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Abstract

We obtain estimation error rates for estimators obtained by aggregation of reg-
ularized median-of-means tests, following a construction of Le Cam. The results
hold with exponentially large probability, under only weak moments assump-
tions on data. Any norm may be used for regularization. When it has some
sparsity inducing power we recover sparse rates of convergence. The procedure
is robust since a large part of data may be corrupted, these outliers have nothing
to do with the oracle we want to reconstruct. Our general risk bound is of order

max

(
minimax rate in the i.i.d. setup,

number of outliers

number of observations

)
.

In particular, the number of outliers may be as large as (number of data)
×(minimax rate) without affecting this rate. The other data do not have to
be identically distributed but should only have equivalent L1 and L2 moments.
For example, the minimax rate s log(ed/s)/N of recovery of a s-sparse vector in
Rd is achieved with exponentially large probability by a median-of-means ver-
sion of the LASSO when the noise has q0 moments for some q0 > 2, the entries
of the design matrix should have C0 log(ed) moments and the dataset can be
corrupted up to C1s log(ed/s) outliers.

Keywords: robust statistics, statistical learning, high dimensional statistics.
2010 MSC: 62G35, 62G08.

1. Introduction

Consider the problem of estimating minimizers of the integrated square-loss
over a convex class of functions : f∗ ∈ argminf∈F P (Y − f(X))2 based on a
data set (Xi, Yi)i=1,...,N . The labels Y and Yi’s are real-valued while the inputs
X and Xi’s take values in an abstract measurable space X .

Empirical Risk Minimizers (ERM) of Vapnik (1998); Vapnik and Chervo-
nenkis (1974) and later on, their regularized versions replace the unknown dis-
tribution P in the definition of f∗ by the empirical distribution PN based on
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the sample (Xi, Yi)i=1,...,N . Given a function reg : F → R+, this produces
regularized ERM defined by

f̂RERM
N ∈ argmin

f∈F
{PN (Y − f(X))2 + reg(f)} .

These estimators are optimal in i.i.d. subgaussian setups but suffer several
drawbacks when data are heavy-tailed or corrupted by “outliers”, see Catoni
(2012); Huber and Ronchetti (2009). These issues are critical in many mod-
ern applications such as high-frequency trading, where heavy-tailed data are
quite common or in various areas of biology such as micro-array analysis or
neuroscience where data are sometimes still nasty after being preprocessed. To
overcome the problem, various methods have been proposed. The most common
strategy is to replace the square-loss function to make it less sensitive to outliers.
For example, Huber (1964) proposed a loss that interpolates between square and
absolute loss to produce an estimator between the unbiased (but non robust)
empirical mean and the (more robust but biased) empirical median. Huber’s
estimators have been intensively studied asymptotically by Huber (1964); Huber
and Ronchetti (2009), non-asymptotic results have also been obtained more re-
cently by Chichignoud and Lederer (2014); Mendelson (2015b); Fan et al. (2017)
for example. An alternative approach has been proposed by Catoni (2012) and
used in learning frameworks such as least-squares regression by Audibert and
Catoni (2011) and for more general loss functions by Brownlees et al. (2015).

Another line of research to build robust estimators and robust selection
procedures was initiated by Le Cam (1973, 1986) and further developed by Birgé
(2006), Baraud (2011) and Baraud et al. (2017). It is based on comparisons
or tests between elements of F . More precisely, the approach builds on tests
statistics TN (g, f) comparing f and g. These tests define the sets BTN (f) of

all g’s that have been preferred to f and the final estimator f̂ is a minimizer
of the diameter of BTN (f). The measure of diameter is directly related to
statistical performances one seeks for the estimator. These methods mostly
focus on Hellinger loss and are generally considered difficult to compute, see
however Baraud et al. (2014); Sart (2014).

In a related but different approach, Lugosi and Mendelson (2017) have re-
cently introduced “median-of-means tournaments”. Median-of-means estima-
tors of Alon et al. (1999); Jerrum et al. (1986); Nemirovsky and Yudin (1983)

compare elements of F . A “champion” is an element f̂ such that BTN (f̂) is
smaller than a computable upper bound on the radius of BTN (f∗). They prove
that the risk of any champion is controlled by this upper bound. An impor-
tant message of this paper is that Le Cam’s estimators are quite common in
statistics, in particular in robust statistics. For example, Section 3 shows that
any penalized empirical loss function can be obtained by Le Cam’s approach
and that Le Cam’s estimators based on median-of-means tests are champions
of median-of-means tournaments.

This paper studies estimators derived from Le Cam’s procedure based on
regularized median-of-means (MOM) tests (see Section 4.1). Our estimators
are therefore particular instances of champions of MOM’s tournaments and
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another motivation is to push further the analysis of this particular champion.
The main advantage of MOM’s tests over Le Cam’s original ones is that they
allow for more classical loss functions than Hellinger loss. This idea is illustrated
on the square-loss. Compared to Huber or Catoni’s losses, this approach allows
to control easily the risk of our estimators by using classical tools from empirical
process theory, it also allows to tackle the problem of “aggressive” outliers.

The closest work is certainly that of Lugosi and Mendelson (2017), but
we believe that our paper contains substantial improvements. We stress the
intimate relationship between their estimator and Le Cam general construction
and use this parallel to propose a much simpler estimator. Our risk bounds are
always better and we extend their results to possibly corrupted data-sets.

To investigate robustness properties of median-of-means estimators, we par-
tition the dataset into two parts. One is made of outliers data. They are indexed
by O ⊂ [N ] of cardinality |O| = Ko. On those data, absolutely nothing
is assumed : they may not be independent, have distributions Pi totally dif-
ferent from P , with no moment at all, etc.. These are typically data polluting
datasets like in the case of declarative data on internet or when something went
wrong during the storage, compression or transfer which resulted in complete
non sense data. They may also be observations met in biology as in the classical
eQTL (Expression Quantitative Trait Loci and The Phenogen Database) from
Saba et al. (2008). Many other examples of datasets containing outliers could
be provided, this includes frauds detection and terrorist activity as examples.
Of course, outliers are not flagged in advance and the statistician is given no
a priori information on which data is an outlier or not. The other part of the
dataset is made of data on which the MOM estimator rely on to estimate the
oracle f∗. There should be enough information in those data so that the esti-
mation of f∗ is possible, even in the presence of outliers provided they remain in
a “decent proportion”. We therefore call the non-outliers, the informative data,
those that bring information on f∗. We denote by I ⊂ [N ] the set indexing
these data. We therefore end up with a partition of [N ] as [N ] = I ∪ O which,
again, is not known from the statistician.

The radii of the sets BTN (f) are computed for regularization and L2
P norms.

The regularization norm is chosen in advance by the statistician to promote
sparsity or smoothness. It can be used freely in our procedure, but it doesn’t
ensure a small L2

P risk for the estimator. The L2
P -norm is unknown in general

since it depends on the distribution of X. Furthermore, the classical L2
PN

-
empirical metric fails to estimate the L2

P metric without subgaussian properties
of the design vector X. Fortunately, it can be replaced by a median-of-means
metric. To handle simultaneously both regularization and L2

P norms, we will
also slightly extend Le Cam’s principle. Our first important result shows that
the resulting estimator is well localized w.r.t. both regularization and L2

P norms.
Median-of-means estimators rely on a data splitting into K blocks and

this parameter drives the resulting statistical performances (cf. Devroye et al.
(2016)). To achieve optimal rates, K should be ultimately chosen using pa-
rameters that depend on the oracle f∗ like its sparsity which is not in general
available to the statistician. To bypass this problem, the strategy of Lepski
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(1991) is used as in Devroye et al. (2016) to select K adaptively and get a fully
data-driven procedure.

There are four important features in our approach. First, all results are
proved under weak L2+ε moment assumptions on the noise. This is an almost
minimal condition for the problem to make sense. The class F is only assumed
to satisfy a weak “L2/L1” comparison. Second, performances of the estimators
are not affected by the presence of complete outliers, as long as their number
remains comparable to (number of observations)×(rates of convergence). Third,
all results are non-asymptotic and the regression function x 7→ E[Y |X = x] is
never assumed to belong to the class F . In particular, the noise Y − f∗(X)
can be correlated with X. Finally, even “informative data”, those that are not
“outliers”, are not requested to be i.i.d. ∼ P , but only to have close first and
second moments for all f ∈ F −{f∗}. Nevertheless, the estimators are shown to
behave as well as the ERM when the data are i.i.d. ∼ P , E[Y |X = ·] ∈ F , the
noise ζ = Y − f∗(X) and the class F are Gaussian and the noise is independent
from the design.

Example: sparse-recovery via MOM LASSO. As a proof of concept,
theoretical properties are illustrated in the classical example of sparse-recovery
in high-dimensional spaces using the `1-regularization. This example illustrates
typical results that follow from our analysis in one of the most classical problem
of high dimensional statistics (cf. Bühlmann and van de Geer (2011); Giraud
(2015)). The interested reader can check that it also applies to other procedures
like Slope (cf. Bogdan et al. (2015); Su and Candès (2015)) and trace-norm
regularization as well as kernel methods, for instance, by using the results in
Lecué and Mendelson (2016a,b).

Recall this classical setup. Let X denote a random vector in Rd such that

E
〈
X, t

〉2
= ‖t‖22 for all t ∈ Rd (X is isotropic) and let Y be a real-valued

random vector. Let t∗ ∈ argmint∈Rd E(Y −
〈
X, t

〉
)2. Let (Xi, Yi)i∈[N ] denote

independent data corrupted by outliers : no assumption is made on a subset
(Xi, Yi)i∈O of the dataset. Let I = [N ]\O denote the indices of informative data
(Xi, Yi)i∈I : for all i ∈ I, (Xi, Yi) are independent with the same distribution
(X,Y ). For the sake of simplicity, we only consider the case of i.i.d. informative
data in this example. In high-dimensional statistics, N ≤ d but t∗ has only
s (s < N) non-zero coordinates. To estimate t∗, the `1-norm ‖·‖1 is used for
penalization to promote zero coordinates. The following result holds.

