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Convergence rates for estimators of geodesic
distances and Fréchet expectations

C. Aaron∗, O. Bodart†

July 18, 2017

Abstract

Consider a sample Xn = {X1, . . . , Xn} of i.i.d variables drawn with
a probability distribution PX supported on a set M ⊂ Rd. This article
mainly deals with the study of a natural estimator for the geodesic
distance on M. Under rather general geometric assumptions on M ,
a general convergence result is proved. Assuming M to be a man-
ifold of known dimension d′ ≤ d, and under regularity assumptions
on PX , an explicit convergence rate is given. In the case when M
has no boundary, the knwoldege of the dimension d′ is unnecessary to
obtain this convergence rate. The second part of the work consists in
building an estimator for the Fréchet expectations on M , and prov-
ing its convergence under regularity conditions, applying the previous
results.

Keywords: Geometric inference, Geodesic distance, Statistics on manifolds,
Fréchet expectations
AMS Classification : 62-07, 62G05, 62G20, 62H99

1 Introduction

Let PX be a probability distribution supported on a set M ⊂ Rd, d ≥ 2, that
is M is the smallest closed set in Rd of probability 1. Let Xn = {X1, . . . , Xn}
be a sample of i.i.d variables drawn on M with the distribution PX . The first
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aim of this work is the study of a rather classical estimator of the geodesic
distance on the unknown set M .

The way to build this estimator is quite intuitive (see e.g. [14]): given
r > 0, build a graph interconnecting all the pairs (Xi, Xj) of the sample Xn

such that ‖Xi − Xj‖ ≤ r. The geodesic distance between any two points
Xk and Xl of the sample is then estimated by the length of the shortest
path connecting Xk and Xl in the graph (see the Definition 1 for details).
This path (and its length) can be computed with optimal complexity by using
Dijkstra’s algorithm (see for example [2] for a presentation of this algorithm).
As usual in such problems r = rn must be a conveniently chosen sequence.
First it must converge to 0 as n→∞. Moreover this convergence has to be
slow enough for the path realizing the estimator to be smooth enough.

To our knowledge, the asymptotic behaviour of such an estimator has
not been studied yet. We will show, under quite general assumptions on
the support M , that choosing rn = dh(Xn,M)2/3 appears to be convenient
(Theorem 1). Assuming that M is a d′-manifold, d′ ≤ d, and assuming
some regularity for the distribution PX , it will be shown that dh(Xn,M) =
O(lnn/n)1/d′ , allowing to give the convergence rate of our estimator when
the dimension d′ is known (Corollary 1). When d′ is unknown, and M is
supposed to have no boundary, the Corollary 2 presents an estimator of rn
which allows to obtain the same convergence rate.

Eventually we will apply these results to the estimation of the Fréchet
expectations, as defined in [10], of the distribution PX on M (Theorem 2).

Using the estimated geodesic distance in place of the euclidean distance
has become frequent in different fields of application, in order to take the
nonlinearity of the data into account. In [14], the authors propose to apply
the multidimensional scaling (see e.g. [6]) to the array of geodesic distances
between points. This idea opened the way to the use of the geodesic distance
in dimension reduction (see [7], [4], [8], [12] and [9]). In [5], the authors
study the question of intrinsic dimension estimation. More precisely, they
propose a generalization of the correlation dimension where the euclidean
distance is replaced by the (estimated) geodesic distance. This approach has
the advantage to be less sensitive to the (difficult) question of the choice
of the parameter (see also [13]). In [10], the author rises the question of
the generalization of classical statistical quantities (such as the mean and
median) to the case of data supported on Riemanian manifolds.

The paper is organized as follows: in Section 2, the general framweork,
main definitions and the results are stated. The first subsection presents the
results concerning the estimation of the geodesic distance on the support M
(Theorem 1 and Corollaries 1 and 2), while the second states the Theorem
for the Fréchet expectations estimator (Theorem 2). Section 3 is devoted to
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the proofs of the results.

2 General framework and Main results

2.1 Estimating geodesic distances

Let us first start with the definition of our estimator.

Definition 1. Let Xn = {X1, . . . Xn} be a set of n i.i.d. random variables
with distribution PX supported on a compact set M ⊂ Rd, d ≥ 2. Let, rn > 0
being a given number, Grn(Xn) be the graph which edges are the segments
[Xi, Xj] such that ‖Xi −Xj‖ ≤ rn.

For (i, j) ∈ {1, . . . , n}2, let γ̂rn(Xi, Xj) be the shortest path (in euclidean
norm) connecting Xi and Xj in Grn(Xn), and |γ̂rn(Xi, Xj)| its length.

