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Automated Partitioning of Concurrent Discrete
Event Systems for Distributed Behavioural

Identification
Jeremie Saives, Gregory Faraut, Member, IEEE, and Jean-Jacques Lesage, Member, IEEE

Abstract—The aim of behavioural identification of Discrete
Event Systems is to build, from a sequence of observed in-
puts/outputs events, an understandable model that exhibits both
the direct relations between inputs and outputs events (i.e.
the observable behaviour of the system) and the internal state
evolutions (i.e. the unobservable behaviour). Since parallelism
hinders the construction of monolithic models, distributed identi-
fication builds instead models of subsystems. This paper proposes
an automated partitioning of the system, optimal regarding
the readability of the identified distributed models, thus fitting
reverse-engineering purposes. To solve the optimization problem,
a first solution is extracted from the observable behaviour, then
additional solutions are computed by agglomerative clustering.
The approach is applied to a benchmark, resulting in an adequate
functional partition.

Note to Practitioners—Identification is an approach to ob-
tain models of an existing closed-loop Discrete Event System
from an observed I/O sequence, discovering both sequential
and concurrent processes within a same system. The result is
an understandable and compact model, that approximates the
observed behaviour and can be used for reverse-engineering. To
get better insight on the behaviour of the system, splitting it
into subsystems and studying distributed models might be easier.
Besides, identifying smaller subsystems reduces the computa-
tional cost. The main contribution of this article is therefore a
partitioning approach for distributed DES identification. Only the
knowledge of the I/Os and the observed I/O sequence are required
to provide a partitioning adapted to reverse-engineering and
compact distributed models, in reasonable computation times.

Index Terms—Discrete-event systems, Petri-nets, Identification,
Distributed models

I. INTRODUCTION

D ISCRETE Event Systems (DES) are systems whose
evolutions are trigerred by asynchronous discrete events.

DES are known for their ability to display massive concur-
rency, making state-based monolithic models impossible to
use, or even build, due to the classical state-space explo-
sion problem. Distributed modelling is then considered: for
instance, fault diagnosis with distributed automatata models is
considered in [1], or with Place-bordered Petri Nets in [2].
These models are often built on expert knowledge, follow-
ing rules and guidelines to ensure the conservation of their
properties during the construction, thus making them fit for
analysis [3].
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When lacking knowledge about an existing system, mod-
elling can be performed by identification, provided Input
Output data collected from the system. Several methods iden-
tifying DES are surveyed in [4], most being devoted to fault
diagnosis. A few approaches are instead focused on reverse-
engineering of closed-loop DES by various classes of Petri
nets [5] [6] [7]. The objective is to provide a compact model
expliciting the behaviour of the system and the relationships
between its components.

However, regardless of the method used, massively concur-
rent DES are hard to identify: concurrency is troublesome to
discover in a sequential observation, and computational cost
increases with concurrency and size. Distributed identifica-
tion bypasses complexity, provided a system partition. Said
partition might be a priori known, or not, as in a blackbox
identification approach. Furthermore, despite the expertise, the
provided partition might not be the most adequate to a given
objective. Therefore, automated partitioning aims at finding
a partition optimal regarding a given purpose. For instance,
the minimization of the exceeding language is pointed as
an objective quality related to fault diagnosis in [8], and
an optimization approach was accordingly proposed in [8]
and [9]. In this paper, the objective of reverse-engineering is
instead considered, requiring different objective functions for
partitioning.

Consequently, a new partitioning approach is proposed,
fitting for reverse-engineering purposes. It is seen as an opti-
mization problem whose objective is to minimize the structural
complexity of the identified distributed models, thus improving
their understandability. The identification method from [7] is
chosen to build Interpreted Petri Nets, successively building
its observable, then unobservable part. Observable fragments
are used to obtain a first solution of the partitioning problem.
Finally, a clustering approach is proposed to group the differ-
ent fragments into bigger subsystems, until a compromise is
found between the size of the subsystems and the readability of
the identified models. The remainder of the paper is organized
as follows. Section 2 presents related works in the litterature.
Section 3 recalls some notations and exposes the identification
method. The optimization problem is set in Section 4. Section
5 exposes the proposed clustering approach, and finally, the
approach is applied to a benchmark in Section 6.
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II. RELATED WORK AND MOTIVATION

A. Related work

Discrete Event System identification consists in building
a mathematical model of a system from data collected by
observing it. Due to a finite time of observation, collected
data is necessary partial; consequently, identification is of-
ten presented as a sub-problem of net synthesis, where the
whole behaviour of the system is known, as well as counter-
examples. This difference is pointed out in [10]. Both problems
have been treated in several works, surveyed in [4]. Notable
contributions to solve these problems, notably the synthesis
one, are Region Theory [11] or the resolution of Integer Linear
Programs [12], later used for fault diagnosis by identifying
faulty nets [13] [14].

