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Abstract: This paper presents a method for on-line estimation of contact surfaces deterioration
in a friction drive system. It is based on a recent developed linear parameter-varying model
which includes both the mechanical device and the actuator deterioration dynamics in the
same framework. In this work an Extended Kalman Filter is explored to estimate the current
state of deterioration assuming the knowledge of the operating conditions, input signals, and
sensor information. A simulated example illustrates the potential integration of the deterioration
estimation into the prognostics of Remaining Useful Lifetime.
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and diagnosis, parameter-varying systems, mechatronic systems, modeling

1. INTRODUCTION

Nowadays, manufacturers or end users are becoming in-
creasingly motivated to manage the complete life-cycle of
an asset using proactive maintenance strategies. In this
framework, Reliability Adaptive Systems (RAS), are a
kind of approaches which can autonomously manage their
state of health according to their current condition and by
considering the influence of the system input over them,
see for instance Meyer and Sextro (2014) and Rakowsky
(2006). Management of the health state of a component
needs an acceptable and efficient diagnosis of the current
state of deterioration, which is often difficult due to the
stochastic nature of deterioration phenomena. Existent
solutions demand high computational costs which increase
the difficulty to implement on-line condition monitoring
with high accuracy.

Deterioration estimation on electromechanical devices rep-
resents a key issue for condition-based and predictive
maintenance. Estimation of any state of a dynamical
system often requires the availability of a mathematical
model and enough accurate measurements to perform a
reliable estimate. In several motion applications based on
friction, the measurements providing angular positions,
speeds and/or accelerations are often available. In addi-
tion, pure mechanical models can be considered as well-
known models and their parameters are relatively simple
to obtain. However, dynamical models which can charac-
terize the deterioration phenomena (useful on state esti-
mation) are rarely presented in the literature.

A recent model of deterioration, on friction drives systems,
has been proposed in Rodriguez Obando et al. (2016a).
Its potential use for fault-detection and for Remaining
Useful Lifetime (RUL) prediction has been presented in
Rodriguez Obando et al. (2016b). That model can be used

Fig. 1. Roller-on-tire system.

to estimate the state of the deterioration of a friction drive
system. In particular, the quality of the contact surfaces
(which allows the transmission of mechanical power) de-
creases as the deterioration increases. At the same time,
the deterioration model describes the rate of change of the
quality of the contact surfaces. This rate of change depends
on the current state of health, the current operational
conditions and the characteristics of the material. Since
the model uses a few number of unknown parameters de-
scribing the deterioration phenomena, the state estimation
process can be performed with low computational costs.

In this paper, it is proposed to use an augmented non-
linear model for simultaneously estimate the current state
of deterioration and the mechanical system states of a
friction drive system, here a roller-and-tire actuator. The
augmented model includes i) a deterministic model (me-
chanical motion equations), ii) a dynamical model of dete-
rioration and iii) an unknown input model (modeling the
rate of change of the material properties).

The remainder of this paper is organized as follows. Section
2 presents the description of the roller-and-tire actuator
model. Section 3 presents the dynamical model of the
actuator deterioration and Section 4 explains the un-



known input model and the design process of an Extended
Kalman Filter using the augmented non-linear system
model, for a suitable estimation of the deterioration of
the friction drive. In Section 5, the performance of the
proposed observer is evaluated. Lastly, in Section 6 a
simulated example illustrates the potential integration of
the deterioration estimation into the prognostics of the
Remaining Useful Lifetime. Conclusions and future work
are given in Section 7.

2. DESCRIPTION OF ROLLER-ON-TIRE SYSTEM

The considered system is called roller-on-tire actuator. It
is shown in Fig. 1 and its nomenclature in Table 1. This
is a friction drive system composed by a driver device
(dc motor) and a driven device (wheel). The actuator
is modeled as an Uncertain Linear System in a previous
work, see Rodriguez Obando et al. (2016b). As depicted
in Fig. 1, both devices are affected by the contact force
Fc. It is produced by the motor and causes a torque
which drives the wheel and depends on the tangential
speeds produced for both motor and wheel, denoted as
v1 and v2 respectively. Therefore, the main assumption
in the model is that Fc(t) is proportional to the relative
tangential speed at the contact level, denoted ∆v. That is,
Fc(t) = α ∆v = α(r1ω1 − r2ω2), where ∆v = v1(t)− v2(t)
and α ≥ 0 is an uncertain parameter, called here as the
contact quality coefficient.