Theorem 1. [Theorem 1.4 in Lecué and Mendelson (2016a)] Assume t∗ is
s-sparse, N ≥ c0s log(ed/s), X is isotropic and

i) |I| = N and |O| = 0 (no outliers in the dataset),

ii) ζ = Y −
〈
X, t∗

〉
∈ Lq0 for some q0 > 2

iii) there exists L > 0 such that for all t ∈ Rd and all p ≥ 2,
∥∥〈X, t〉∥∥

Lp
≤

L
√
p
∥∥〈X, t〉∥∥

L2

iv) there exist u0 > 0 and β0 > 0 such that for all t ∈ Rd,

P
[
|
〈
X, t

〉
| ≥ u0

∥∥〈X, t〉∥∥
L2

]
≥ β0 .
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The LASSO estimator, defined by

t̃ ∈ argmin
t∈Rd

(
1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ c1 ‖ζ‖Lq0

√
log(ed)

N
‖t‖1

)

satisfies for every 1 ≤ p ≤ 2,

∥∥t̃− t∗∥∥
p
≤ c4(L, u0, κ0) ‖ζ‖Lq0 s

1/p

√
log(ed)

N
,

with probability at least

1− c2 logq0 N

Nq0/2−1
− 2 exp (−c3s log(ed/s)) . (1)

This paper shows that Theorem 1 holds for a MOM version of the LASSO
estimator under much weaker assumptions, with a better probability estimate
than (1). More precisely, the following theorem is proved.

Theorem 2. Assume that t∗ is s-sparse, N ≥ c0s log(ed/s), X is isotropic and

i’) |I| ≥ N/2 and |O| ≤ c1s log(ed/s) (the number of outliers may be propor-
tional to the sparsity times log(ed/s)),

ii) ζ = Y −
〈
X, t∗

〉
∈ Lq0 for some q0 > 2

iii’) for every 1 ≤ p ≤ C0 log(ed),
∥∥〈X, ej〉∥∥Lp ≤ L

√
p
∥∥〈X, ej〉∥∥L2

where

(ej)j∈[d] is the canonical basis of Rd and C0 is some absolute constant,

iv’) there exists θ0 such that
∥∥〈X, t〉∥∥

L1 ≤ θ0

∥∥〈X, t〉∥∥
L2 , for all t ∈ Rd,

v) there exists θm such that var(ζ
〈
X, t

〉
) ≤ θ2

m ‖t‖
2
2, for all t ∈ Rd.

There exists an estimator t̂, called MOM-LASSO, satisfying for every 1 ≤ p ≤ 2,

∥∥t̂− t∗∥∥
p
≤ c4(L, θm) ‖ζ‖Lq0 s

1/p

√
1

N
log

(
ed

s

)
,

with probability at least

1− c2 exp(−c3s log(ed/s)) . (2)

Theoretical properties of MOM LASSO outperform those of LASSO in sev-
eral ways.

• Estimation rates achieved by MOM-LASSO are the actual minimax rates
s log(ed/s)/N , see Bellec et al. (2016), while classical LASSO estimators
achieve the rate s log(ed)/N . This improvement is possible thanks to the
adaptation step in MOM-LASSO.

• the probability deviation in (1) is polynomial – 1/N (q0/2−1) in (1) – it is
exponentially small for MOM LASSO. Exponential rates for LASSO hold
only if ζ is subgaussian (‖ζ‖Lp ≤ C

√
p ‖ζ‖L2

for all p ≥ 2).
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• MOM LASSO is insensitive to data corruption by up to s times log(ed/s)
outliers while only one outlier can be responsible of a dramatic breakdown
of the performances of LASSO.

• All assumptions on X are weaker for MOM LASSO than for LASSO.
In particular, condition v) holds with θm = ‖ζ‖L4

if for all t ∈ Rd,∥∥〈X, t〉∥∥
L4
≤ θ0

∥∥〈X, t〉∥∥
L2

– which is a much weaker requirement than

condition iii) for LASSO.

From a mathematical point of view, our results are based on a slight exten-
sion of the Small Ball Method (SBM) of Koltchinskii and Mendelson (2015);
Mendelson (2014a) to handle non-i.d. data. SBM is also extended to bound
both quadratic and multiplier parts of the quadratic loss. Otherwise, all ar-
guments are standard, which makes the approach very attractive and easily
reproducible in other frameworks of statistical learning.

The paper is organized as follows. Section 2 briefly presents the general
setting and our main illustrative example. Section 3 presents Le Cam’s con-
struction of estimators based on tests. We also show why many learning pro-
cedures may be obtained by this approach. The construction of estimators and
the main assumptions are gathered in Section 4. Our main theorems are stated
in Section 5 and proved in Section 6.

Notation. For any real number x, let bxc denote the largest integer smaller
than x and let [x] = {1, . . . , bxc} if x ≥ 1. For any finite set A, let |A| denote
its cardinality. All along the paper, (ci)i∈N denote absolute constants which
may vary from line to line and θ·, with various subscripts, denote real valued
parameters introduced in the assumptions. Finally, for any set G for which it
makes sense, for any g ∈ G, c ≥ 0 and C ⊂ G,

g + cC = cC + g = {h : ∃g′ ∈ C such that h = g + cg′} .

Let also g + G = g + 1G. We also denote by I(g ∈ C) the indicator function of
the set C which equals to 1 when g ∈ C and 0 otherwise.

2. Setting

Let X denote a measurable space and let (X,Y ), (Xi, Yi)i∈[N ] denote random
variables taking values in X×R, with respective distributions P, (Pi)i∈[N ]. Given
a probability distribution Q, let L2

Q denote the space of all functions f from X
to R such that ‖f‖L2

Q
< ∞ where ‖f‖L2

Q
=
(
Qf2

)1/2
. Let F ⊂ L2

P denote a

convex class of functions f : X → R. Assume that PY 2 < ∞ and let, for all
f ∈ F ,

R(f) = P
[
(Y − f(X))2

]
, f∗ ∈ argmin

f∈F
R(f) and ζ = Y − f∗(X) .

Let ‖·‖ denote a norm defined onto a linear subspace E of L2
P containing F .
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Example : `1-regularization of linear functionals. For every t = (tj)
d
1 ∈ Rd and

1 ≤ p ≤ +∞, let

F = {
〈
·, t
〉

: t ∈ Rd} and
∥∥〈·, t〉∥∥ = ‖t‖1 , where ‖t‖p =

 d∑
j=1

|tj |p
1/p

.

Let f∗ =
〈
·, t∗
〉
∈ F , where

t∗ ∈ argmin
t∈Rd

{
P
(
Y −

〈
X, t

〉)2}
.

Whenever it’s necessary, (e1, . . . , ed) will denote the canonical basis of Rd and
Bdp (resp. Sd−1

p ) will denote the unit ball (resp. sphere) associated to ‖·‖p. To
ease readability in this example, we focus on rates of convergence, we do not
consider the “full” non-i.i.d. setup and assume that P = Pi for all i ∈ I. We
write Lq for LqP to shorten notations.

3. Learning from tests

3.1. General Principle

This section details the ideas underlying the construction of a MOM estima-
tor using an extension of Le Cam’s approach.

Basic idea. By definition of the oracle f∗, one has

f∗ = argmin
f∈F

R(f) = argmin
f∈F

sup
g∈F
{R(f)−R(g)}, where R(f) = P [(Y − f(X)2] .

As Tid(g, f) = R(f) − R(g) depends on P , we estimate it by test statistics
T (g, f, (Xi, Yi)i∈[N ]) ≡ TN (g, f) that is, real random variables such that

TN (f, g) + TN (g, f) = 0 . (3)

These statistics are used to compare f to g, simply by saying that g TN -beats
f iff TN (g, f) ≥ 0. In this paper, the statistics TN (g, f) are median-of-means
estimators of R(f)−R(g) (cf. (12) in Section 4.1).

Le Cam’s construction. Let (TN (g, f))f,g∈F denote a collection of test statistics
and let d(·, ·) denote a pseudo-distance on F measuring (or related to) the risk
we want to control. Let for all f ∈ F ,

BTN (f) = {g ∈ F : TN (g, f) ≥ 0}

be the set of all functions g ∈ F that beat f . If f is far from f∗, then BTN (f) is
expected to have a large radius w.r.t. d(·, ·). We therefore introduce this radius
as a criteria to minimize : for all f ∈ F , let CTN (f) = supg∈BTN (f) d(f, g).
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By (3), f ∈ BTN (g) or g ∈ BTN (f) (both happen if TN (f, g) = 0), hence
d(f, g) ≤ CTN (f) ∨ CTN (g). In particular, for all f ∈ F ,

d(f, f∗) ≤ CTN (f) ∨ CTN (f∗) . (4)

Eq (4) suggests to define the estimator

f̂TN ∈ argmin
f∈F

CTN (f) = argmin
f∈F

sup
g∈BTN (f)

d(f, g) . (5)

This estimator satisfies, from Eq (4),

d(f̂TN , f
∗) ≤ CTN (f∗) . (6)

Risk bounds for f̂TN follow from (6) and upper bounds on the radii of BTN (f∗).

Remark 1. More generally, one can compare only the elements of a subset
F ⊂ F , typically a maximal ε-net by introducing for all f ∈ F , the set

BTN (f,F) = {g ∈ F : TN (g, f) ≥ 0} (7)

and then by minimizing the diameter of BTN (f,F) over F . This usually im-
proves the rates of convergence for constant deviation results when there is a
gap in Sudakov’s inequality of the localized sets of F (cf. Section 5 in Lecué and
Mendelson (2013) for more details). These results are not presented because we
are interested in exponentially large deviation results for which our results are
optimal.

Dealing with regularization : the link function. Statistical performances of esti-
mators and the radius of BTN (f∗) can be measured by two norms: the regular-
ization norm ‖ · ‖ and ‖.‖L2

P
. As (5) allows only for one distance d, we propose

the following extension of Le Cam approach to handle two metrics.
To introduce this extension, assume first that d(f, g) = ‖f − g‖L2

P
can be

computed for all f, g ∈ F (this is the case if the distribution of the design
is known). The next paragraph explains how to deal with the more common
framework where this distance is unknown. Remark that

CTN (f) = sup
g∈BTN (f)

‖f − g‖ = min

{
ρ ≥ 0 : sup

g∈BTN (f)

‖g − f‖ ≤ ρ

}
.

The main point to extend Le Cam’s approach to simultaneously control two
norms is to design a link function r(·). In a nutshell, the values r(ρ) is the L2

P -
minimax rate of convergence in a ball of radius ρ for the regularization norm
(cf. (13) in Section 4.3 for a formal definition). Then one can define

C
(2)
TN

(f) = min

{
ρ ≥ 0 : sup

g∈BTN (f)

‖g − f‖ ≤ ρ and sup
g∈BTN (f)

d(f, g) ≤ r(ρ)

}
.