Regarding identification of automated DES, the gap between
technology and event-based abstraction should be minded as
well. Minding it, monolithic finite automata are identified with
the objective of fault diagnosis in [15], extended to distributed
automata in [8]. These models, though adapted for fault
diagnosis, are however less compact than Petri Nets to express
concurrent behaviours, and do not highlight the reactive nature
of an automated DES, i.e. causal relationships between inputs
and outputs. For reverse engineering, Interpreted Petri Nets
have been considered to express both I/O relationships, called
observable behaviour, and unobservable dependencies imply-
ing internal variables, called unobservable behaviour. Only
the outputs are studied in [16] or [17], whereas both inputs
and outputs are considered in the approaches proposed in [5],
[18] or [7]. While the former two approaches provide State-
Graphs, a specific class of Petri Nets behaving like automata,
the latter approach successfully extracts and represents com-
pactly concurrent behaviour. Finding unobservable concurrent
behaviour is however the hardest task, unless the hypothesis
of observation completeness can be made [7]. Without it,
polynomial algorithms can not guarantee a correct result and
require to correct the model [17] [19], whereas algorithms
guaranteeing a result run in exponential time [20].

Identification shares its core concept with Process Mining,
which aims at getting models of businesses from registered
logs [21], to improve said businesses. Activities have a role
similar to the events, or the transition labels in Petri Nets,
and relations (causal or concurrent) between these activities
are extracted from the log; Process Mining algorithms are
surveyed in [22]. The main difference lies in the absence of
reactive behaviour in the considered processes. Nevertheless,
problematics similar to DES identification are found; for
instance, regarding the incompleteness of the observation,
Conjoint Occurence Classes are proposed in [23] to infer
missing relations. As well, discovering concurrency is a hard
task, and algorithms providing exact solutions suffer from
exponential complexity [24].

Distributed identification provides a way of limiting
the calculus cost, in addition to providing separate,
more understandable models, and insight on the system
decomposition, thus satisfying for reverse engineering. It
requires a partition of the I/Os, and can therefore be coupled
to the task of finding an adequate one. The automated

partitioning problem has been seldom dealt with. The authors
of [8] and [9] propose to solve an optimization problem,
whose objective function is designed for fault diagnosis.
Distributed approaches have also been considered in Process
Mining [25], where the partitioning problem is percieved
as a Graph Partitioning problem [26]. Edges of the graph
represent a causal relationship between the nodes which
represent activities, and the aim is to minimize the number of
edges required to break the graph into subgraphs. However,
it requires completeness of the causal relationship, which is
impossible to obtain with incomplete observation.

B. Motivation

The interest of identifying distributed models is twofold.
On one hand, the main roadblock when dealing with DES is
concurrency: representing all possible parallel executions of a
DES leads to state-space explosion, hindering the construction
of a monolithic model, especially with automata. However, by
splitting a system into subsystems, with reduced concurrency
within each, distributed models are easier to achieve.

On the other hand, identification approaches also suffer
from size and concurrency of a system. Notably, inferring
unobservable, concurrent behaviour from sequences of events
which exhibit only a partial subset of all possible executions, is
the hardest task. Any identification approach aims at building
a model that reproduces at least the observed behaviour.
Computationally efficient approaches are heuristics that can
not guarantee the reproducibility in every case, unless the
hypothesis of complete observation is made, but is not in
this paper. Exact approaches which guarantee reproducibility
are however computationally expensive, notably regarding the
number of transitions in the model.

In order to use exact identification approaches despite an
unavoidable computation cost, distribution helps by limiting
size and concurrency of subsystems. Hence, identified dis-
tributed models can be built with guaranteed properties such
as reproducibility, at moderate cost.

We choose to combine distribution and exact methods in
this paper, and propose a method to automatically partition the
system in favor of distribution. Since the objective is reverse-
engineering, an adequate partitioning approach is proposed,
inspired by the one proposed in [9]. The identification method
used in this paper was proposed in [7]. It uses however an
approximate method to compute the unobservable behaviour;
the exact method from [20] was used instead to compute it.
The identification approach is briefly presented in next section.

III. NOTATIONS AND BACKGROUND ON BEHAVIOURAL
IDENTIFICATION

A. Notations

A system SY S is a set of n = |U| + |Y| inputs U =
{u1, . . . , u|U|} and outputs Y = {y1, . . . , y|Y|}, the notation
ioi designing either one indifferently (SY S = {io1, . . . , ion}).
An I/O subsystem SUBk ⊆ SY S is a subset of the main
system. If overlapping of I/O subsystems is allowed, the
intersection of two SUBk can be non empty. To each SUBk
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Fig. 1. Principle of the identification procedure in two steps

is associated a net Nk, identified by the chosen identification
method.