Using Newton’s laws of motion, the roller-on-tire dynamics
can be written in the state space representation:

ẋ = A(α)x+Bu (1)

y = Cx (2)

where x := [ω1(t) ω2(t)]T is the system state, u = I(t)
is the control input (the electrical motor current) and
α stands for the uncertain parameter (or the scheduling
parameter in the case of a linear parameter varying model
interpretation), with matrices:

A(α) =

[(
−αr21 −B1

)
/J1 αr1r2/J1

αr2r1/J2
(
−αr22 −B2

)
/J2

]
, (3)

B =

[
Km/J1

0

]
(4)

and C an identity matrix that means that both: angular
speed of the motor and angular speed of the driven device
are measured, i.e. y = [ω1(t) ω2(t)]T .

Table 1. Nomenclature

Symb.Value Units Physical meaning

v1 [m/s] Tangential speed of the motor
v2 [m/s] Tangential speed of the driven device
ω1 [rad/s] Angular speed of the motor
ω2 [rad/s] Angular speed of the driven device
ω̇1 [rad/s2] Angular acceleration of the motor
ω̇2 [rad/s2] Angular acceleration of the driven device
I [A] Electrical motor current
r1 0.0315 [m] External radius of the motor
r2 0.35 [m] External radius of the driven the device
B1 6.36x10−3 [Kgm2/s] Viscous damping coefficient of the motor
B2 1.76x10−3 [Kgm2/s] Viscous damping coefficient of the driven device
J1 3.47x10−4 [Kgm2] Moment of inertia of the motor
J2 0.2 [Kgm2] Moment of inertia of the driven device
Km 0.0477465 [V s/rad] Motor back-electromotive force constant

3. DYNAMICAL MODEL OF DETERIORATION

3.1 Definition of deterioration for the roller-on-tire system

The deterioration is defined here as a measure of the loss in
the actuator ability to transfer power to the load device.
The power performed by the motor is transformed into
mechanical power on the load side by means of the contact
force Fc.

In this paper, the parameter α characterizes the quality of
the contact (e.g. the inter-surface adhesion and the surface
roughness) between both rotational devices. In addition,
we consider that this parameter will monotonically de-
crease in time for modeling the deterioration of the roller-
on-tire actuator.

3.2 Dissipation-energy based model of deterioration

The dissipated power at the contact level can be computed
as Pc(t) = α(r1ω1 − r2ω2)2 = α ∆2

v. The dissipated
energy could be considered as an image of the heat and
the material worn at the contact level during traction.
This assumption is very similar to the Archard’s equation
that is more commonly used in railway industry for wear
prediction (see Bevan et al. (2013) and Cremona et al.
(2016)). Thus, an index of the deterioration is obtained:

D(t) :=

∫ t

0

Pc(t)dt =

∫ t

0

α(r1ω1 − r2ω2)2dt (5)

In addition, by assumption, the contact quality coefficient
α(t) decreases as D(t) increases. Thus, a first order linear
variation of α with respect to D, with initial value α(0) >
0, is defined as:

α(t) = −mD(t) + α(0) (6)

where m and α(0) ∈ R+, and are considered as unknown
parameters, but belonging to a given known interval.

Therefore, using (5) and (6) we can compute the dynamics
of the parameter α(t), as follows:

α̇(t) = −mp(x) α(t) (7)

where p(x) ≥ 0, called here the sliding factor, is given
by p(x) := (r1ω1 − r2ω2)2 = ∆2

v. The contact quality
deterioration-rate (7), depends on the relative tangential
speed, which could be controlled by the input u = I(t) if
the uncertain system (1)-(2) is controllable.

From (6) we obtain the normalized deterioration, defined
as D̄(t) := (m/α(0))D(t), where 0 ≤ D̄(t) ≤ 1. Thus, for
a given initial condition α(0), D̄(t) can be computed at
every time-instant using α(t):

D̄(t) = 1− α(t)

α(0)
(8)

The deterioration D̄(t) tends to 1 as the quality coefficient
α(t) tends to 0. This normalized deterioration has the
advantage to depend only on α(t) and α(0). Estimation
of those variables is unavoidable for estimation of the
current condition of the friction drive deterioration, but
also for the prediction of its RUL. The latter point requires
the knowledge of the possible evolution of the contact
quality coefficient α(t). This can be possible by using
the dynamics (7) but it requires an estimation of the
current and possible futures values of the parameter m.
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Fig. 2. α as a function of D.