Theorem 3 shows that while a minimizer f̂ (1) of CTN has only a nice risk for ‖·‖, a

minimizer f̂ (2) of C
(2)
TN

has both
∥∥∥f̂ (2) − f∗

∥∥∥ and d(f̂ (2), f∗) properly controlled.
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Dealing with unknown norms : the isometry property. In general, L2
P -distances

cannot be directly computed and have to be estimated. To deal with this issue,
one considers usually the empirical L2

PN
distance and prove that empirical and

actual distances are equivalent outside a L2
P -ball centered in f∗ (cf. for instance,

remark after Lemma 2.6 in Lecué and Mendelson (2013)). Unfortunately this
approach only works under strong concentration property that we want to relax
in this paper.

The unknown L2
P -metric is instead estimated by a median-of-means ap-

proach, that is, we use MOM estimators dN (f, g) of all d(f, g) (cf. Section 4.4).
The final estimator is therefore defined as a minimizer of

C ′′TN (f) = min

{
ρ ≥ 0 : sup

g∈BTN (f)

‖g − f‖ ≤ ρ and sup
g∈BTN (f)

dN (f, g) ≤ r(ρ)

}
.

3.2. Examples

Le Cam’s approach has been used by Birgé to define T -estimators (cf. Ba-
raud and Birgé (2009); Birgé (2006, 2013)) and by Baraud, Birgé and Sart to
define ρ-estimators (cf. Baraud and Birgé (2016); Baraud et al. (2017)). Baraud
(2011); Baraud et al. (2014) also built efficient estimator selection procedures
with this approach. It also extends many common procedures in statistical
learning theory, as shown by the following examples.

Example 1 : Empirical minimizers. Assume TN (g, f) = `N (f)− `N (g) for some

random function `N : F → R and denote by f̂ = arg minf∈F `N (f) a minimizer
of the corresponding criterion (provided that it exists and is unique). Then it

is easy to check that BTN (f̂) = {f̂}, so its radius is null, while the radius of any

other point f is larger than d(f, f̂) > 0 (whatever the non-degenerate notion of

pseudo-distance used for d). It follows that f̂ is the estimator (5). In particular,
any possibly penalized empirical risk minimizer

f̂ = arg min
f∈F
{PN`f + reg(f)}

is obtained by Le Cam’s construction with the tests

TN (g, f) = PN (`f − `g) + reg(f)− reg(g) .

These examples encompass classical empirical risk minimizers of Vapnik (1998)
but also their robust versions from Huber (1964); Audibert and Catoni (2011).

Example 2 : median-of-means estimators. Another, perhaps less obvious exam-
ple is the median-of-means estimator Alon et al. (1999); Jerrum et al. (1986);
Nemirovsky and Yudin (1983) of the expectation PZ of a real valued random
variable Z. Let Z1, . . . , ZN denote a sample and let B1, . . . , BK denote a parti-
tion of [N ] into bins of equal size N/K. The estimator MOMK(Z) is the (empir-
ical) median of the vector of empirical means

(
PBkZ = |Bk|−1

∑
i∈Bk Zi

)
k∈[K]

.

Recall that

PZ = argmin
m∈R

P (Z −m)2 = argmin
m∈R

max
m′∈R

P [(Z −m)2 − (Z −m′)2] .
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Define the MOM test statistic to compare any m,m′ ∈ R by

TN (m,m′) = MOMK [(Z −m′)2 − (Z −m)2] .

Basic properties of the median (recalled in Eq (8) and (9) of Section 4.1) yield

TN (m,m′) = (m′)2 −m2 + MOMK [−2Z(m′ −m)]

= (m′)2 − 2m′MOMK(Z)− [m2 − 2mMOMK(Z)]

= (m′ −MOMK(Z))2 − (m−MOMK(Z))2 .

Defining `N (m) = (m−MOMK(Z))2, one has

TN (m,m′) = `N (m′)− `N (m) .

As in the previous example, Le Cam’s estimator based on TN is therefore the
unique minimizer of `N , that is MOMK(Z).

Example 3 : “Champions” of a Tournament. Lugosi and Mendelson (2017)
introduced median-of-means tournaments. More precisely, they used median-
of-means tests to compare elements in F . These tests cannot be separated
TN (f, g) 6= `N (g)− `N (f) in general. Lugosi and Mendelson (2017) assume that
an upper bound r∗ on the radius CTN (f∗) of BTN (f∗) (that holds with expo-
nentially large probability) is known from the statistician and call “champion”

any element f̂ of F such that CTN (f̂) ≤ r∗. It is clear that, by definition the

radius CTN (f̂TN ) of f̂TN is smaller than CTN (f∗) and therefore smaller than r∗.

This means that f̂TN is a “champion” for this terminology. The main advantage
of Le Cam’s approach is that r∗ (which usually depends on some attribute of

the oracle like the sparsity) is not required to build the estimator f̂TN .

4. Construction of the regularized MOM estimators

4.1. Quantile of means processes and median-of-means tests

This section presents median-of-means (MOM) tests used in this work. De-
signing a family of tests (TN (g, f) : f, g ∈ F ) is one of the most important
building blocks in Le Cam’s approach together with the right choice of the
metric measuring the diameters BTN (f) for f ∈ F .

Start with a few notations. For all α ∈ [0, 1], ` ≥ 1 and z ∈ R`, the set of
α-quantiles of z is denoted by

Qα(z) =

{
x ∈ R :

1

`

∑̀
k=1

I(zi ≤ x) ≥ α and
1

`

∑̀
k=1

I(zi ≥ x) ≥ 1− α

}
.

For a non-empty subset B ⊂ [N ] and a function f : X × R→ R, let

PBf =
1

|B|
∑
i∈B

f(Xi, Yi) and PBf =
1

|B|
∑
i∈B

Pif .

10



Let K ∈ [N ] and let (B1, . . . , BK) denote an equipartition of [N ] into bins of
size |Bk| = N/K. When K does not divide N , at most K − 1 data can be
removed from the dataset. For any real number α ∈ [0, 1] and any function
f : X × R→ R, the set of α-quantiles of empirical means is denoted by

Qα,K(f) = Qα
(
(PBkf)k∈[K]

)
.

With a slight abuse of notations, we shall repeatedly denote by Qα,K(f) any
element in Qα,K(f) and write Qα,K(f) = u if u ∈ Qα,K(f), Qα,K(f) ≥ u if
supQα,K(f) ≥ u, Qα,K(f) ≤ u if infQα,K(f) ≤ u, and Qα,K(f) + Qα′,K(f ′)
any element in the Minkowski sum Qα,K(f)+Qα′,K(f ′). Let also MOMK(f) =
Q1/2,K(f) denote an empirical median of the empirical means on the blocks Bk.
Empirical quantiles satisfy for any c ≥ 0, f, f ′ : X × R→ R and α ∈ [0, 1],

Qα,K(cf) = cQα,K(f) , (8)

Qα,K(−f) = −Q1−α,K(f) , (9)

sup
{
Q1/4,K(f) +Q1/4,K(f ′)

}
≤ infQ1/2,K(f + f ′) , (10)

supQ1/2,K(f + f ′) ≤ inf
{
Q3/4,K(f) +Q3/4,K(f ′)

}
. (11)

With some abuse of notations, we shall write these properties respectively

Qα,K(cf) = cQα,K(f), Qα,K(−f) = −Q1−α,K(f) ,

Q1/4,K(f) +Q1/4,K(f ′) ≤ MOMK [f + f ′] ≤ Q3/4,K(f) +Q3/4,K(f ′) .

A regularization parameter λ > 0 is introduced to balance between data ade-
quacy and regularization. The (quadratic) loss and regularized (quadratic) loss
are respectively defined on F ×X × R as the real valued functions such that

`f (x, y) = (y − f(x))2, `λf = `f + λ ‖f‖ , ∀(f, x, y) ∈ F ×X × R .

To compare/test functions f and g in F , median-of-means tests between f and
g are now defined by

TK,λ(g, f) = MOMK

[
`λf − `λg

]
= MOMK [`f − `g] + λ(‖f‖ − ‖g‖) . (12)

From (9), TK,λ satisfies (3) and is a tests statistic in the sense of Section 3.

4.2. Main assumptions

Recall that [N ] = O∪I and that (Xi, Yi)i∈O is a set of outliers on which we
make no assumption so these may be aggressive in any sense one can imagine.
The remaining informative data (Xi, Yi)i∈I need to bring enough information
onto f∗. We therefore need some assumption on the sub-dataset (Xi, Yi)i∈I
and, in particular, some connexion between the distributions Pi for i ∈ I and
P . These assumptions are pretty weaksince we only assume essentially that the
L2
P , L

2
Pi

and L1
Pi

geometries are comparable in the following sense.

11



Assumption 1. There exists θr ≥ 1 such that, for all i ∈ I and f ∈ F ,

‖f − f∗‖L2
Pi

≤ θr ‖f − f∗‖L2
P
.

Of course, Assumption 1 holds in the i.i.d. framework, with θr = 1 and
I = [N ]. The second assumption bounds the correlation between the noise
function ζ : (y, x) ∈ R × X → y − f∗(x) and the design on the shifted class
F − f∗ in L2

Q for all Q ∈ {P, (Pi)i∈I}.

Assumption 2. There exists θm > 0 such that, for all Q ∈ {P, (Pi)i∈I} and
f ∈ F ,

varQ(ζ(f − f∗)) = Q
[
ζ2(f − f∗)2 − [Q(ζ(f − f∗))]2

]
≤ θ2

m ‖f − f∗‖
2
L2
P
.

Let us give some examples where Assumption 2 holds. If the noise ran-
dom variable ζ(Y,X) (resp. ζ(Yi, Xi) for i ∈ I) has a variance conditionally to
X (resp. Xi for i ∈ I) that is uniformly bounded then Assumption 2 holds.
This is, for example, the case, when ζ(Y,X) (resp. ζ(Yi, Xi) for i ∈ I) is in-
dependent of X (resp. Xi for i ∈ I) and has finite L2-moment with θm =
maxQ∈P,{Pi}i∈I ‖ζ‖L2

Q
. It also holds without independence under higher mo-

ment conditions. For example, assume σ = maxQ∈P,{Pi}i∈I ‖ζ‖L4
Q
<∞ and, for

every f ∈ F , ‖f − f∗‖L4
Q
≤ θ1 ‖f − f∗‖L2

P
then by Cauchy-Schwarz inequality,√

varQ(ζ(f − f∗)) ≤ ‖ζ(f − f∗)‖L2
Q
≤ ‖ζ‖L4

Q
‖f − f∗‖L4

Q
≤ θ1σ ‖f − f∗‖L2

P

and so Assumption 2 holds for θm = θ1σ.

Assumption 3. There exists θ0 ≥ 1 such that for all f ∈ F and all i ∈ I

‖f − f∗‖L2
P
≤ θ0 ‖f − f∗‖L1

Pi

.