We aim at proving, for a class of convenient compact sets in Rd, that
|γ̂rn(Xi, Xj)| is an estimator of the geodesic distance γ(Xi, Xj) on M , with
good convergence properties.

Definition 2. Let M ⊂ Rd be a compact set, M is told to be KM -geodesically
smooth (later denoted as GS) for some positive number KM if:

(i) For all (x, y) ∈ M2 there exits a geodesic path γx→y of class C1 that
links x to y;

(ii) Let then Γx→y : [0, |γx→y|] → Rd be the parametrization of γx→y such
that Γx→y(s) is the point of γx→y that is at a (curvilinear) distance s

from x. Then, for all (x, y) ∈M2,
•
Γx→y is KM -Lipschitz continous.

A compact manifold of class C2 with no boundary satisfies the assump-
tions of the Definition 2, but one can build more general examples of such
sets (that is compact sets with C1 geodesic curves which have KM -Lipschitz
tangent maps). As an example, the Figure 1 depicts two examples of GS-Sets
(sets 1 and 2), and one which is not. Notice that the second set, however
satisfying the GS property, is not a manifold.

Theorem 1. Let γ̂rn be the estimator introduced in the Definition 1. Assume
that there exists a sequence ρn

a.s.−→ 0 such ρn ≥ dh(Xn,M) (e.a.s), and let
(rn) be a sequence such that ρn/rn → 0. Then,

max
i,j

∣∣|γ̂rn(Xi, Xj)| − |γXi→Xj
|
∣∣ = O

(
max

(
rn,

ρ2
n

r2
n

))
e.a.s. (1)
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Figure 1: Two GS sets and one not GS

One would then assume the sequence rn = dh(Xn,M)2/3 to be an optimal
choice. However, even though it is known that dh(Xn,M)→ 0 a.s. (see [3]),
the rate of this convergence is unknown in general. Thus, in order to obtain a
convergence rate for our estimator, we are going to make extra assumptions
on the set M and the random distribution PX .

Definition 3. Let δ > 0. A probability measure PX supported on M ⊂ Rd is
said to be δ−standard with respect to a measure µ if there exists λ > 0 such
that PX(B(x, ε)) ≥ δµ(B(x, ε)) for all x ∈M and ε ∈]0, λ].

We then have the following result:

Corollary 1. Let M ⊂ Rd, d ≥ 2 be a d′−dimensional manifold of class C1

satisfying the GS property for some number KM > 0. Let PX be a probability
distribution on M . Assume, for some number δ > 0, that PX is δ−standard
with respect to the measure induced on M by the Lebesgue measure in Rd.

If the sequence (rn) the Definition 1 is such that(
A0

lnn

n

)2/3d′

≤ rn ≤
(
A1

lnn

n

)2/3d′

,

with A0 > 0 and A1 > 0, then

max
i,j

∣∣|γ̂rn(Xi, Xj)| − |γXi→Xj
|
∣∣ = O

((
lnn

n

)2/3d′
)

e.a.s.

As usual when dealing with estimation problems, the sequence of radii
(rn) in the previous theorem remains abstract. In particular the dimension
d′ of the support is generally unknown. However, making extra assumptions
on the support M and the density of the distribution, we can accurately
estimate the sequence of radii, with no need for estimating d′. This last
fact is indeed worth being stretched on, since the knowledge of the geodesic
distance is known to be useful for a good estimation of the dimension of a
manifold (see e.g. [5]).
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Corollary 2. Let M ∈ Rd, d ≥ 2 be a d′−dimensional manifold, d′ < d of
class C2 with no boundary and PX be a probability distribution on M with
continuous probability density fX ≥ f0 > 0. Then, for any c > 0, setting
rn = (c maxi(minj ‖Xi −Xj‖))2/3 in the Definition 1, we have

max
i,j

∣∣|γ̂rn(Xi, Xj)| − |γXi→Xj
|
∣∣ = O

((
lnn

n

)2/3d′
)

e.a.s.

The assumptions of this Corollary imply those of the Theorem 1; they
allow to explicitly build a convenient sequence of radii (rn) only from the
sample. To prove this Theorem we use a result by Penrose (see [11]) which
applies only in the case when M has no boundary. However, numerical
simulations on C2 sets with boundary, satisfying the GS assumption, lead us
to think that the result is also true for such sets.