The shaded area in Fig. 2 depicts the domain of possible
trajectories of the parameter α(t) for different possible
values of the parameter m, with an initial condition α(0) ∈
(b1, b2), α(0) > 0. The bold line corresponds to a case
where m is constant and the reached maximum level of
deterioration D = Dmax. Remark that this value can be a
priori computed as Dmax = α(0)/m.

In this paper, the main problem is to estimate these two
parameters for condition monitoring and RUL prediction.
A suitable non-linear state-observer can be designed for
this goal. This is addressed in Section 4.

4. DETERIORATION ESTIMATION

Using (1)-(2) and (7), consider the augmented system:

ẋ = A(α) x+B u (9)

α̇ = −m p(x) α (10)

ṁ = 0 (11)

and the system output y = x. Suppose this nonlinear
system is observable, then it is possible to design an
Extended Kalman Filter to estimate the states x, the
contact quality coefficient α and the parameter m, by
considering the knowledge of the input u = I(t) and the
available signals ω1(t) and ω2(t).

4.1 Observability properties of the system

Considering the fact that parameter α affects the matrix
A(α) in an affine way in (3), and the availability of
measurements y = x, the estimation of the state α can
be possible. The estimation of α surely requires enought
degree of variation concerning y and u. The latter follows
the notion of Persistence of Excitation, see for instance
Besançon (2007). Thus, the electrical current u = I(t) has
to be different from zero and suitably varying in time to
increase the observability of the state α in the nonlinear
system (9)-(11).

In terms of the observability of the parameter m, remark
that it also appears into the dynamical equation character-
izing the evolution of α in (10). There, the variation of the
parameter α depends on the parameter m in an affine way.
Thus, this parameter can be also estimated using previous
estimations of α and its time-derivative. As a consequence,
the estimation of m requires persistence of the excitation
on α. In other words, since m will be used for predicting
the RUL, it is necessary to deteriorate the system to better
estimate its future behavior.

4.2 Synthesis of an Extended Kalman Filter

Defining the vector state of the augmented system as
x := [ω1(t) ω2(t) α(t) m]>, the control input u = I(t),
and assuming that at every time instant ω1(t) and ω2(t)
are available from the sensors, the state transition and the
system output in continuous time are respectively:

ẋ = f(x) +Bu+ w (12)

y = Cx + v (13)

with

C =

[
1 0 0 0
0 1 0 0

]
(14)

and where w and v are the process and measurement
noises which are both assumed to be Gaussian noises with
zero mean and covariance Q and R respectively.

In order to synthesize an Extended Kalman filter, the
following covariance matrices are selected:

Q = diag(
[
0 0 0 σ2

m

]
); R = diag(

[
σ2
1 σ2

2

]
) (15)

where σ2
m stands for the disturbance variance affecting the

behavior of the state m. The symbols σ2
1 and σ2

2 represent
the sensor noise variances in speed sensors measuring ω1

and ω2, respectively.

The chosen matrix Q takes into account the fact that
in the model (9)-(11) the state m (a parameter that
models the speed of the deterioration) can be affected by
neglected and/or unmodelled dynamics. In other words, we
accept that the model is far from the real process but this
model error is only associated to the misknowledge on the
behavior of the variable m. On the other hand, the matrix
R considers that both sensors are affected by the same level
of measurement noise, and this level noises are relatively
smaller than possible state disturbances and/or model
errors. The estimation process is performed as follows:
assuming the availability of discrete-time measurements
at every time-instant, with a sample time ts, the a priori
prediction of the state estimate can be calculated using
the continuous-time state transition model:

˙̂xk|k−1 = f(x̂k−1|k−1) +Buk−1 (16)

and the estimated output: ŷk|k−1 = Cx̂k|k−1

The prediction of the a priori covariance estimate matrix
P is calculated at every time instant as:

P k|k−1 = F k−1P k−1|k−1F
>
k−1 +Q (17)

where F k−1 is the Jacobian of the function f(x) in discrete
time. That is, F k−1 = exp (F ts) with

