2
hTIθ∗(γ)h

)

.

It follows then from Lemmas 2 and 4 that,

lim
n→∞

(√
n(θ̂n − (θ∗ + h/

√
n)), ln

Pθ∗+h/
√
n(ω1, . . . , ωn)

Pθ∗(ω1, . . . , ωn)

)

L−Pθ∗|γ
=

(

I
− 1

2

θ∗ (γ)Z − h, hTIθ∗(γ)
1

2Z − 1

2
hTIθ∗(γ)h

)

.

Now, from Le Cam’s third Lemma we get

lim
n→∞

√
n(θ̂n − (θ∗ + h/

√
n))

L−Pθ∗+h/
√

n
= Iθ∗(γ)

− 1

2Z.

So that, Lemma 1 yields the proposition. �
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5. Applications to Quantum non-Demolition Measurement

As mentioned in the Introduction, the above development is motivated by some ap-
plications in quantum physics. In particular, as we will see, the above estimation results
can be applied in the context of QND measurement. For the sake of completeness we
recall briefly the QND model. For a complete overview of this model we refer to [2, 3].

Let {eα | α ∈ P} and {ψj | j ∈ A} be orthonormal basis of respectively Cd and

Cl. These last spaces are endowed with their canonical Hilbert space structure. In the
context of quantum physics, these basis will be associated with some physical quantities.
Each vector of these basis describes the physical state corresponding to an almost sure
value of said physical quantities. The Hilbert space Cd describes the quantum system
that one aims to measure indirectly. The Hilbert space Cl describes a probe that will be
used to measure indirectly. Now, we detail the usual setup of indirect measurement. It
consists in measuring something on the probe after some interaction between the system
and the probe. More precisely, the interaction is described through a unitary operator
U on Cd ⊗ Cl. For QND measurements, this operator may be written as

U =
∑

α∈P
πeα ⊗ Uα.

Here, πeα is the projector on the line Ceα and (Uα)α∈P are unitary operators on Cl.
(Uα) depends on the unknown parameters of the experiment. The state of the system
is represented by the unit vector1 φ0 ∈ Cd. This vector may be expanded on the first
basis:

φ0 =
∑

α

〈eα, φ0〉 eα.

The state of the probe is represented by a unit vector ψ ∈ Cl. After the interaction the
joint system–probe state is the unit vector U(φ0 ⊗ ψ) ∈ Cd ⊗ Cl. This vector may be
expanded as,

U(φ0 ⊗ ψ) =
∑

α

〈eα, φ0〉 eα ⊗ Uαψ.

We are now in position to see how multinomial mixtures encompass the law of sequence
of measurement results in QND measurements.

To begin with, let us assume that φ0 = eα for some α ∈ P. Then,

q0(α) := |〈eα, φ0〉|2 = 1.

Further, from the definition of U ,

U(φ0 ⊗ ψ) = eα ⊗ Uαψ.

This property justifies the denomination non demolition explained in the Introduction.
If the system state is eα before the interaction it remains eα after the interaction. Quan-
tum mechanics tells that measuring a physical state in {ψj | j ∈ A} has the following
probability distribution

P[observing ψj ] = |〈ψj , Uαψ〉|2.
1Actually the state corresponds to the line given by the direction φ0. Particularly two states are

equivalent if they differ only by a phase. We no longer mention it and always mean equality up to a
phase when comparing two states.
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We set
p(j|α) := |〈ψj , Uαψ〉|2.

We will later see how Uα depends on the unknown parameter θ (and will add an index
θ to this notation). If φ0 6∈ {eα | α ∈ P}, the probe measurement outcome is ψj with
probability

π0(j) = P[observing ψj] =
∑

α

|〈eα, φ0〉|2|〈ψj , Uαψ〉|2

=
∑

α

q0(α)p(j|α)

The quantum mechanics projection postulate implies that if ψj is the measurement
outcome then the joint system–probe state becomes

φ̃1(j) =

∑

α〈φ0, α〉〈Uαψ, j〉
√

π0(j)
⊗ ψj

Hence, the system state goes from φ0 to

(11) φ1(j) =

∑

α〈φ0, α〉〈Uαψ, j〉
√

π0(j)
.

In others words, this is the new system state conditioned on the outcome ψj (for the
probe). This system state update leads to the update of q0(α),

q1(α) := |〈eα, φ1〉|2 = q0(α)
p(j|α)
π0(j)

This procedure results in the definition of random variables φ1 and (q1(α))α∈P whose
laws are images of the law P[observing ψj ] = π0(j).

Now, we repeat the previous steps. Let (Xn) be the resulting sequence of outcome
(identifying ψj and j). We have

P[X1 = j] = π0(j) =
∑

α

q0(α)p(j|α), (j ∈ A),(12)

P[X1 = j,X2 = j′] =
∑

α

q0(α)p(j|α)p(j′ |α), (j, j′ ∈ A),(13)

P[X1 = j1, . . . ,Xn = jn] =
∑

α

q0(α)

n
∏

k=1

p(jk|α), (n ∈ N∗; j1, · · · , jn ∈ A).(14)

Using Kolomgorov’s consistency Theorem we thus have defined the law of the random
sequence (Xn). For α ∈ P, let Pα be the probability measure such that

(15) Pα[{(j1, . . . , jn, ω) : ω ∈ Ω}] =
n
∏

k=1

p(jk|α).