2.2 Estimating Fréchet Expectations

In this section we assume the set M to be a a compact d′-manifold of class
C2. Following the ideas of X. Pennec (see [10]), we consider the Fréchet
expectations

EFr
k (X) = argminx∈M E(|γx→X |k), k ∈ N∗, (2)

which are generalizations of the expected value for k = 2 and of the median
(or depth) for k = 1. As it is pointed out in [10], these expectations are
not necessarily unique. For exemple, if M is a sphere and PX the uniform
distribution, then obviously all the points of M realize the minimum in (2)
(for any k ≥ 1).

To avoid dealing with such situations, we are going to make the following
assumption, considering that k is fixed:

Φ(x) = E(|γx→X |k) admits a unique minimum x∗ ∈M,
Φ is of class C2 in a neighbourhood of x∗,
HΦ(x∗) is positive definite,

(3)

where HΦ denotes the hessian matrix of Φ.

Remark: It must be noted that Φ is a continuous fonction on M . Indeed
the triangle and Minkowski inequalities give |Φ(x)1/k−Φ(y)1/k| ≤ |γx→y|, for
any (x, y) ∈M2. The extra (local) regularity in the conditions (3) is required
for the sake of simplicity, allowing to apply basic differential calculus results
at the optimal point x∗.
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The first part of this assumption is very strong, but the second part is
not. For example, when d′ = 1 and M is homeomorphic to a segment,
explicit computations show that (3) holds for k = 1 iff fX(x∗) 6= 0. For
k = 2, when M is a bounded closed convex set of dimension d, the geodesic
distance on M coincides with the euclidean distance, the expectation E(X)
lies in M , it minimises the function Φ(x) and the condition (3) is satisfied
(with HΦ ≡ 2Id). This leads to think that, for k = 2, this condition is general
enough and may hold for a wide class of regular submanifolds of Rd.

In this section we aim at studying the behaviour of the natural estimator
of EFr

k (X):

ÊFr
k,rn(Xn) = argminXi∈M

1

n

∑
j

|γ̂rn(Xi, Xj)|k. (4)

Theorem 2. Assume that M ⊂ Rd, d ≥ 2 is a d′−dimensional manifold,
d′ < d of class C2 with no boundary and that PX is a probability distri-
bution on M with continuous and bounded from below probability density
fX . Moreover, suppose that assumption (3) holds. Then, chosing rn =
c(maxi(minj ||Xi −Xj||))2/3 in the definition of γ̂rn, we have

|EFr
k (X)− ÊFr

k,rn(Xn)| = O

((
lnn

n

)min(1/4,1/3d′)
)

e.a.s.

3 Proofs of the results

Let us start with a result which is a direct consequence of the regularity of
the set considered here.

Proposition 1. If M ⊂ Rd is KM -geodesically smooth then, there exist
rM > 0 and AM > 0, depending only on M , such that

∀(x, y) ∈M2; ||x− y|| ≤ rM , |γx→y| ≤ ||x− y||+ AM ||x− y||2.
The proof of this result is simple and left to the reader.

3.1 Proof of Theorem 1

Let (i, j) ∈ {1, . . . n}2, i 6= j, and let γij be the geodesic curve between Xi

and Xj. Consider a partition {x0, . . . , xK} of γij such that

x0 = Xi, xK = Xj, (5)

K =

⌈ |γXi→Xj
|

rn − 2ρn

⌉
, (6)

|γxk→xk+1
| =
|γXi→Xj

|
K

, (7)
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so that
|γxk→xk+1

| = rn − 2ρn, k = 0, . . . K − 2,
|γxK−1→xK | < rn − 2ρn.

(8)

We have

|γXi→Xj
| =

K−1∑
k=0

γxk→xk+1
≥

K−1∑
k=0

‖xk − xk+1‖. (9)

From the definition of ρn, for any k ∈ {0, . . . , K}, there exists ik ∈ {1, . . . n}
such that ‖Xik − xk‖ ≤ ρn. Let us denote, for the sake of simplicity,

Yk = Xik , εk = Yk − xk, Uk =
xk − xk+1

‖xk − xk+1‖
.