By Cauchy-Schwarz inequality, ‖f − f∗‖L1
Pi

≤ ‖f − f∗‖L2
Pi

for all f ∈ F

and i ∈ I. Therefore, Assumptions 1 and 3 together imply that all norms
L2
P , L

2
Pi
, L1

Pi
, i ∈ I are equivalent over F − f∗. Note also that Assumption 3

is related to the small ball property (cf. Koltchinskii and Mendelson (2015);
Mendelson (2014a)) as shown by Proposition 1 bellow. The small ball property
has been recently used in Learning theory and signal processing. We refer to
Koltchinskii and Mendelson (2015); Lecué and Mendelson (2014); Mendelson
(2015b, 2014b, 2015a); Rudelson and Vershynin (2014) for examples of distri-
butions satisfying this assumption.

Proposition 1. Let Z be a real-valued random variable.

1. If there exist κ0 and u0 such that P(|Z| ≥ κ0 ‖Z‖2) ≥ u0 then ‖Z‖2 ≤
(u0κ0)−1 ‖Z‖1.

2. If there exists θ0 such that ‖Z‖2 ≤ θ0 ‖Z‖1, then for any κ0 < θ−1
0 ,

P(|Z| ≥ κ0 ‖Z‖2) ≥ u0 where u0 = (θ−1
0 − κ0)2.

12



Proof. If P(|Z| ≥ κ0 ‖Z‖2) ≥ u0 then

‖Z‖1 ≥
∫
|z|≥κ0‖Z‖2

|z|PZ(dz) ≥ u0κ0 ‖Z‖2 ,

where PZ denotes the distribution of Z. Conversely, if ‖Z‖2 ≤ θ0 ‖Z‖1, the
Paley-Zigmund’s argument (de la Peña and Giné, 1999, Proposition 3.3.1) shows
that, if p = P (|Z| ≥ κ0 ‖Z‖2),

‖Z‖2 ≤ θ0 ‖Z‖1 = θ0 (E[|Z|I(|Z| ≤ κ0 ‖Z‖2)] + E[|Z|I(|Z| ≥ κ0 ‖Z‖2)])

≤ θ0 ‖Z‖2 (κ0 +
√
p) .

As one can assume that ‖Z‖2 6= 0, p ≥ (θ−1
0 − κ0)2.

4.3. Complexity parameters and the link function

This section defines the link function r(·) making the connections between
norms that will be required in the extension of Le Cam’s approach to a simul-
taneous control of two norms (one of the two being unknown). For any ρ ≥ 0
and any f ∈ E, let

B(f, ρ) = {g ∈ E : ‖f − g‖ ≤ ρ}, S(f, ρ) = {g ∈ E : ‖g − f‖ = ρ} .

Definition 1. Let (εi)i∈I be independent Rademacher random variables, inde-
pendent from (Xi, Yi)i∈I and let J = {J ⊂ I, |J | ≥ |I|/2}. For any γQ, γM > 0
and ρ > 0 let Ff?,ρ,r = {f ∈ F ∩B(f?, ρ) : ‖f − f?‖L2

P
≤ r},

Q
γQ
f?,ρ =

{
r > 0 : ∀J ∈ J , E sup

f∈Ff?,ρ,r

∣∣∣∣∣∑
i∈J

εi(f − f?)(Xi)

∣∣∣∣∣ ≤ γQ|J |r
}

,

MγM
f?,ρ =

{
r > 0 : ∀J ∈ J , E sup

f∈Ff?,ρ,r

∣∣∣∣∣∑
i∈J

εi(Yi − f?(Xi))(f − f?)(Xi)

∣∣∣∣∣ ≤ γM |J |r2

}

and the two fixed point functions

rQ(ρ, γQ) = sup
f?∈F

{inf Q
γQ
f?,ρ}, rM (ρ, γM ) = sup

f?∈F
{inf MγM

f?,ρ} .

The link function is any continuous and non-decreasing function r : R+ → R+

such that for all ρ > 0

r(ρ) = r(ρ, γQ, γM ) ≥ max(rQ(ρ, γQ), rM (ρ, γM )). (13)

Note that if the function ρ→ max(rQ(ρ, γQ), rM (ρ, γM )) is itself continuous
and non-decreasing then it can be taken equal to r(·). In the next paragraph,
we provide an explicit computation of the functions rQ(·), rM (·) and r(·) in the
“LASSO case”.
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Complexity parameters for the `1-regularization. One can derive rQ(·) and rM (·)
from Gaussian mean widths defined for any V ⊂ Rd, by

`∗(V ) = E

 sup
(vj)∈V

d∑
j=1

gjvj

 , where (g1, . . . , gd) ∼ Nd(0, Id) . (14)

The dual norm of the `d1-norm is 1-unconditional with respect to the canonical
basis of Rd (Mendelson, 2016, Definition 1.4). Therefore, (Mendelson, 2016,
Theorem 1.6) applies under the following assumption.

Assumption 4. There exist constants q0 > 2, C0 and L such that ζ ∈ Lq0 ,

X is isotropic (E
〈
X, t

〉2
= ‖t‖22 for every t ∈ Rd) and its coordinates have

C0 log d subgaussian moments: for every 1 ≤ j ≤ d and every 1 ≤ p ≤ C0 log d,∥∥〈X, ej〉∥∥Lp ≤ L√p ∥∥〈X, ej〉∥∥L2 .

Under Assumption 4, if σ = ‖ζ‖Lq0 , (Mendelson, 2016, Theorem 1.6) shows
that, for every ρ > 0,

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εi
〈
v,Xi

〉∣∣∣∣∣∣ ≤ c2√N`∗(ρBd1 ∩ rBd2 ) ,

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εiζi
〈
v,Xi

〉∣∣∣∣∣∣ ≤ c2σ√N`∗(ρBd1 ∩ rBd2 ) .

Local Gaussian mean widths `∗(ρBd1 ∩ rBd2 ) are bounded from above in (Lecué
and Mendelson, 2016a, Lemma 5.3) and computations of rM and rQ follow

r2
M (ρ) .L,q0,γM

σ
2 d
N if ρ2N ≥ σ2d2

ρσ

√
1
N log

(
eσd
ρ
√
N

)
otherwise

,

r2
Q(ρ)

{
= 0 if N &L,γQ d

.L,γQ
ρ2

N log
(
c(L,γQ)d

N

)
otherwise

.

Therefore, a link function is explicitly given by

r2(ρ) ∼L,q0,γQ,γM


max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, σ

2d
N

)
if N &L d

max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, ρ

2

N log
(
d
N

))
otherwise

.

(15)

4.4. The estimators

Let (TK,λ(g, f))f,g∈F denote the family of tests defined in (12). For every
function f ∈ F , let BK,λ(f) = {g ∈ F : TK,λ(g, f) ≥ 0} denote the set of all
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functions g ∈ F that beats f . As explained in Section 3, these sets will be
measured by two metrics. First, let

Rreg
K,λ(f) = sup

g∈BK,λ(f)

{‖g − f‖} and f̂
(1)
K,λ ∈ arg min

f∈F
RregK,λ(f) .

Next, let

R
(2)
K,λ(f) = sup

g∈BK,λ(f)

{MOMK [|g − f |]} .

Lemma 4 below proves that, with large probability, MOMK [|f − g|] and ‖f − g‖L2
P

are isomorphic distances. The second criterion is then given by

C
(2)
K,λ(f) = inf

{
ρ ≥ 0 : Rreg

K,λ(f) ≤ ρ and R
(2)
K,λ(f) ≤ 85θrr(ρ)

}
,

where r(·) is a link function as defined in Definition 1. That is a continuous and
non-decreasing function such that for all ρ > 0, r(ρ) ≥ max(rM (ρ, γM ), rQ(ρ, γQ))
where the choice of γQ and γM is given in Theorem 3 below. The associated
estimator is then given by

f̂
(2)
K,λ ∈ argmin

f∈F
C

(2)
K,λ(f) .

4.5. The sparsity equation

By (6), estimation rates for f̂
(2)
K,λ will be derived from upper bounds on

C
(2)
K,λ(f∗). To get these, our strategy is to show that TK,λ(f∗, f) > 0 for all f

such that ‖f − f∗‖ or ‖f − f∗‖L2
P

is large.

Recall that the quadratic / multiplier decomposition of the excess quadratic
risk:

TK,λ(f∗, f) = MOMK [(f − f∗)2 − 2ζ(f − f∗)] + λ(‖f‖ − ‖f∗‖) . (16)

Let f ∈ F and ρ = ‖f − f∗‖. When ρ is large and ‖f − f∗‖L2
P

is small,

TK,λ(f∗, f) > 0 thanks to the regularization term λ(‖f‖−‖f∗‖) in (16) because
the quadratic term (f − f∗)2 is likely to be small. We will therefore derive a
lower bound on the regularization term when the subdifferential of ‖·‖ is “large”
in the following sense.

First, we recall that the subdifferential of ‖·‖ in f ∈ F is the set

(∂ ‖·‖)f = {z∗ ∈ E∗ : ‖f + h‖ ≥ ‖f‖+ z∗(h) for every h ∈ E} ,

where (E∗, ‖·‖∗) is the dual normed space of (E, ‖·‖) (and E is the linear space
containing F onto which ‖·‖ is defined). For all ρ > 0, let Hρ denote the set

Hρ = {f ∈ F : ‖f − f∗‖ = ρ, ‖f − f∗‖L2
P
≤ r(ρ)}
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where r(·) is the link function from Definition 1. Let Γf∗(ρ) denote the union
of all subdifferentials of ‖·‖ at functions “close” to f∗

Γf∗(ρ) =
⋃

f∈B(f∗,ρ/20)

(∂ ‖·‖)f .

Intuitively, every norm is associated with a notion of “sparsity” if one agrees
to say that a non-zero function f∗∗ is sparse w.r.t. the norm ‖·‖ when the
subdifferential of this norm at f∗∗ is a “large subset” of the dual sphere (i.e.
the sphere of (E∗, ‖·‖∗)). Sparse functions f∗∗ are useful in our context because
a large lower bound on ‖f‖−‖f∗∗‖ (and so for ‖f‖−‖f∗∗‖ when ‖f∗∗ − f∗‖ is
small enough) can be derived when the vector f − f∗∗ is in the right direction.
This intuition are formalized in the sparsity equation. More precisely, let

∀ρ > 0, ∆(ρ) = inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗) .

∆(ρ) is a uniform lower bound on ‖f‖ − ‖f∗∗‖ if f∗∗ ∈ B(f∗, ρ/20). Thus,
‖f‖ − ‖f∗‖ & ρ, if supf∗∗∈Γf∗ (ρ)(‖f‖ − ‖f∗∗‖) & ρ or if the following sparsity

equation of Lecué and Mendelson (2016a) holds.

Definition 2. A radius ρ > 0 satisfies the sparsity equation if ∆(ρ) ≥ 4ρ/5.

If ρ∗ satisfies the sparsity equation, so do all ρ ≥ ρ∗. Therefore, one can define

ρ∗ = inf

(
ρ > 0 : ∆(ρ) ≥ 4ρ

5

)
. (17)

The sparsity equation in `d1-regularization. The equation has been solved in this
example in (Lecué and Mendelson, 2016a, Lemma 4.2), recall this result.

Lemma 1. If there exists v ∈ Rd such that v ∈ t∗ + (ρ/20)Bd1 and |supp(v)| ≤
cρ2/r2(ρ) then

∆(ρ) = inf
h∈ρSd−1

1 ∩r(ρ)Bd2
sup

g∈Γt∗ (ρ)

〈
h, g − t∗

〉
≥ 4ρ

5
.

where Sd−1
1 is the unit sphere of the `d1-norm and Bd2 is the unit Euclidean ball

in Rd.

If N & s log(ed/s) and if there exists a s-sparse vector in t∗+(ρ/20)Bd1 , Lemma 1
and the choice of r(·) in (15) imply that for σ = ‖ζ‖Lq0 ,

ρ∗ ∼L,q0 σs

√
1

N
log

(
ed

s

)
and r2(ρ∗) ∼ σ2s

N
log

(
ed

s

)
then ρ∗ satisfies the sparsity equation and r2(ρ∗) is the rate of convergence of
the LASSO (cf. Lecué and Mendelson (2016a)).
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5. Main results

5.1. Performances of the estimators

Theorem 3 gathers estimation error bounds satisfied by the estimators f̂
(j)
K,λ for

j = 1, 2 defined in Section 4.4.

Theorem 3. Grant Assumptions 1, 2 and 3 and let rQ, rM anr r denote the
functions introduced in Definition 1 for

γQ = min

(
1

661θ0
,

1

1764θr

)
, γM =

ε

168
and ε =

3

331θ2
0

.

Let ρ∗ be defined in (17) and let K∗ denote the smallest integer such that

K∗ ≥ max

(
8Ko

7
,
Nε2r2(ρ∗)

336θ2
m

)
.

For all K ≥ 1, let ρK be a solution of r2(ρK) = [16θ2
m/(ε

2α)]
√
K/N . Assume

that for every i ∈ I, K ∈ [K∗, N ] and f ∈ F ∩B(f∗, ρK),

2(Pi − P )ζ(f − f∗) ≤ εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρK , γM ), ‖f − f∗‖2L2

P

)
. (18)

For all K ∈ [K∗, N/(84θ2
rθ

2
0)], on an event Ω1(K) such that P(Ω1(K)) ≥ 1 −

4 exp(−K/1008), the estimators f̂
(j)
K,λ for j = 1, 2 defined in Section 4.4 satisfy∥∥∥f̂ (1)

K,λ − f
∗
∥∥∥ ≤ ρK ,

and ∥∥∥f̂ (2)
K,λ − f

∗
∥∥∥ ≤ ρK , ∥∥∥f̂ (2)

K,λ − f
∗
∥∥∥
L2
P

≤ 340θ0θrr(ρK)

when the regularization parameter satisfy

20ε

7

r2(ρK)

ρK
< λ <

10

331θ2
0

r2(ρK)

ρK
.

To the best of our knowledge, Theorem 3 provides the first statistical per-
formance of an estimator operating in such a “nasty” environment: the dataset
may be corrupted by complete outliers, the informative data may be heavy-
tailed and their distribution Pi for i ∈ I is only asked to have a L2 and L1

geometry over F −f∗ equivalent to that of P . The most surprising thing is that
the rate we obtain for K = K∗ in Theorem 3, i.e. r(ρK∗) when the number of
outliers Ko is less than Nr2(ρ∗) is the minimax rate we would have gotten in
a very good i.i.d. subgaussian framework with independent noise. This means
that the quality of a dataset does not have to be as good as it is classically
assumed in the literature to make estimation possible: all we need is that a
large fraction of the data should be independent (even though we believe that
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some “weak dependence” could also be introduced) and distributed according
to distributions inducing L1 and L2 geometries equivalent to the L2

P one.
In Theorem 3, K can be as small as the infimum between the number of

outliers and N times the minimax rate of convergence. Henceforth, if the opti-
mal rate is known, as in Lugosi and Mendelson (2017), Theorem 3 shows that
Le Cam’s champion of the median of means tournament with K = K∗ reaches
the same performances as any champion in this paper. Theorem 3 is thus an
extension of Lugosi and Mendelson (2017) to a non-i.d. corrupted setting for
Le Cam’s champion. Moreover, our control improves theirs if the upper bound
on the radius of f∗ used in Lugosi and Mendelson (2017) is pessimistic (cf.
Example 3.2 in Section 3.2).

Assumption 1 is automatically satisfied in the i.i.d. case and so is Assump-
tion (18). Theorem 3 goes beyond this i.i.d. setup, relaxing the i.d. assumptions
into proximity assumptions between L2

Pi
and L2

P geometries, for informative
data.

Risk bounds in `d1 regularization. Let us now compute explicit values of ρK and
λ ∼ r2(ρK)/ρK in the `d1-regularization case. Let K ∈ [N ] and σ = ‖ζ‖Lq0 . The
equation K = cr(ρK)2N is solved by

ρK ∼L,q0
K

σ

√
1

N
log−1

(
σ2d

K

)
(19)

for the r(·) function defined in (15). Therefore,

λ ∼ r2(ρK)

ρK
∼L,q0 σ

√
1

N
log

(
eσd

ρK
√
N

)
∼L,q0 σ

√
1

N
log

(
eσ2d

K

)
. (20)

The regularization parameter depends on the “level of noise” σ, the Lq0-norm
of ζ. This parameter is unknown in practice. Nevertheless, it can be estimated
and replaced by this estimator in the regularization parameter as in (Giraud,
2015, Sections 5.4 and 5.6.2).

5.2. Adaptive choice of K by Lepski’s method

The main drawback of Theorem 3 is that optimal rates are only achieved
when K ≈ K∗. Since K∗ is unknown, it cannot be used in general. This issue
is tackled in this section by Lepski’s method.

Let K1 = K∗ and K2 = N/(84θ2
0θ

2
r) be defined as in Theorem 3. For any

integer K ∈ [K1,K2], let ρK and λ be defined as in Theorem 3 and for j = 1, 2

denote by f̂
(j)
K = f̂

(j)
K,λ for this choice of λ. These estimators are the building

blocks of the following confidence sets. For all f ∈ F , let

B̂
(2)
K (f) =

{
g ∈ F : MOMK [|g − f |] ≤ 28900θ2

rθ0r(ρK)
}
.

Now, let

R
(1)
K = B(f̂

(1)
K , ρK), R

(2)
K = B(f̂

(2)
K , ρK) ∩ B̂(2)

K (f̂
(2)
K )
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and for every j = 1, 2, let

K̂(j) = inf

{
K ∈ [K2] :

K2⋂
J=K

R
(j)
J 6= ∅

}
.

Finally, define adaptive (to K) estimators via Lepski’s method: for j = 1, 2,

f̂
(j)
LE ∈

⋂K2

J=K̂(j) R
(j)
J .

Theorem 4. Grant assumptions and notations of Theorem 3. There exist ab-

solute constants (ci)1≤i≤2 such that the estimators f̂
(j)
LE for j = 1, 2 satisfy for

every K ∈ [K∗, N/(84θ2
0θ

2
r)], with probability at least 1− c1 exp (−c2K),∥∥∥f̂ (1)

LE − f
∗
∥∥∥ ≤ 2ρK ,

and ∥∥∥f̂ (2)
LE − f

∗
∥∥∥ ≤ 2ρK ,

∥∥∥f̂ (2)
LE − f

∗
∥∥∥
L2
P

≤ 680θrθ0r(2ρK) .

In particular, for K = K∗, if the following regularity assumption holds: there
exists an absolute constant c3 such that for all ρ > 0, r(2ρ) ≤ c3r(ρ) then with
probability at least

1− c1 exp

(
−c4N max

(
Ko

N
,
r2(ρ∗)

θ4
0θ

2
m

))
then, ∥∥∥f̂ (2)

LE − f
∗
∥∥∥
L2
P

≤ c5 max

(
θ4

0θ
2
m

Ko

N
, r2(ρ∗)

)
.

Recall an optimality result from Lecué and Mendelson (2013). Assume that
all (Xi, Yi), i ∈ [N ] are distributed according to (X,Y f

∗
), where f∗ ∈ F , Y f

∗
=

f∗(X) + ζ and ζ is a centered Gaussian variable with variance σ independent
of X. Assume that F is L-subgaussian : for every f ∈ F and p ≥ 2, ‖f‖Lp ≤
L
√
p ‖f‖L2 . Then, (Lecué and Mendelson, 2013, Theorem A′) proves that if f̃N

is an estimator such that for every f∗ ∈ F and every r > 0, with probability at

least 1− c0 exp(−σ−1r2N/c0),
∥∥∥f̃N − f∗∥∥∥

L2
P

≤ ζN , then necessarily

ζN & min
(
r, diam(F,L2

P )
)
. (21)

When Y f
∗

= f∗(X) + ζ, c ∼ 1/θm ∼ 1/σ. Applying this result to r = r(ρK)
for some given K ≥ K∗ shows no procedure can estimate f∗ in L2

P uniformly
over F with confidence at least 1− c0 exp(−K/c0) at a rate better than r(ρK)
(we implicitly assumed that r(ρK) ≤ diam(F,L2

P ) since r(ρK) can obviously be
replaced by r(ρK) ∧ diam(F,L2

P ) in all results). Moreover, this rate is mini-
max since (Lecué and Mendelson, 2013, Theorem A) also shows that the ERM

over ρKB, f̂ERMN ∈ argminf∈ρKB PN `f , satisfies
∥∥∥f̂ERMN − f∗

∥∥∥
L2

. r(ρK) with

probability at least 1− c0 exp(−σ−1r2(ρK)N/c0) when σ & rQ(ρK).
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Theorem 4 shows that f̂LE achieves the same rate of convergence with the
same exponentially high confidence as a minimax estimator does in the Gaussian
regression model (with independent noise). These rates are achieved here un-
der very weak stochastic assumptions allowing the presence of outliers, without
assuming that the regression function lies in F or that the data are i.i.d.. Com-
pared to Lugosi and Mendelson (2017), using a Lepski method, we don’t have
to choose the integer K in advance, we let the data decide the best choice and
automatically get an estimator with the correct minimax rate of convergence.
Moreover, the regularization parameter is chosen adaptively, which yields to
exact minimax rates and, since this minimax rate is not required to build the
estimators, these are naturally adaptive.