In this paper, Interpreted Petri Nets are chosen to model the
identified DES. A Petri Net (PN) system is a bipartite digraph
represented by the 5-tuple G = (P, T, I, O,M0) where: P =
{p1, p2, . . . , p|P |} and T = {t1, t2, . . . , t|T |} are finite sets
of vertices named places and transitions respectively, I(O) :
P × T → {0, 1} is a function representing the edges going
from places to transitions (from transitions to places), and M0 :
P → N is the initial marking. An Interpreted Petri Net (IPN)
[27] is a 6-tuple N = (G,U,Σ, λ,Y, ϕ), where:
• G is a PN system
• Σ = {↑ ui, ↓ ui | ui ∈ U} the set of input events.
• λ : T → {0, 1} the labelling function of transitions.
∀ti ∈ T, λ(ti) = Fi(U) •Gi(Σ) where:
– Fi : U → {0, 1} is a boolean function depicting the

conditions on the levels of the inputs to fire ti
– Gi : Σ → {0, 1} is a boolean function depicting the

conditions on the input events to fire ti
λ(ti) = 1 iff Fi(U) = 1 ∧Gi(Σ) = 1

• ϕ : R(G,M0) → {0, 1}|Y| the output function that
returns the value of the outputs given a marking of the
net.

In this paper, a specific subclass of IPNs is considered,
where each output is associated to exactly one place, called
observable (PObs). Remaining places, who are not associated
to any output, are called unobservable (PUnobs) and are greyed
out in graphical representations.

B. Behavioural identification for reverse-engineering
The system to identify is considered blackbox, i.e. only the

I/Os are known and can be observed. Structure and internal
variables of the system are unknown. Therefore, the input of
the identification problem we consider is only one or multiple
I/O vector sequence(s).

The aim is to identify expressive models who explicitly rep-
resent the relationships between I/Os, and compactly represent
behaviours such as choices and concurrency. The interpreted
model must also reproduce the observed behaviour. We used
the principle of the identification approach presented in [7]. It
consists in two steps, illustrated by Figure 1: identifying the
observable behaviour, then inferring the unobservable one.

To perform the observable identification, we used the first
step of [7]. It extracts directly causal relationships between
inputs and outputs from the observed I/O sequence, and
translates them into observable IPN fragments, composed of
observable places and transitions. The transitions are labelled
with conditions on the input events and levels that cause
the output events. Transitions might not be connected to any
observable place; in that case, the labelling input could not
be causally related to any output. The set of these unrelated
inputs is written D.

Then, the second step infers unobservable dependencies
implying internal variables, such as delayed causalities or
memory effects, and agregate them into unobservable places.
These places connect the observable fragments, often leading
to a strongly connected net. This step is the hardest part of the
procedure. The method proposed in [7] to discover unobserv-
able places being approximate, we chose instead the approach
presented in [20]. Unobservable places are characterized by
specific patterns in the observed sequence. Should a pattern
be found in the sequence, then the associated unobservable
places can be added to the net. The net is therefore built by
iteratively discovering patterns, and adding places. At each
step of the construction, two properties are guaranteed by a
theorem: the observed sequence is reproducible, and the net
is 1-bounded. The algorithm runs in exponential complexity
regarding the number of transitions.

C. Problem statement and proposed procedure

The whole approach can be applied to any given subsystem,
by projecting the observed I/O vector sequence on the I/Os
of the considered subsystem. The smaller the subsystem,
the smaller the cost of the unobservable inference as well.
Distributing the identification is not a problem per se, once
a partition of the system is provided. However, finding an
adequate partition, taking into account the objective of iden-
tification, is one. Furthermore, in a blackbox approach, no
insight is provided on the structure of the system.

Since partitioning aims at reducing the cost of the second
step of the approach, the first step can be run on the whole
system. Even more so, given that direct I/O causalities are
extracted during this step, and must not be split, the partition-
ing must occur subsequently. The partition will therefore be
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computed between the two steps, whereas in an approach such
as [9], the partition is computed before building any model.

The following procedure is proposed to perform distributed
identification on a system:
• Run the observable identification on the whole system,

resulting in observable PN fragments. Each fragment
already corresponds to an individual subsystem, thus a
first partition is already provided.

• Use these PN fragments as entry point for a clustering
algorithm, to provide an adequate partition of the system

• During the construction of the partition, the unobservable
behaviour of the subsystems is regularly computed. At the
end of the clustering, both the partition and the complete
IPN models are obtained.

IV. OPTIMAL PARTITIONING FOR DISTRIBUTED
IDENTIFICATION

A. Formulation of partitioning as an I/O cover problem

Distributed identification consists in running the chosen
identification procedure on each of the subsystem; partitioning
consists in building those subsystems such that each I/O be-
longs to at least one (exactly one if overlapping is forbidden),
as summarized in Figure 2.

v
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Id. Id. Id.
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Fig. 2. Principle of the distributed approach, based on a partition of the
system.

The choice of the susbsystems depends on the objective
of the model, which conditions as well the model class. For
instance, in [8], according to the objective of fault diagnosis,
the objective function is the minimization of the exceeding
language, composed of behaviours possible in the model
but not observed. An alternative function was considered to
minimize the branching degree in the chosen automata models.