F =
∂f(x)

∂x

∣∣∣∣
x̂k|k−1

(18)

the Jacobian of the function f(x) in continuous time,
calculated as:

∂f(x)

∂x
=

F11 F12 F13 0
F21 F22 F23 0
F31 F32 F33 F34

0 0 0 0

 (19)

where F11 = −(αr21 + B1)/J1, F12 = (αr1r2)/J1, F13 =
(r1r2w2 − r21w1)/J1, F21 = (αr1r2)/J2, F22 = −(αr22 +



B2)/J2, F23 = (r1r2w1−r22w2)/J2, F31 = −2αmr1(r1w1−
r2w2), F32 = 2αmr2(r1w1 − r2w2), F33 = −m(r1w1 −
r2w2)2, and F34 = −α(r1w1 − r2w2)2.

The innovation covariance, denoted Sk, will be:

Sk = CP k|k−1C
> +R (20)

and the Kalman Gain:

Kk = P k|k−1C
>S−1k (21)

Considering the prediction error: ẽk = yk − Cx̂k|k−1
(the innovation), the updating of the state estimate is
calculated as x̂k|k = x̂k|k−1 + Kkẽk.

Finally, the a posteriori covariance matrix can be updated
with P k|k = (I −KkC)P k|k−1.

Then, the estimation process re-starts again, by consid-
ering all the updated and estimated state vectors and
covariance matrices. The estimation process requires the
initialization of the estimated state at instant k = 0, and
an initial a priori covariance matrix P 0|0.

4.3 Stochastic bounds for the state estimation

Define the estimation error as x̃k|k := xk−x̂k|k. Consider-
ing that the expected value of x̃k|k ∈ Rn is equal to zero,
its covariance equal to P k|k and c > 0 any real number,
we can use the multidimensional Chebyshev’s inequality :

Pr
(
x̃Tk|kP

−1
k|kx̃k|k > c2

)
≤ n

c2
(22)

for computing a stochastic ellipsoidal set and then com-
pute bounds of the state estimation error. Inequality (22)
can be used when there is not knowledge of the probability
distribution of the estimation error x̃k|k. Otherwise, it is
possible to use a more accurate description, for instance
in the case where the estimation error presents a normal
distribution (that corresponds to the case studied in this
paper), it is possible to bound the estimation error (with
a given probability), as follows:

Pr
(
x̃Tk|kP

−1
k|kx̃k|k ≤ c2

)
= erf

(
c√
2

)
(23)

where erf(·) corresponds to the Gauss error function.

Even if there is a probability that some trajectories of the
estimation error x̃k|k go out this set, we can use this set
to establish an interval of possible values of the state xk
with a given probability.

Using geometrical properties of the ellipsoids, bounds on
the estimation error x̃k|k, denoted xk, can be obtained as
follows:

xk = diag
(
P

1/2
k|k

)
c (24)

These bounds together with the estimated value of the
system state x̂k|k will be used as initial conditions for
predicting the RUL. In particular, for the element cor-
responding to the estimation of the parameter α we have:

x̂k|k(3)− xk(3) ≤ αk ≤ x̂k|k(3) + xk(3) (25)

with a probability greater than 1−(n/c2), for an unknown

probability distribution, or equal to erf(c/
√

2) for normal
probability distributions. Here n = 4 because x ∈ R4.
That means that with c = 3 we can expect that the real
value is within the interval given by the estimates with a
probability higher than 55.5% (for unknown distribution)
or 99.7% (for normal distribution).

4.4 Checking consistence of the innovations

Since in practice we can not measure the performance of
the observer with respect to the state error measures (since
we do not know the true state values), we can check if the
observer is performing correctly in terms of the innovation.

It is known that if the observer is working correctly then
is zero mean and white ẽk with a covariance Sk. Thus,
we can verify that the observer is consistent by applying
the following two procedures: i) check that the innovations
are consistent with their covariance and ii) check that the
innovations are unbiased and white noise. The first test
can be performed by using the following bounds on the
innovation signal:

ēk = diag
(
S

1/2
k|k

)
c (26)

where c > 0 can be chosen to guarantee that the inno-
vations will be bounded by the above values with a given
probability.