Adaptive results in `d1 regularization. The following result follows from Theo-
rem 4 together with the computation of ρ∗, rQ, rM and r from the previous
sections. This is a slight extension of Theorem 2 to the case where the oracle t∗

is not exactly sparse but close to a sparse vector.

Theorem 5. Assume that X is isotropic and

o) there exist s ∈ [N ] such that N ≥ c1s log(ed/s) and v ∈ Rd such that
‖t∗ − v‖1 ≤ σs

√
log (ed/s) /N/20 and |supp(v)| ≤ s.

i’) |I| ≥ N/2 and |O| ≤ c1s log(ed/s),

ii) ζ = Y −
〈
X, t∗

〉
∈ Lq0 for some q0 > 2

iii’) for every 1 ≤ p ≤ C0 log(ed),
∥∥〈X, ej〉∥∥Lp ≤ L

√
p
∥∥〈X, ej〉∥∥L2

where

(ej)j∈[d] is the canonical basis of Rd and C0 is some absolute constant,

iv’) there exists θ0 such that
∥∥〈X, t〉∥∥

L1 ≤ θ0

∥∥〈X, t〉∥∥
L2 , for all t ∈ Rd,

v) there exists θm such that var(ζ
〈
X, t

〉
) ≤ θ2

m ‖t‖
2
2, for all t ∈ Rd.

The MOM-LASSO estimator t̂LE such that f̂LE =
〈
t̂LE , ·

〉
satisfies, with prob-

ability at least 1− c2 exp(−c3s log(ed/s)), for every 1 ≤ p ≤ 2,

∥∥t̂LE − t∗∥∥p ≤ c4(L, θm) ‖ζ‖Lq0 s
1/p

√
1

N
log

(
ed

s

)
,

In particular, Theorem 5 shows that, for our estimator contrary to the one
in Lugosi and Mendelson (2017), the sparsity parameter s does not have to be
known in advance in the LASSO case.

Proof. It follows from Theorem 4, the computation of r(ρK) from (15) and ρK
in (19) that with probability at least 1− c0 exp(−cr(ρK)2N/C),

∥∥t̂LE − t∗∥∥1
≤

ρK∗ and
∥∥t̂LE − t∗∥∥2

. r(ρK). The result follows since ρK∗ ∼ ρ∗ ∼L,q0
σs
√

1
N log

(
ed
s

)
and ‖v‖p ≤ ‖v‖

−1+2/p
1 ‖v‖2−2/p

2 for all v ∈ Rd and 1 ≤ p ≤ 2.
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6. Proofs

In all the proof section, we denote by P the distribution of (X1, . . . , XN ) and
E the corresponding expectation. For any non-empty subset B ⊂ [N ] and any
f : X → R for which it makes sense, let PBf = 1

|B|
∑
i∈B Pif . For any f ∈ L2

P

and r ≥ 0, let

B2(f, r) = {g ∈ L2
P : ‖f − g‖L2

P
≤ r}, S2(f, r) = {g ∈ L2

P : ‖f − g‖L2
P

= r} .

We consider the set of indices of blocks Bk containing only informative data:

K = {k ∈ [K] : Bk ⊂ I} .

6.1. Lower Bound on the quadratic process

Lemma 2. Grant Assumptions 1 and 3. Fix η ∈ (0, 1), ρ > 0 and let α, γQ, γ, x ∈
(0, 1) be such that γ (1− α− x− 32θ0γQ) ≥ 1−η. Let K ∈ [Ko/(1−γ), Nα/(2θ0θr)

2].
There exists an event ΩQ(K, ρ) such that P (ΩQ(K, ρ)) ≥ 1−exp(−Kγx2/2)

on which for all f ∈ B(f∗, ρ) if ‖f − f∗‖L2
P
≥ rQ(ρ, γQ) then

Qη,K(|f − f∗|) ≥ 1

4θ0
‖f − f∗‖L2

P
and Qη,K((f − f∗)2) ≥ 1

(4θ0)2
‖f − f∗‖2L2

P
.

Proof. For all f ∈ F − {f∗}, let nf = (f − f∗)/ ‖f − f∗‖L2
P

. For i ∈ I,

Pi|nf | ≥ θ−1
0 by Assumption 3 and Pin

2
f ≤ θ2

r by Assumption 1. By Markov’s
inequality, for all k ∈ K,

P

(
|PBk |nf | − PBk |nf || >

θr√
α|Bk|

)
≤ α

and so

P

(
PBk |nf | ≥

1

θ0
− θr√

α|Bk|

)
≥ 1− α .

Since K ≤ [α/(2θ0θr)]
2N then |Bk| = N/K ≥ [α/(2θ0θr)]

2 and so we have

P
(
PBk |nf | ≥

1

2θ0

)
≥ 1− α . (22)

Let φ denote the function defined by φ(t) = (t − 1)I(1 ≤ t ≤ 2) + I(t ≥ 2)
for all t ∈ R+ and, for all f ∈ F − {f∗}, let Z(f) =

∑
k∈[K] I(4θ0PBk |nf | ≥ 1).

Since I(t ≥ 1) ≥ φ(t) for any t ≥ 0 then Z(f) ≥
∑
k∈K φ (4θ0PBk |nf |). Since

φ(t) ≥ I(t ≥ 2) for all t ≥ 0, it follows from (22) that

E

[∑
k∈K

φ (4θ0PBk |nf |)

]
≥
∑
k∈K

P (4θ0PBk |nf | ≥ 2) ≥ |K|(1− α) .
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Therefore, for all f ∈ F , we have

Z(f) ≥ |K|(1− α) +
∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)]) .

Let F = {f ∈ B(f∗, ρ) : ‖f − f∗‖L2
P
≥ rQ(ρ, γQ)}. By the bounded difference

inequality (cf. (McDiarmid, 1989, Lemma 1.2) or (Boucheron et al., 2013, The-
orem 6.2), there exists an event Ω(x) such that P(Ω(x)) ≥ 1 − exp(−x2|K|/2),
on which

sup
f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣+ |K|x .

By the Giné-Zynn symmetrization argument (Boucheron et al., 2013, Lemma 11.4),

E sup
f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣∑
k∈K

εkφ (4θ0PBk |nf |)

∣∣∣∣∣
where (εk)k∈K are independent Rademacher variables independent of the data.
Moreover, φ is 1-Lipschitz and φ(0) = 0. By the contraction principle (cf.
(Ledoux and Talagrand, 1991, Theorem 4.12) or (Boucheron et al., 2013, The-
orem 11.6)),

E sup
f∈F

∣∣∣∣∣∑
k∈K

εkφ (4θ0PBk |nf |)

∣∣∣∣∣ ≤ 4θ0E sup
f∈F

∣∣∣∣∣∑
k∈K

εkPBk |nf |

∣∣∣∣∣ .
Applying again the symmetrization and contraction principles, we get,

E sup
f∈F

∣∣∣∣∣∑
k∈K

εkPBk |nf |

∣∣∣∣∣ ≤ 4K

N
E sup
f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

εinf (Xi)

∣∣∣∣∣∣ .
It follows from the convexity of F that for all f ∈ F , rQ(ρ, γQ)nf ∈ F − f∗ and
it also belongs to the L2

P sphere of radius rQ(ρ, γQ). Therefore, by definition of
rQ := rQ(ρ, γQ) and for J = ∪k∈KBk,

E sup
f∈F

∣∣∣∣∣∑
i∈J

εinf (Xi)

∣∣∣∣∣ =
1

rQ
E sup
f∈F∩S2(f∗,rQ)

∣∣∣∣∣∑
i∈J

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ γQ |K|NK .

In conclusion, on Ω(x), all f ∈ F is such that

Z(f) ≥ |K| (1− α− x− 32θ0γQ) ≥ (1− η)K .

In other words, on Ω(x), for all f ∈ F , there exist at least (1− η)K blocks Bk
such that PBk |nf | ≥ (4θ0)−1. For any of these blocks Bk, PBkn

2
f ≥ (PBk |nf |)2,

hence, on Ω(x), Qη,K [|nf |] ≥ (4θ0)−1 and Qη,K [n2
f ] ≥ (4θ0)−2.
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6.2. Upper Bound on the multiplier process
Lemma 3. Grant Assumption 2. Fix η ∈ (0, 1), ρ ∈ (0,+∞], and let α, γM , γ, x
and ε be positive absolute constants such that γ (1− α− x− 8γM/ε) ≥ 1−η. Let
K ∈ [Ko/(1−γ), N ]. There exists an event ΩM (K, ρ) such that P(ΩM (K, ρ)) ≥
1 − exp(−γKx2/2) and on ΩM (K, ρ), for all f ∈ B(f∗, ρ) there is at least
(1− η)K blocks Bk with k ∈ K such that∣∣2(PBk − PBk)(ζ(f − f∗))

∣∣ ≤ εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρ, γM ), ‖f − f∗‖2L2

P

)
.

Proof. For all k ∈ [K] and f ∈ F , define Wk(f) = 2(PBk − PBk) (ζ(f − f∗))
and

γk(f) = εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρ, γM ), ‖f − f∗‖2L2

P

)
.