However, for reverse engineering, the objective is instead
to build a model expressing compactly complex behaviours,
hence the choice of Petri Nets, and to build an understand-
able, simple net. Two criteria are chosen to express model
simplicity: strong connexity and structural complexity. Most
other complexity criteria are related to behavioural complexity,
which is inherent to the studied system; nevertheless, simple

to read PNs can capture complex behaviours. To express
the structural complexity of a net, the chosen metric is the
Coefficient of Network Complexity [28], defined below:

Definition 1. Let G = (P, T, I,O) be a PN structure. The
Coefficient of Network Complexity is defined as :

CNCPN (G) =
|I|+ |O|
|P |+ |T |

Using this metric to qualify identified nets, a first formu-
lation of the partitioning problem for reverse engineering is
proposed. Overlapping is allowed, since some I/Os might be
located at the interface between two subsystems, making it a
cover problem.

Finding a cover Consider a DES consisting in m I/Os
{io1, . . . , iom}. Compute an I/O-cover of N I/O subsystems
{SUB1, . . . , SUBN}, with the constraints:

1) ∀i ∈ [1,m],∃SUBk, ioi ∈ SUBk

2) Each model Nk built on a SUBk is strongly connected
and optimal regarding the two criteria:

a) minimize CNCAvg =
1

N

N∑
k=1

CNCPN (Nk)

b) minimize N
The first constraint implies that each I/O belongs to at

least one subsystem, and that overlapping is allowed. The
second one defines an acceptable solution: each subsystem
must be guaranteed to be identified by a strongly connected
net. The first criterion aims at minimizing the average struc-
tural complexity of the identified nets. However, an optimal
solution regarding this criterion consists in building a bijection
between the I/Os and the subsystems. Therefore, the second
criterion is added to find a compromise between the size of
the distributed models and their simplicity, by minimizing the
number of subsystems. An optimal solution regarding this
second criterion only is a monolothic model, provided it can
be computed.

Since the optimization problem is multicriteria, there is no
single solution that simultaneously optimizes each objective.
Instead, the best solutions form a Pareto frontier. Although
Pareto optimal, the extreme solutions (monolithic or bijective)
are not interesting; the choice of a solution among the possible
ones will be discussed later.

B. Adaptation of the I/O cover problem into a partitioning
problem involving the observable behaviour

As shown in Section III-B, the first step builds observable
fragments. When transitions and places are connected, input
events and conditions labelling the transitions have been
identified as causes of the output events associated to the
places. I/Os associated to a same observable fragment must
therefore be put in the same subsystem. Solitary transitions are
labelled with input events (in D) which could not be associated
to an output. From now on, a fragment designs generically one
connected component or one solitary transition, and a block
designs a non-empty set of fragments. Fragments and blocks
are mapped onto the I/Os by the following function:
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Definition 2. Let Bk be a block, and Fi an observable
fragment. Each observable place p is associated to an output
ϕ(p), and each transition t to the inputs in its firing function
λ(t). The inputs used in the firing function of a transition t
are designed by {λ(t)}. Two mapping functions MapF and
MapB are defined as follows, mapping the elements onto the
I/Os:

MapF : Fi −→
⋃
p∈Fi

ϕ(p)
⋃
t∈Fi

{λ(t)} ⊆ (Y ∪ U)

MapB : Bk −→
⋃

Fi∈Bk

MapF (Fi) ⊆ (Y ∪ U)

ϕ being bijective, each output is associated to exactly one
fragment, whereas inputs can be shared. Additionally, inputs in
D are constrained to be associated to only one block. At least
two transitions are always labelled by these input events (rising
and falling edge); thus, solitary transitions are no longer alone
in their blocks. An elementary set of blocks {B1, . . . , Bm}
can be built from the fragments, such that this condition is
verified, and the number of fragments per block is minimized.
By associating one subsystem to each of the blocks, a first
partition is obtained, and the associated I/O mapping is a
solution to the cover problem.

Example 1. For U = {u1, . . . , u5} and Y = {Y1, Y2, Y3},
consider the observable fragments of Figure 1. Five el-
ementary blocks are built: three are the connected frag-
ments, and the remaining two are the pairs of transitions
labelled by ↑ u2 (resp. u5) and ↓ u2 (resp. u5). The
mapping function leads to the following I/O subsystems:
{u3, u4, Y2},{u1, u4, Y1},{Y3},{u2},{u5}, which cover the
system.

The cover problem stated on the I/O level in the previous
section can now be converted into a new problem stated
on blocks. A unicity constraint is added to prevent sharing
blocks between subsystems (and avoid place or transition
duplications).

Finding a partition Consider a block set {B1, . . . , Bm}.
Compute a partition of N subsystems {SSY S1, . . . }, with the
constraints:

1) ∀i ∈ [1,m],∃!SSY Sk, Bi ∈ SSY Sk

2) The addition of unobservable behaviour to SSY Sk leads
to a strongly connected net Nk

and optimal regarding the two criteria:

a) minimize CNCAvg =
1

N

N∑
k=1

CNCPN (Nk)

b) minimize N

A solution to this problem is directly a modelling solution
as distributed identified nets, and a partition of the I/Os
is deduced from the subsystems by the mapping function,
solving the initial problem. This problem can be viewed as
an Exact Set Cover problem [29]. Numerous subsystems can
be grown out of the blocks Bi. Then, from all the candidate
subsystems, an exact cover, optimal regarding the criteria,
can be computed, using for instance Knuth’s algorithm [29].
However, this problem is NP-complete.