If those tests are not verified, it is possible that there
exist an under-estimate or an over-estimate of the chosen
variances of the disturbances. Thus, the chosen matrices
Q and R have to be reformulated or adapted.

5. OBSERVER PERFORMANCE EVALUATION

Some scenarios are built to validate in simulation the
obtained estimations of the parameters α and m. Table
1 summarizes the used system parameters.

5.1 Predefined operating conditions.

In this case the observer is tested in scenarios with known
and predefined operating conditions. The purpose of these
scenarios is to evaluate the quality of the estimates α̂ and
m̂ with known variations of the input. Here the chosen
input signal I(t) is a square wave with a predefined ampli-
tude (20A) and predefined values of duty cycle (period: 2s
with the 50% in this case) and the parameters of the model
(9)-(11) are considered as constant parameters. For these
scenarios α(0) = 10 and nominal m = 0.01 were chosen.

5.2 Tuning the matrices Q and R.

The observer is designed in the framework of the Sections
4.3 and 4.4, in order to build a consistent design. Assuming
a known variance of the measurement noises v, matrix
R is selected as in (15) with σ2

1 = 1.0063 × 10−8 and
σ2
2 = 1.0083× 10−10.

Concerning the matrix Q in (15), the chosen value for
σ2
m is obtained by assuming possible abrupt variations on

values of m. This variations can be modeled as impulse
disturbances (a discrete-time Dirac delta), affecting the
dynamics of the state m and taking values in the interval
(a, b)=(0.00, 0.02). If we assume, for instance, that these
disturbances are random variables with an uniform prob-
ability distribution, for all k > 0, their variance can be
calculated as:

σ2
m = var(δ(k)) =

1

12
(a− b)2 (27)

which provides σ2
m = 3.3333×10−5. This value is also used

to initialize the covariance matrix P 0|0. It is chosen as a
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Fig. 3. Input sequence and estimation of the current state
of m̂ and α̂ with an abrupt variation of m at t = 10s.

diagonal matrix containing in its diagonal constant values
equal to 3.3333× 10−5.

Additionally, in this numerical example, the Jacobian (19)
has been modified by including F44 = −100. This allows us
to consider a band-pass filter model for m which reduces
the effect of noise during the estimation of this variable.
That is, the Extended Kalman filter considers the following
dynamics ṁ = −100m instead of ṁ = 0 in (11).

5.3 Analysis of the uncertainties in the model

The variations of the parameter m are assumed to be
equal to 0 in the augmented system (9)-(11). Nevertheless,
the purpose of this scenario is to assess the proposed
observer for possible variations on m in real applications.
The variations of the parameter m represents changes in
the time-derivative of the quality of the contact α. These
changes could depend on the material properties and are
not produced by operational conditions modeled by the
function p(x). In (28) three different assumptions on the
dynamics of m are presented: (i) the parameter m is always
constant, (ii) the parameter m is piece-wise constant, and
an abrupt change in the value of m can appears at the
instant k = t∗ (a Dirac delta function models this aspect),
and (iii) the parameter m can suffer a progressive change
with a rate of change equal to ε (a possible random but a
priori bounded input).

System 

EKF RUL 
Prognostic 

Monitoring 

Observer 

Operating conditions 
Hypothesis 

u = I(t) y = [ω1(t) ω2(t)]>

α̂± ᾱ
m̂± m̄ ˆRUL

α̂k
α̂(0) ˆ̄D(t)

ˆ̄D(t)

Fig. 4. Condition monitoring and RUL prognosis.
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0

0.05
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Time [s]

ˆ̄D

Fig. 5. Condition monitoring of deterioration. Here ˆ̄D is
calculated using (8) for a progressive variation of m.

Assumption (i) : ṁ = 0 (28)

Assumption (ii) : ṁ = δ(t∗)

Assumption (iii) : ṁ = ε

Fig. 3 shows the performance of the observer in a scenario
which considers assumption (i) before t = 10s. The
variance of the obtained estimations on m are consistent
with the variances chosen for tuning the Extended Kalman
Filter. Additionally, Fig. 3 shows the scenario type (ii),
i.e. with an abrupt variation of the nominal value m at
t = 10s. Notice the change in the slope at this time, in the
curve that depicts the behavior of α̂. Thus, this observer
is able to estimate the possible variations on m even if it
was not designed for this purpose. This type of change in
m can be understood as a fault or a material change at the
contact level. As consequence, the observer can be useful
for fault detection applications. These results also confirm
that the estimation of α is accurate, as it can be evaluated
using the bounds calculated using (24) and (25).