Then the law of (Xn) is the mixture of multinomials
∑

α q0(α)Pα. Let turn now to the
statistical model. For any α ∈ P, the unitary operator Uα = Uα(θ) depends on the
unknown parameter θ. Hence, we wish to study the statistical model (Pθ) with

Pθ :=
∑

α

q0(α)Pθ,α
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where Pθ,α is defined in (15) with

pθ(j|α) = |〈Uα(θ)ψ, j〉|2.
Now, all the results developed in the last sections hold whenever the regularity as-
sumptions are assumed directly on (Uα(·))α∈P . Let us now unravel what is the Fisher
information for the QND measurement model.

Let α ∈ P and Θ be some given non empty open subset of an Euclidean space. Further,
let Hα(·) be a differentiable function on Θ taking its values in the set of self-adjoint l× l
matrices. For α ∈ P, set Uα(·) := exp(−iHα(·)). Then, a direct differentiation gives,

∂θk ln(p·(i|α)) = 2 Im

(〈∂θkHα(·)Uα(·)ψ,ψj〉
〈Uα(·)ψ,ψj〉

)

.

It follows that,

(I·(α))kl = 4
∑

j∈A
p·(j|α) Im

(〈∂θkHα(·)Uα(·)ψ,ψj〉
〈Uα(·)ψ,ψj〉

)

Im

(〈∂θlHα(·)Uα(·)ψ,ψj〉
〈Uα(·)ψ,ψj〉

)

.

More particularly, in the relevant one dimensional case d = 1 where Hα(θ) = θHα for
some self adjoint matrices Hα,

∂θ ln(pθ(i|α)) = 2 Im

(〈HαUα(θ)ψ,ψj〉
〈Uα(θ)ψ,ψj〉

)

.

So that,

Iθ(α) = 4
∑

j∈A
pθ(j|α) Im2

(〈HαUα(θ)ψ,ψj〉
〈Uα(θ)ψ,ψj〉

)

.

Toy QND example:

We conclude our paper by an illustration of our results on the Haroche’s group ex-
periment [8] mentionned in the Introduction. In that experiment d = 8 and A =
{0, 1} × {0, 1, 2, 3} hence l = 8 and j is defined through a bijection j ≡ (x, a). The
expression of p(j|α) is provided in [8]. Expressed in our notations we have here,2

pθ(x, a|α) = (θ5 + θ6 cos(αθ4 + θa + xπ))/8.

Hence, dimΘ = 7. The ideal values of the parameters are θ5 = θ6 = 1, θ4 = π/4
and θa = (2 − a)π/4. Experimentally some imperfections imply that θ6 is smaller than
1. It is close to θ = 0.674 ± 0.004. Besides this limitation in [8] the authors find
parameters close to their target values using a best fit to the empirical distribution.
Setting θ6 = 0.674, it is easy to check that ID holds for the ideal parameters and in a
small enough but sufficiently large neighborhood of the true parameters. Moreover, all
the functions θ 7→ pθ(x, a|α) are entire analytic. We limit ourselves to the estimation
of θ4 the other parameters are fixed to their true values except θ6. We set θ6 = 0.674.
Further, we take Θ = [π/8, 3π/8] and,

pθ(x, a|α) := (1 + 0.674 cos(αθ + (2− a)π/4 + xπ))/8.

2Remark that in [8] α = 0, . . . , 7 so Assumption ID is not verified for α = 0. More precisely θ4 may
not be identifiable. Though for the ideal value of θ = π/4, α = 0 is equivalent to α = 8 so we use this
value. Hence, we identify the zero photon state with the eight one at the opposite of what is done in [8].
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Figure 1. Numerical simulation of 10 realizations of (θn) for the toy
model described in the text with q(α) proportional to 3.46α/α! for α ∈
{1, . . . , 8}. The black line corresponds to the target value θ∗ = π/4.

It follows that

Iθ(α) =

3
∑

a=0

α2 0.674
2

4

sin2(αθ + (2− a)π/4)

1− 0.6742 cos2(αθ + (2− a)π/4)
.

Fisher information is not singular at θ = π/4. Figure 1 depicts some simulations of (θ̂n)
for this toy model.
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Appendix A. Uniform convergence of logarithm of sums of uniformly

convergent sequences

Lemma 5. Let (an) and (bn) be two sequence of strictly positive functions with common

domain of definition such that there exists two functions ℓa and ℓb such that,

lim
n→∞

∥

∥

1
n ln an − ℓa

∥

∥

∞ = 0 and lim
n→∞

∥

∥

1
n ln bn − ℓb

∥

∥

∞ = 0

with ‖ · ‖∞ the sup norm. Then,

lim
n→∞

∥

∥

1
n ln(an + bn)−max(ℓa, ℓb)

∥

∥

∞ = 0.

Proof. Let D be the common domain of definition of the functions. Assumptions imply
there exists a sequence (ǫn) of strictly positive numbers such that limn→∞ ǫn = 0 and

max
(∥

∥

1
n ln an − ℓa

∥

∥

∞ ,
∥

∥

1
n ln bn − ℓb

∥

∥

∞
)

≤ ǫn.

Since the function ln is non decreasing, we deduce first that for any x ∈ D,

1
n ln(an(x) + bn(x))−max(ℓa(x), ℓb(x)) ≤ ǫn + 1

n ln 2.

Second, let c(x) be such that ℓc = max(ℓa, ℓb). Then for any x ∈ D,

−ǫn ≤ 1
n ln cn(x)− ℓc(x) ≤ 1

n ln(an(x) + bn(x)) −max(ℓa(x), ℓb(x))

and the Lemma holds. �
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Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse ; CNRS,
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