In the following section, an efficient clustering method is
proposed to find ’natural’ partitions, and provide a hierarchy
of these partitions. A discussion is conducted on the balance
between size of the subsystems and the computation time;
different variations of the clustering method are proposed
depending on the objective of the engineer.

V. A CLUSTERING APPROACH FOR OPTIMAL PARTITIONING

The approach proposed is inspired from hierarchical cluster-
ing methods used in data mining [30]. The objective of cluster-
ing is to group objects such that objects in a same group (called
a cluster) are more similar than objects belonging to different
clusters. Similarity is estimated through an appropriate metric,
corresponding to a measure of the ’distance’ between a pair
of objects.

Hierarchical clustering aims not only at grouping objects
into clusters, but also at providing a hierarchy: a cluster gathers
all clusters below it in the hierarchy. Agglomerative clustering
is a bottom-up methodology: each object starts in its own
cluster, and pairs of clusters are merged while moving up in
the hierarchy.

In our problem, the objects are subsystems SSY Si. Initially,
each subsystem is composed of only one block (SSY Si =
{Bi}). An agglomerative clustering approach is natural to
group the blocks, lower the number of subsystems and satisfy
the second objective function. To balance with the first ob-
jective function, simplicity should be implied in the similarity
metric, so that blocks leading to the most simple models are
regrouped.

Most clustering approaches, such as the classical k-means
[30] require to fix the number of clusters a priori. Affinity
Propagation (AP) proceeds otherwise [31]: by letting the
objects find by themselves to which other objects they are
most similar, clusters emerge naturally. However, applying AP
requires that the similarity of two objects is always finite. The
second constraint of the problem implies that the union of two
blocks must be a strongly connected net; the similarity of two
blocks can therefore not be defined if their union does not
satisfy the constraint. The approach proposed in this section
is inspired by AP, and adapted to our problem.

A. Principle

First, the notion of similarity between subsystems is defined:

Definition 3. Let SSY Si, SSY Sj be two subsystems. Let
Nij be the complete IPN identified after the addition of
unobservable behaviour to the union of the subsystems. The
similarity Sim of the two subsystems is:

Sim(SSY Si, SSY Sj) =

{
CNCPN (Nij) if Nij is s.c.

∅ otherwise

In the first case, the merged subsystem satisfy the second
constraint of the optimization problem (strong connexity).
Similarity is then defined and is an indicator of the closeness of
subsystems; a low value corresponds to a pair of subsystems
whose assembled model is simple to read, hence implying
simple operations.
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In the other case, the similarity is undefined (∅), as the
model resulting of the merging is not strongly connected.
This similarity factor is not a distance. For instance, given
subsystems A,B,C, Sim(A,B) and Sim(B,C) being defined,
Sim(A,C) might be undefined, unsatisfying the triangular
inequality. However, Sim(A∪B,C) is likely to be defined; ade-
quate subsystems might include highly dissimilar subsystems
(A,C) who are both similar to a third one (B).

Whenever two systems are similar, they can be merged,
and the resulting net would satisfy the constraints. However,
to fulfill the first objective function (low average structural
complexity), the idea is to merge only the subsystems who are
the most similar, such that structural complexity is minimized
at each merging. The affinity of a subsystem is defined as the
subsystems it is the most similar to:

Definition 4. Let SSY S1, . . . , SSY Sm be m subsystems. The
affinity Aff of a subsystem SSY Si is the set:

Aff(SSY Si) ={SSY Sj |Sim(SSY Si, SSY Sj) =

min
k

(Sim(SSY Si, SSY Sk))}

The affinity of a subsystem might be the empty set, a
singleton, or composed of multiple subsystems. An affinity
graph is derived from this definition:

Definition 5. Let SSY S1, . . . , SSY Sm be m subsystems.
The affinity graph A=(V,E) is a directed graph, where the m
vertices V represent the m subsystems and the edges represent
the affinity, i.e.

(Ni, Nj) ∈ E ⇔ SSY Sj ∈ Aff(SSY Si)

Example 2. Consider 4 subsystems {1, 2, 3, 4} such that
Sim(1, 2) = Sim(1, 3) = Sim(1, 4) = ∅, Sim(2, 3) =
Sim(2, 4) = 1.25 and Sim(3, 4) = 1.15. The corresponding
affinity graph is presented in Figure 3: 1 is an isolated node, 2
has two successors, and finally 3 and 4 are eachothers unique
respective affinity, forming a 2-cycle.