Let f ∈ F and k ∈ K. It follows from Markov’s inequality and Assumption 2
that

P
[
2
∣∣∣Wk(f)

∣∣∣ ≥ γk(f)
]
≤

4E
[(

2(PBk − PBk)(ζ(f − f∗))
)2
]

16θ2m
α ‖f − f∗‖2L2

P

K
N

≤
α
∑
i∈Bk varPi(ζ(f − f∗))

|Bk|2θ2
m ‖f − f∗‖

2
L2
P

K
N

≤
αθ2

m ‖f − f∗‖
2
L2
P

|Bk|θ2
m ‖f − f∗‖

2
L2
P

K
N

= α . (23)

Denote J = ∪k∈KBk and remark that J ∈ J as defined in Definition 1. Let
rM := rM (ρ, γM ) for simplicity. We have

E sup
f∈B(f∗,ρ)

∑
k∈K

εk
Wk(f)

γk(f)
≤ 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εk(PBk − PBk)(ζ(f − f∗))
εmax(r2

M , ‖f − f∗‖
2
L2
P

)

∣∣∣∣∣
≤ 2

εr2
M

E

[
sup

f∈B(f∗,ρ)\B2(f∗,rM )

∣∣∣∣∣∑
k∈K

εk(PBk − PBk)

(
ζrM

f − f∗

‖f − f∗‖L2
P

)∣∣∣∣∣
∨ sup
f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
k∈K

εk(PBk − PBk) (ζ(f − f∗))

∣∣∣∣∣
]

≤ 2

εr2
M

E sup
f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
k∈K

εk(PBk − PBk) (ζ(f − f∗))

∣∣∣∣∣ ,
where in the last but one inequality we used that F is convex and the same
argument as in the proof of Lemma 2. Moreover, since the random variables
((ζi(f − f∗)(Xi) − Piζ(f − f∗)) : i ∈ I) are centered and independent, the
symmetrization argument applies and, by definition of rM ,

E sup
f∈B(f∗,ρ)

∑
k∈K

εk
Wk(f)

γk(f)
≤ 4K

εr2
MN

E sup
f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
i∈J

εiζi(f − f∗)(Xi)

∣∣∣∣∣
≤ 4K

εN
γM |K|

N

K
=

4γM
ε
|K| . (24)
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Now, let ψ(t) = (2t− 1)I(1/2 ≤ t ≤ 1) + I(t ≥ 1) for all t ≥ 0 and note that ψ
is 2-Lipschitz, ψ(0) = 0 and satisfies I(t ≥ 1) ≤ ψ(t) ≤ I(t ≥ 1/2) for all t ≥ 0.
Therefore, all f ∈ B(f∗, ρ) satisfies∑
k∈K

I (|Wk(f)| < γk(f))

= |K| −
∑
k∈K

I

(
|Wk(f)|
γk(f)

≥ 1

)
≥ |K| −

∑
k∈K

ψ

(
|Wk(f)|
γk(f)

)
= |K| −

∑
k∈K

Eψ
(
|Wk(f)|
γk(f)

)
−
∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]
≥ |K| −

∑
k∈K

P
(
|Wk(f)|
γk(f)

≥ 1

2

)
−
∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Pψ

(
|Wk(f)|
γk(f)

)]

≥ (1− α)|K| − sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
where we used (23) in the last inequality. The bounded difference inequality
ensures that, for all x > 0, there exists an event Ω(x) satisfying P(Ω(x)) ≥
1− exp(−x2|K|/2) on which

sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
≤ E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣+ |K|x .

Furthermore, it follows from the symmetrization argument that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
≤ 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εkψ

(
|Wk(f)|
γk(f)

)∣∣∣∣∣
and, from the contraction principle and (24), that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εkψ

(
|Wk(f)|
γk(f)

)∣∣∣∣∣ ≤ 2E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εk
|Wk(f)|
γk(f)

∣∣∣∣∣ ≤ 8γM
ε
|K| .
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In conclusion, on Ω(x), for all f ∈ B(f∗, ρ),∑
k∈K

I (|Wk(f)| < γk(f)) ≥ (1− α− x− 8γM/ε) |K|

≥ Kγ (1− α− x− 8γM/ε) ≥ (1− η)K .

6.3. An isometry property of MOMK [·] processes

Besides the controls of the quadratic and multiplier MOM processes pre-
sented in Lemmas 2 and 3 respectively, the estimation error bounds for the
MOM estimators rely on the following isometry property of the MOM proces-
sus f ∈ F → MOMK [|f − f∗|].

Lemma 4. [Isometry property of the MOMK [·] process] Grant Assumptions 1
and 3. Fix η ∈ (0, 1), ρ > 0 and let α, γQ, γ, x denote absolute constants in (0, 1)
such that γ (1− α− x− 4θrγQ/α) ≥ 1−η. Let K ∈ [Ko/(1−γ), Nα/(2θ0θr)

2].
There exists an event Ωiso(K, ρ) ⊂ ΩQ(K, ρ) such that P(Ωiso(K, ρ)) ≥ 1 −
2 exp

(
−γx2K/2

)
and on the event Ωiso(K, ρ), for all f ∈ B(f∗, ρ),

Q1−η,K |f − f∗| ≤ θr ‖f − f∗‖L2
P

+
4θr
α

max
(
rQ(ρ, γQ), ‖f − f∗‖L2

P

)
and if ‖f − f∗‖L2

P
≥ rQ(ρ, γQ) then Qη,K |f − f∗| ≥ (1/(4θ0)) ‖f − f∗‖L2

P
.

In particular, for η = 1/2, on the event Ωiso(K, ρ), for all f ∈ B(f∗, ρ), if
‖f − f∗‖L2

P
≥ rQ(ρ, γQ), then

1

4θ0
‖f − f∗‖L2

P
≤ MOMK [|f − f∗|] ≤ θr

(
1 +

4

α

)
‖f − f∗‖L2

P
. (25)

Proof. It follows from Lemma 2 that on the event ΩQ(K, ρ) for all f ∈ B(f∗, ρ),
if ‖f − f∗‖L2

P
≥ rQ(ρ, γQ) then Qη,K |f − f∗| ≥ (1/(4θ0) ‖f − f∗‖L2

P
. This

yields the “lower bound” result in (25).
For the upper bound of the isomorphic result, we essentially repeat the proof

of Lemma 3. Let us just highlight the main differences. We will use the same
notation as in the proof of Lemma 3 except that for all f ∈ F , we define

Wk(f) = (PBk − PBk)|f − f∗| and γk(f) =
4θr
α

max
(
rQ(ρ, γQ), ‖f − f∗‖L2

P

)
.

It follows from Chebyshev’s inequality and Assumption 1 that

P [2|Wk(f)| ≥ γk(f)] ≤ 4PBk |f − f∗|
γk(f)

≤
4θr ‖f − f∗‖L2

P

γk(f)
≤ α.
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Moreover, by convexity of F , we have, for rQ := rQ(ρ, γQ),

(?) := E sup
f∈B(f∗,ρ)

∑
k∈K

εk
Wk(f)

γk(f)

≤ 4θr
αrQ

E sup
f∈B(f∗,ρ)∩S2(f∗,rQ)

∣∣∣∣∣∑
k∈K

εk(PBk − PBk)|f − f∗|

∣∣∣∣∣
and then using a symmetrization argument, we obtain that

(?) ≤ 4θrK

αrQN
E sup
f∈B(f∗,ρ)∩S2(f∗,rQ)

∣∣∣∣∣∑
i∈J

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ 4θrγQ|K|
α

.

Finally, using the same argument as in the proof of Lemma 3, for all x > 0 there
exists an event Ω(x) such that P(Ω(x)) ≥ 1 − exp(−x2|K|/2), on which for all
f ∈ B(f∗, ρ),∑

k∈K

I(|Wk(f)| ≤ γk(f)) ≥ |K|(1− α− x− 4θrγQ/α) ≥ (1− η)|K|.

In particular, on the event Ω(x), for all f ∈ B(f∗, ρ) there are more than
(1 − η)K blocks Bk for which, PBk |f − f∗| ≤ PBk |f − f∗| + γk(f). Now, the
result follows from Assumption 1 since PBk |f − f∗| ≤ θr ‖f − f∗‖L2

P
.

6.4. Conclusion to the proof of Theorem 3

The proof relies on the following proposition.

Proposition 2. Grant conditions of Theorem 3. Let γQ = 1/(661θ0), γM =
ε/168 for some ε < 7/(662θ2

0) and the regularization parameter be such that

20εr2(ρK)

7ρK
< λ <

10r2(ρK)

331θ2
0ρK

.

The event Ω0(K) = ΩQ(K, ρK) ∩ ΩM (K, ρK) is such that P(Ω0(K)) ≥ 1 −
2 exp (−K/1008) and on Ω0(K) for all f ∈ F if ‖f − f∗‖L2

P
≥ r(ρK) or ‖f −

f∗‖ ≥ ρK then

MOMK [`f − `f∗ ] + λ(‖f‖ − ‖f∗‖) > 0 .

Proof. Using (8), (9) and (11) together with the quadratic / multiplier decom-
position of the excess quadratic loss yields that for all f ∈ F ,

MOMK [`f − `f∗ ] = MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ Q1/4,K [(f − f∗)2]− 2Q3/4,K [ζ(f − f∗)] . (26)
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Note that γ(1− α− x− 32θ0γQ) ≥ 1− η when one chooses

η =
1

4
, γ =

7

8
, α =

1

21
, x =

1

21
, γQ =

1

661θ0
, γM =

ε

168
and ε ≤ 1

64θ2
0

. (27)

For this choice of constants, Lemma 2 applies and for ρ = ρK we get that there
exists an event ΩQ(K, ρK) with probability larger than 1− exp(−K/1008) and
on that event, for all f ∈ B(f∗, ρK), if ‖f − f∗‖L2

P
≥ rQ(ρK , γQ) then

Q1/4,K [(f − f∗)2] ≥ 1

(4θ0)2
‖f − f∗‖2L2

P
. (28)

Moreover, for the choice of parameters as in (27), we also have γ(1 − α − x −
8γM/ε) ≥ 1 − η, hence Lemma 3 applies and for ρ = ρK we get that there
exists an event ΩM (K, ρK) with probability larger than 1− exp(−K/1008) and
on that event, for all f ∈ B(f∗, ρK) there are more than 3K/4 blocks Bk with
k ∈ K such that

|2(PBk − PBk)ζ(f − f∗)| ≤ εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρK , γM ), ‖f − f∗‖2L2

P

)
.

Combining the last result with Assumpion (18), it follows that on the event
ΩM (K, ρK), for all f ∈ B(f∗, ρK),

2Q3/4,K [ζ(f − f∗)] ≤ 2εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρK , γM ), ‖f − f∗‖2L2

P

)
. (29)

Let us now prove that on the event ΩM (K, ρK)∩ΩQ(K, ρK), one has for all
f ∈ B(f∗, ρK),

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ −2εr2(ρK) . (30)

Assume that ΩM (K, ρK)∩ΩQ(K, ρK) holds and let f ∈ B(f∗, ρK). First assume
that ‖f − f∗‖L2

P
≥ r2(ρK). Then, it follows from (26), (28) and (29), the choice

of ε in (27) and the definition of ρK that

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥
(

1

(4θ0)2
− 2ε

)
‖f − f∗‖2L2

P
≥
‖f − f∗‖2L2

P

32θ2
0

.