6. INTEGRATION OF THE OBSERVER INTO THE
PROGNOSTIC OF REMAINING USEFUL LIFETIME

The proposed observer in Section 4 provides an estimate
of the current state of α and m. Given those estimates, we
can address two tasks: (i) monitoring the current condition
of the deterioration and (ii) prognosticate the RUL of the
actuator. Fig. 4 depicts the condition monitoring and the
RUL prognosis architecture proposed in this paper.

Condition monitoring of deterioration. The normalized
deterioration D̄ is calculated at every time-instant using
the estimated value of α and (8). This value has to
be obtained after assuring that the estimations errors
have converged into the confidence intervals computed
according to Section 4.4. Fig. 5 sketches the normalized
estimated deterioration ˆ̄D for the scenario of Fig. 3.
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Fig. 6. Prognostic of the RUL at time t, by considering the
current estimation uncertainties.

Prognostics of the RUL. To perform a prognostic of
the RUL, we can use the estimated values α̂ and m̂ and
their available confidence intervals. The prognostic has
additionally to include the assumptions about the future
operating conditions, for instance the possible behavior
of the electrical current I(t). In this work, the prognosis
is performed by considering a constant electrical current
I(t) = 20A and constant parameter m.

Fig. 6 shows the schema of the RUL prognostic. At a
given time t, an estimation of the normalized deterioration,
denoted ˆ̄D(t), can be performed by using the dynamical
model (9)-(10) and the output equation (8). The model
(9)-(10) is initialized with the available estimations x̂k|k
and their confidence intervals, at time t. The resultant
uncertainty in the estimation of ˆ̄D(t) is denoted as ∆D. The
prognostic is stopped once the normalized deterioration
reaches the maximum value, i.e. when ˆ̄D(t)=1, for a given
time tf . The estimated RUL is calculated as ˆRUL = tf−t.
The uncertainties in the pair (α̂, m̂) at time t, produce a
dispersion on the estimation of the RUL. In this way, it is
possible to obtain a central value (the mean) and two ex-
treme values (a constant number of standard deviations).

Fig. 7 shows the trajectory of the estimated deterioration
(the bold continuous line). The dashed lines correspond
to the trajectory of deterioration for the optimistic initial
conditions, i.e. Dopt

max = (α̂ + ᾱ)/(m̂ − m̄), and for the
pessimistic initial conditions, i.e. Dpes

max = (α̂−ᾱ)/(m̂+m̄).
Here we use c = 3 in (24) which implies the following
bounds: ᾱ = 3 · σα and m̄ = 3 · σm, where σ2

α and σ2
m

correspond to the estimated variances of α and m obtained
from the Extended Kalman Filter. In addition, Fig. 7
shows 100 trajectories of ˆ̄D (the gray lines), by considering
initial conditions x̂(t), α̂(t) and m̂(t) with estimation
errors belonging to the following normal distribution:

x̃k|k ∼ N
(
0,P k|k

)
(29)

where P k|k stands for the available estimated covariance
matrix at time t.

Fig. 8 shows that the obtained data of the estimated RUL
fit a normal distribution. It was found a mean value of

ˆRUL = 106.09h and a standard deviation of σ ˆRUL =
3.36h.

7. CONCLUSIONS AND FUTURE WORK

In this paper a non-linear state-observer is presented
for estimation of the state of deterioration in a friction
drive system. The estimator provides the current state of
deterioration of the contact surfaces with high precision.
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Fig. 7. Deterioration D̂ for prognostic of RUL. The fig-
ure shows 100 possible trajectories of D̂ within the
intervals given by the observer in the time t.
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Fig. 8. Probability density function for a normal distribu-
tion fitting. ˆRUL = 106.09h and a standard deviation
of σ ˆRUL = 3.36h.

The estimator was evaluated in simulation by taking
into account known operating conditions. The estimations
about the state of health of the contact surfaces allow us
to make a prognostic of the RUL with a confidence level
linked to the quality of the estimations.

Future work concerns the use of the proposed condition
monitoring and the RUL estimation for designing a Reli-
ability Adaptive System.
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