Subsystems to be merged in priority are the length-2 di-
rected cycles in the affinity net: they involve two subsystems
such that each subsystem is the most similar to the other. The
subsystems can be iteratively merged, similarity recomputed
at each step, until no more merging is possible. The full
agglomerative procedure is exposed by Algorithm 1. At each

Algorithm 1 Agglomerative clustering of subsystems
Require: Blocks B1, . . . , Bn

Ensure: PAR = {SSY S1, . . . , SSY Sm} a partition.
1: Compute the initial partition PAR = {{B1}, . . . {Bn}}
2: Compute the affinity graph A = (V,E) related to PAR
3: while E 6= ∅ do
4: Pick a length-2 directed cycle (SSY Si, SSY Sj) in

each strongly connected component of A
5: Merge each pair of subsystems into a new one SSY Sij

6: Update the partition PAR
7: Update the affinity graph
8: end while

3 4 

2 1 

Sim 1 2 3 4 

1 - ∅ ∅ ∅ 

2 ∅ - 1,25 1,25 

3 ∅ 1,25 - 1,15 

4 ∅ 1,25 1,15 - 

Fig. 3. Similarity table and Affinity graph deduced for Example 2

step, the affinity graph is studied; a length-2 directed cycle is
picked in each strongly connected component (at least two
nodes) of the graph. The nodes of the cycles are merged
and the affinity graph recomputed. The procedure is repeated
until there are no more edges in the graph. In the worst case,
convergence is achieved when there remains exactly one node,
which corresponds to the full system.

Example 3 (Example 2 cont.). The agglomerative cluster-
ing is illustrated by Figure 4. From the similarity table of
Figure 3, 3-4 is the only strongly connected component. The
nodes are merged, and the similarity recomputed. Sim(1,2)
is already known, Sim(1,3∪4)=∅, and Sim(2,3∪4)=1.3. 2-
3∪4 is a new strongly connected component, and merged.
Finally Sim(1,2∪3∪4)=∅, and there is no more edge in the
affinity graph, stopping the clustering. Figure 4(b) shows a
hierarchical representation. Each layer is a solution of the
problem, and exhibits a different number of subsystems.

3 4 

2 1 

3-4 

2 

1 

2-3-4 

1 

1 

1 

1 

2 

2 

3-4 

2-3-4 

4 3 

(a) (b) 

Fig. 4. (a) Evolution of the affinity graph along the clustering; (b) Hierarchical
representation

The costliest operation is the computation of the affinity
graph (lines 2,7), which requires the evaluation of all similarity
values. An upper bound of the number of similarity values
to compute during the discovery is given by the following
proposition:

Proposition 1. Consider a system with n subsystems. To
run Algorithm 1, the maximal number of similarity values to
compute is (n− 1)2.

Proof. Given the n initial subsystems, there are initially n(n−
1)/2 similarity values to compute to build the first affinity
graph. Then, the worst case is the following: at each step,
only two nodes of the graph are merged. After the first loop,
n−2 subsystems are unchanged, and one is new, hence n−2
new similarity values to compute. After the second loop, it
remains n − 3 subsystems are unchanged, hence n − 3 new
values, etc. The total number is therefore:

n(n− 1)

2
+ (n− 2) + (n− 3) + · · ·+ 1 =

n(n− 1)

2
+

(n− 1)(n− 2)

2
= (n− 1)2
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The main advantage of the approach is to compute a full
hierarchy. Suppose that the expert decides a solution with N ′

subsystems is not distributed enough: it suffices to go down in
the hierarchy to find an already computed solution with more
subsystems. Reversely, if there are too many subsystems, it
suffices to go up in the hierarchy to find a coarser solution.

However, the computation of the full hierarchy is expensive.
First, if there exists a monolithic, strongly connected model
of the full system, then Algorithm 1 does not stop until said
model is reached, whereas the whole point of the distributed
approach is to avoid computing the monolithic model. Further-
more, the update of the affinity graph (line 7 of Algorithm 1)
implies to compute similarity values, which requires unob-
servable behaviour inference and is computationally expensive.
Possible limitations are introduced to ensure the efficiency of
the clustering.

B. Limited clustering

To limit clustering, threshold rules are introduced to decide
quickly if a similarity value is worth computing, or call it unde-
fined (∅). By increasing the number of undefined similarities,
the number of non-empty affinities drops, and convergence is
achieved before reaching the monolithic model.

A first proposition, named |T |-clustering, consists in limit-
ing the number of transitions in a given model. If the sum of
the transitions of two subsystems is over a given threshold,
they are then considered dissimilar, without computing the
similarity. The value of this threshold can be set arbitrarily.
However, it can also be decided depending on the number
of subsystems to aim for. Given that the initial number of
subsystems n is known, the aim can be n/2 subsystems, i.e.
a threshold |T |Lim = b2|T |/nc. To get more subsystems, an
already computed solution can be picked. To get less subsys-
tems, the aim can be n/4 subsystems (|T |Lim = b4|T |/nc),
and the computation can be continued from the last solution;
the procedure is repeated until a satisfying solution is reached.
The main advantage of this approach is that the number
of subsystems can be controlled. However, some elementary
blocks might contain too many transitions, such that their
similarity values remain undefined, missing potentially simple
models. Furthermore, the computation time is not controlled,
and some similarity values can be unpredictabily expensive to
compute, despite a reasonable number of transitions.