(31)

Now, if ‖f − f∗‖L2
P
≤ r2(ρK) then it follows from (26), (29) and the definition

of ρK that
MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ −2εr2(ρK)

and (30) follows.
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Conclusion of the proof when the regularization distance is small (i.e. ‖f−f∗‖ ≤
ρK) and the L2

P -distance is large (i.e. ‖f − f∗‖L2
P
≥ r(ρK)). Let f ∈ F be such

that ‖f − f∗‖ ≤ ρK and ‖f − f∗‖L2
P
≥ r(ρK). It follows from the triangular

inequality that ‖f‖− ‖f∗‖ ≥ −‖f − f∗‖ ≥ −ρK . Combining this together with
(31), it follows that

MOMK [`f − `f∗ ] + λ(‖f‖ − ‖f∗‖) ≥
‖f − f∗‖2L2

P

32θ2
0

− λρK ≥
r2(ρK)

32θ2
0

− λρK > 0

when λ < r2(ρK)/(32θ2
0ρK).

Conclusion of the proof when the regularization distance is large (i.e. ‖f−f∗‖ ≥
ρK): the homogeneity argument.

Lemma 5. For all f ∈ F such that ‖f − f∗‖ ≥ ρK

‖f‖ − ‖f∗‖ ≥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗)− ρK
10

.

Proof. For every f∗∗ ∈ F ∗ + (ρK/20)B and every z∗ ∈ (∂ ‖·‖)f∗∗ ,

‖f‖ − ‖f∗‖ ≥ ‖f‖ − ‖f∗∗‖ − ‖f∗∗ − f∗‖ ≥ z∗(f − f∗∗)− ρK
20

= z∗(f − f∗)− z∗(f∗∗ − f∗)− ρK
20
≥ z∗(f − f∗)− ρK

10
.

Lemma 6. Assume that, for all f ∈ F ∩ S(f∗, ρK),

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗) > λ
ρK
10

. (32)

Then (32) holds for all f ∈ F such that ‖f − f∗‖ ≥ ρK .

Proof. Let f ∈ F be such that ‖f − f∗‖ ≥ ρK . Define g = f∗ + ρK
f−f∗
‖f−f∗‖ and

remark that ‖g − f∗‖L2
P

= ρK and that, by convexity of F , g ∈ F . It follows

from (32) that for κ = ‖f − f∗‖/ρK ≥ 1, one has

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗)

= MOMK

[
κ2(g − f∗)2 − 2κζ(g − f∗)

]
+ λκ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ κ

(
MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

)
> κλ

ρK
10
≥ λρK

10
.
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Let f ∈ F be such that ‖f − f∗‖ ≥ ρK . By Lemma 5,

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ(‖f‖ − ‖f∗‖)

≥ MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗)− λρK
10

.

Therefore, it will follow from Lemma 6 that

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ(‖f‖ − ‖f∗‖) > 0

if we can prove that for all g ∈ F such that ‖g − f∗‖ = ρK one has

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗) > λ
ρK
10

. (33)

Let us now prove that (33) holds. Let g ∈ F be such that ‖g − f∗‖ =
ρK . First assume that ‖g − f∗‖L2

P
≤ r(ρK) so that g ∈ HρK . By definition

supz∗∈Γf∗ (ρK) z
∗(g − f∗) ≥ ∆(ρK) and, since ρK ≥ ρ∗, ρK satisfies the sparsity

equation and thus, supz∗∈Γf∗ (ρK) z
∗(g − f∗) ≥ 4ρK/5. Therefore, thanks to

(30), when λ > 20εr2(ρK)/(7ρK), one has

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ −2εr2(ρK) + λ
4

5
ρK > λ

ρK
10

.

Finally assume that ‖g − f∗‖L2
P
≥ r(ρK). Since supz∗∈Γf∗ (ρK) z

∗(f − f∗) ≥
−‖f − f∗‖ = −ρK , it follows from (31) that

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ 1

32θ2
0

‖g − f∗‖2L2
P
− λρK ≥

r2(ρK)

32θ2
0

− λρK > λ
ρK
10

when λ < 10r2(ρK)/(331θ2
0ρK).

End of the proof of Theorem 3. On the event Ω0(K) of Proposition 2, BK,λ(f∗)

is included in the ball B(f∗, ρK), therefore, by definition of f̂
(1)
K,λ (cf. (6)),∥∥∥f̂ (1)

K,λ − f
∗
∥∥∥ ≤ C(1)

K,λ(f∗) ≤ ρK .

Again, by Proposition 2, on the same event Ω0(K), BK,λ(f∗) ⊂ B(f∗, ρK)∩
B2(f∗, r(ρK)), hence, on Ω0(K) ∩ Ωiso(K), where Ωiso(K) is an event defined
in Lemma 4, for all f ∈ BK,λ(f∗),

MOMK [|f − f∗|] ≤ 85θr ‖f − f∗‖L2
P
≤ 85θrr(ρK)
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where α = 1/21 according to (27). Therefore, C
(2)
K,λ(f∗) ≤ ρK , which implies

that
∥∥∥f̂ (2)
K,λ − f∗

∥∥∥ ≤ ρK (cf. (6)) and that C
(2)
K,λ(f̂

(2)
K,λ) ≤ ρK and therefore, by

Lemma 4, on Ω0(K) ∩ Ωiso(K), either
∥∥∥f̂ (2)
K,λ − f∗

∥∥∥
L2
P

≤ rQ(ρK , γK) and so∥∥∥f̂ (2)
K,λ − f∗

∥∥∥
L2
P

≤ 340θ0θrr(ρK) or
∥∥∥f̂ (2)
K,λ − f∗

∥∥∥
L2
P

≥ rQ(ρK , γK) and so

∥∥∥f̂ (2)
K,λ − f

∗
∥∥∥
L2
P

≤ 4θ0MOMK

[
|f̂ (2)
K,λ − f

∗|
]
≤ 340θ0θrr(ρK) .

6.5. Conclusion to the proof of Theorem 4

First, it follows from Theorem 3 that for all K ∈ [K1,K2], with probability

at least 1−c0 exp(−c1K), for both j = 1, 2, f∗ ∈ ∩K2

J=KR
(j)
K , so K̂(j) ≤ K, which

implies that both f∗ and f̂
(j)
LE belong to B(f̂

(j)
K,λ, ρK), therefore,

∥∥∥f∗ − f̂ (j)
LE

∥∥∥ ≤
2ρK .

Second, for the L2
P -estimation error bound of f̂

(2)
LE , denote by rJ = 340θrθ0r(ρJ)

the bound on the L2
P risk of the estimator f̂

(2)
J obtained in Theorem 3. Let

K ∈ [K1,K2]. It follows from Lemma 4 for ρ = 2ρJ , J ≥ K that there exists
absolute constants c1, c2 and an event Ωiso such that P(Ωiso) ≥ 1−c1 exp(−c2K)
and, on the event Ωiso, for all J ≥ K, η ∈ {1/4, 1/2, 3/4} and f ∈ B(f∗, 2ρJ),

if ‖f − f∗‖L2
P
≥ rQ(2ρJ , γQ), Qη,J(|f − f∗|)

{
≥ 1

4θ0
‖f − f∗‖L2

P

≤ 85θr ‖f − f∗‖L2
P

.

Let Ω be the event defined as the following intersection:

Ω =

K2⋂
J=K

{∥∥∥f̂ (2)
J − f∗

∥∥∥ ≤ ρJ and
∥∥∥f̂ (2)
J − f∗

∥∥∥
L2
P

≤ rJ
}⋂

Ω(K)
⋂

Ωiso .

It follows from Theorem 3 that P(Ω) ≥ 1− c3 exp(−c4K). Moreover, on Ω, for
all J ≥ K,

Q3/4,J

(
|f∗ − f̂ (2)

J |
)
≤ 85θrrJ .

So, in particular, f∗ ∈ ∩K2

J=K

{
f ∈ B(f̂

(2)
J , ρJ) : MOMJ

[
|f − f̂ (2)

J |
]
≤ 85θrrJ

}
.

By definition of K̂(2), this implies that K̂(2) ≤ K on Ω. Therefore, on Ω,

f̂
(2)
LE ∈ ∩

K2

J=K

{
f ∈ B(f∗, 2ρJ) : MOMJ

[
|f − f̂ (2)

J |
]
≤ 85θrrJ

}
.

In particular,

MOMK

[
|f̂ (2)
LE − f̂

(2)
K |
]
≤ 85θrrK .

Now on Ωiso, one has for all f ∈ B(f∗, 2ρK), if ‖f − f∗‖L2
P
≥ rQ(2ρK , γQ) then

Q1/4,J [|f − f∗|] ≥ 1

4θ0
‖f − f∗‖L2

P
.

30



Therefore on Ωiso, one has either
∥∥∥f̂ (2)
LE − f∗

∥∥∥
L2
P

≤ rQ(2ρK , γQ) or
∥∥∥f̂ (2)
LE − f∗

∥∥∥
L2
P

≥

rQ(2ρK , γQ) and in the latter case,∥∥∥f̂ (2)
LE − f

∗
∥∥∥
L2
P

≤ 4θ0Q1/4,K [|f̂ (2)
LE − f

∗|]

≤ 4θ0

(
MOMK

[∣∣f̂ (2)
LE − f̂

(2)
K

∣∣]+Q3/4,K(|f̂ (2)
K − f∗|)

)
≤ 680θ0θrrK .
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Inst. Henri Poincaré Probab. Stat. 50 (3), 1028–1068.
URL http://dx.doi.org/10.1214/13-AIHP551

Su, W., Candès, E. J., 2015. Slope is adaptive to unknown sparsity and asymp-
totically minimax. Tech. rep., Stanford University, to appear in The Annals
of Statistics.

Vapnik, V. N., 1998. Statistical learning theory. Adaptive and Learning Systems
for Signal Processing, Communications, and Control. John Wiley & Sons, Inc.,
New York, a Wiley-Interscience Publication.

Vapnik, V. N., Chervonenkis, A. Y., 1974. Teoriya raspoznavaniya obrazov.
Statisticheskie problemy obucheniya. Izdat. “Nauka”, Moscow.

34

http://dx.doi.org/10.1145/2699439
http://dx.doi.org/10.1214/13-AIHP551

	Introduction
	Setting
	Learning from tests
	General Principle
	Examples

	Construction of the regularized MOM estimators
	Quantile of means processes and median-of-means tests
	Main assumptions
	Complexity parameters and the link function
	The estimators
	The sparsity equation

	Main results
	Performances of the estimators
	Adaptive choice of K by Lepski's method

	Proofs
	Lower Bound on the quadratic process
	Upper Bound on the multiplier process
	An isometry property of MOMK[] processes
	Conclusion to the proof of Theorem 3
	Conclusion to the proof of Theorem 4