A second proposition, named time-clustering, consists in
limiting the allowed computation time of a similarity value
by setting a threshold tlim. A total computation time t can
be arbitrarily fixed; by using Proposition 1, given n initial
subsystems, the threshold can be set at tlim = t/(n−1)2. This
is a lower threshold, ensuring that the total computation time
does not exceed t; the actual value of the computation time
should be far lower. Although highly computer-dependent, this
approach guarantees to obtain a solution quickly. Furthermore,
all subsystems are sollicited and can be merged, compared to
the |T |-threshold. However, there is no explicit link between
the computation time and the number of subsystems reached

when the algorithm terminates. If the final number of subsys-
tems is too high, the algorithm can be restarted by increasing
the threshold, but it is impossible to predict the variation.

Choosing a limited clustering approach: The two ap-
proaches are complementary, as the advantages of one are the
drawbacks of the other. In both cases, if the granularity of
the system is too coarse (too few subsystems), previous, finer
solutions have already been calculated and are available in the
hierarchy.

Time-clustering provides naturally a solution within the
timespan allowed by the designer, and without any additional
information. It is recommended to obtain quickly a model to
get insight on the system. However, the designer can also
choose to pause the identification before the clustering, and
look at the initial subsystems. |T |-clustering can then be
chosen, while fixing an arbitrary limit of |T | per subsystem,
and should provide especially good partitionings if the initial
subsystems have roughly the same number of transitions.

Both approaches are illustrated on the same benchmark in
the next section.

VI. APPLICATION

A. Presentation of the benchmark

The Mechatronics Standard System (MSS) is a real-world
laboratory manufacturing system developed by Bosch, avail-
able on the experimental platform of the LURPA (ENS
Cachan, France).

The purpose of this system is to sort workpieces according
to material and presence of a bearing. Workpieces of plastic,
brass and steel are treated. The system is decomposed into
4 stations, displayed in Figure 5, and consists in 43 sensors
and 30 actuators (hence 73 I/Os). Even though each workpiece
is sequentially treated by each station, many workpieces are
treated simultaneously in the whole chain, namely during a
continuous production phase. This chain therefore exhibits
massive concurrency, and the behaviours of the different
stations are often interleaved. Also, the chain is filled with
shared ressources, such as the chariot of the third station bieng
sollicited by the two grippers and the two presses. Data was
collected during the observation of 20 production cycles of 24
bearings each, leading to a sequence of length 63.797 vectors.
All computations were ran on a laptop (Intel Core i5-3380M
CPU @ 2.90GHz x4, 8Go RAM). More information on the
procedure used to collect data can be found in [32].

Monolithic identification was performed on this system
using the algorithms of [7] for the observable part and [20] for
the unobservable one. A strongly connected model is achieved
after 336 hours (14 days) of computation; its complexity is
CNC = 2.31, with 101 transitions, 202 places and 699 edges.
This result is both too costly to compute, and too complex to
understand, thus distributed identification is considered.

B. Results of distributed identification

First, the observable behaviour is computed on the whole
system (73 I/Os). The resulting model consists in 101 tran-
sitions and 30 observable places, grouped in 13 connected
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Station 1: Feeder Station 2: Testing Station 3: Processing Station 4: Storage

Fig. 5. The MSS, with its 4 stations and a functional decomposition
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(a) (b)

Fig. 6. (a): Location of the nine computed subsystems on the MSS from |T |-clustering, |T |Lim = 9. (b): Location of the six computed subsystems on the
MSS from time-clustering, tLim = 20s

fragments and 24 isolated transitions (not shown here). Fol-
lowing Section IV, these fragments are regrouped into n = 21
elementary blocks of various size (from 2 to 28 transitions,
avg 4,8, σ = 6.97). The first partitioning consists therefore in
21 subsystems.

The two limited clustering approaches have been consid-
ered:

• |T |-clustering. The proposed aim is to halve the number
of subsystems, therefore |T |Lim = b2|T |/nc = 9

• time-clustering. The total computation time has been ar-
bitrarily limited to 2 hours, therefore tLim = 7200/400 =
18s, rounded up to 20s.

The clustering is then performed by Algorithm 1, and the
unobservable behaviour is computed on each subsystem during
the clustering. Both the partition and the distributed models
are obtained when Algorithm 1 ends. For |T |-clustering,
similarity of subsystems whose number of transitions exceeds
the threshold are not computed, while for time-clustering, the
computation of a similarity value is halted when the time
threshold is exceeded. A solution with 9 subsystems and
CNCAvg = 1.35 is reached in 25 minutes with |T |-clustering,
whereas a solution with 6 subsystems and CNCAvg = 1.38 is
reached in 53 minutes with time-clustering. The caracteristics
of the identified subsystem models are presented in Table I.
Subsystems 2, 4 and 6 are identical in both solutions. The |T |-
solution verifies the threshold except for subsystems 4 and 7:
these initial blocks are disproportionate in size and could not
grow further. However SSY S1 of the time-solution is a huge
(|T | = 43) subsystem whose model can be computed in less
than 20s; it is exactly the union of subsystems 7,8,9 of the
|T |-solution, who could not be merged due to the threshold.

The subsystems location on the MSS are shown in Figure 6.
On one hand, in the time-clustering solution, interestingly,
SSY S1, the biggest subsystem, involves all stations, and

|T |Lim = 9
Subsystem 1 2 3 4 5 6 7 8 9

|T | 8 6 8 22 6 8 28 8 7
CNCPN 1.2 1.1 1.3 1.9 1.4 1.1 1.9 1.4 1.2

tLim = 20s
Subsystem 1 2 3 4 5 6

|T | 43 6 12 22 10 8
CNCPN 1.7 1.1 1.4 1.9 1.2 1.1

TABLE I
COMPARISON OF THE SOLUTIONS OBTAINED FOR |T |Lim = 9 AND

tLim = 20s

represents the operations every gear undergoes through the
chain. The remaining subsystems are satellites at the service
of the main process (for instance, SSY S2 is a press whose
operation depends on the material, and SSY S3 consists in
subsystems who often idle while waiting for the chariot of the
main process). Besides providing a solution adequate to the
objective of reverse-engineering, the automated partitioning
provided additional insight on the behaviour on the chain,
which could hardly be thought when expertly designing. On
the other hand, the |T |-solution provides similarly located,
though often smaller, subsystems. However, a subsystem such
as SSY S3 is instead a gathering of irrelated components from
both stations 1 and 4. The threshold prevented the algorithm
from grouping the station 1 part with SSY S1 and the station
4 part with SSY S5, as was done in the time-solution.

Finally, the procedure was run multiple times for vari-
ous thresholds. A few solutions obtained when Algorithm 1
terminates are plotted in Figure 8. The extreme solutions
correspond to the monolithic model, and to the elementary
blocks partition.

As a result, the storage unit of station 4 is modelled dif-
ferently, as shown by the IPNs of Figure 7. These models are
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↑ 4𝐵12

↑ 4𝑆07
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↓ 4B15

↑ 4𝑆07 ∧ ↓ 4B15
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↑ 4𝐵12

↑ 4𝑆07

4K04

↓ 4B15

↑ 4𝑆07 ∧ ↓ 4B15

↑ 4B12

4Y10

↑ 4B15 4K05↑ 4𝑆06 3𝐵07

4Y06

4B10(= 1)

↑ 4𝑆06

3𝐵07

4Y06

4B10(= 1)

4K05
(= 1) ↑ 1𝐵151Y11

↑ 2𝐵20↓ 2𝐵20

𝑆𝑆𝑌𝑆5; 𝑡𝐿𝑖𝑚 = 20𝑠𝑆𝑆𝑌𝑆5; 𝑇 𝐿𝑖𝑚 = 9 𝑆𝑆𝑌𝑆3; 𝑇 𝐿𝑖𝑚 = 9

(a) (b)

Fig. 7. Identified models of the storage unit: (a) Discovered as two subsystems (SSY S5 and SSY S3) with |T |-clustering; (b) Discovered as one (SSY S5)
with time-clustering

built during the clustering approach. Inputs 3B07,4S06,4B10
and outputs 4Y06, 4K05 are affected to subsystem SSY S3 in
|T |-clustering, whereas they are affected to SSY S5 in time-
clustering. The storage unit is represented in two subsystems
(SSY S3 and SSY S5) in the |T |-solution, whereas only in one
in the time-solution. Notice however that the same behaviours
have been discovered in both cases, although only merged in
the latter case.

Fig. 8. Evaluation of different partitions computed with the clustering
approach

|T |-clustering is less efficient here, as the elementary blocks
are disproportionate in size (high standard deviation). There-
fore, the biggest blocks can not be merged with others,
despite the possibility of reaching simple models. Excepted
the extreme points, the Pareto shape consists only of time-
clustering solutions. Notice the lack of monotonicity, as the
partition obtained for tlim = 10s is strictly worse than the
one obtained for 20s.

VII. CONCLUSION

An automatic partitioning approach was proposed to com-
pute distributed identified model. The problem has been set
first as an optimization problem to find an adequate cover of
the I/Os, such that the resulting distributed models are simple
to understand. Using observable fragments computed by the
first step of the identification procedure, it was reformulated
into finding a partition of the fragments, with the same objec-
tive, the I/O cover ensuing from the partition. An algorithm
inspired from clustering methods is proposed to agglomerate

the fragments into clusters, and thresholds are introduced to
limit computation time. This approach was efficiently applied
to a benchmark. Further work should focus on the inclusion of
additional knowledge in the partitioning (greybox approach),
and the variation of objective functions for different model
purposes.
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