Recall that
‖εk‖ ≤ ρn, k = 0 . . . K − 1. (10)

We have,
‖YK−1 − YK‖ = ‖(xK−1 − xK)− (εK−1 − εK)‖,

hence, applying the triangle inequality and in view of the Proposition 1 and
(10),

‖YK−1 − YK‖ ≤ rn. (11)

Now, for k ∈ {0, . . . , K − 2},

‖Yk − Yk+1‖2 = ‖εk + (xk − xk+1)− εk+1‖2

= ‖xk − xk+1‖2 + 2 〈xk − xk+1 | εk − εk+1〉+ ‖εk − εk+1‖2

= ‖xk − xk+1‖2 ×
(

1 + 2
〈Uk | εk − εk+1〉
‖xk − xk+1‖

+
‖εk − εk+1‖2

‖xk − xk+1‖2

)
,

that is, taking the square root of this equality, and noticing that
√

1 + t ≤
1 + t/2, t ≥ −1,

‖Yk − Yk+1‖ ≤ ‖xk − xk+1‖ ×
(

1 +
〈Uk | εk − εk+1〉
‖xk − xk+1‖

+
1

2

‖εk − εk+1‖2

‖xk − xk+1‖2

)
≤ ‖xk − xk+1‖+ 〈Uk | εk − εk+1〉+

1

2

‖εk − εk+1‖2

‖xk − xk+1‖
.

In view of (9), we thus have

|γXi→Xj
| ≥

K−2∑
k=0

‖Yk − Yk+1‖ −
1

2
S1 − S2, (12)
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with

S1 =
K−2∑
k=0

‖εk − εk+1‖2

‖xk − xk+1‖
, S2 =

K−2∑
k=0

〈Uk | εk − εk+1〉 . (13)

Let us first study S1. From (8) and the Proposition 1, we have, for
k ∈ {0, . . . , K − 2},

rn − 2ρn − AM (rn − 2ρn)2 ≤ ‖xk − xk+1‖ ≤ rn − 2ρn ≤ rn, (14)

with AM > 0 only depending on M .
Then,

‖εk − εk+1‖2

‖xk − xk+1‖
≤ 4ρ2

n

rn − 2ρn − AM (rn − 2ρn)2 ≤
4ρ2

n

rn
+o

(
ρ2
n

rn

)
, 0 ≤ k ≤ K−2

The definition of ρn implies that rn− 2ρn ∼ rn. Moreover, since the set M is
compact and satisfies the GS assumption, γXi→Xj

is uniformly bounded for

all (i, j) ∈ {1, . . . n}2. Hence, there exists LM > 0 such that

0 < K ≤ LM
rn

, (15)

where K is defined by (6), and we have

S1 ≤ LM

(
4ρ2

n

r2
n

+ o

(
ρ2
n

r2
n

))
. (16)

Now, since the set M is smooth we can write, for k ∈ {0, . . . , K − 2},

Uk =
•
Γx0→xk(k(rn − 2ρn)) + O(‖xk − xk+1‖) =

•
Γx0→xk(k(rn − 2ρn)) + O(rn),

and

Uk − Uk+1 =
•
Γx0→xk(k(rn − 2ρn))−

•
Γx0→xk((k + 1)(rn − 2ρn)) + O(rn).

Then,
•
Γ being Lipschitz continuous,

‖Uk − Uk+1‖ = O(rn). (17)

We can now rewrite S2 as

S2 =
K−2∑
k=1

〈Uk − Uk−1 | εk〉+ 〈U0 | ε0〉 − 〈UK−2 | εK−1〉 ,
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hence, in view of (10), (14), (15), we have

S2 = O(ρn).

Combining this last inequality with (12),(13),(16), and in wiew of (11), we
obtain

|γXi→Xj
| ≥

K−1∑
k=0

‖Yk − Yk+1‖ − rn − O(ρn)− 2LM
ρ2
n

r2
n

+ o

(
ρ2
n

r2
n

)
. (18)

Now, considering (10) , (11), (14) and applying the triangle inequality,
we deduce that ‖Yk − Yk+1‖ ≤ rn for all k. Hence, in view of the definition
1, we have

|γ̂rn(Xi, Xj)| ≤
K−1∑
k=0

‖Yk − Yk+1‖,

therefore, since ρn = o(rn) and in wiew of (18), we have

|γ̂rn(Xi, Xj)| ≤ |γXi→Xj
|+ rn + o(rn) + 2LM

ρ2
n

r2
n

+ o

(
ρ2
n

r2
n

)
. (19)

We are now going to prove the following inequality :

|γ̂rn(Xi, Xj)| ≥ |γXi→Xj
| − 2AMLMrn. (20)

For the sake of clarity, let us omit the superscripts in the definition 1 and
denote Z0 = Xi, Z1, . . . ZL1 , ZL = Xj the nodes of the graph Gi,jn realizing the
path γ̂rn(Xi, Xj). Proposition 1 yields

|γXi→Xj
| ≤

L−1∑
k=0

|γZk→Zk+1
| ≤

L−1∑
k=0

(
‖Zk − Zk+1‖+ AM ‖Zk − Zk+1‖2

)
.

Noticing, from Definition 1, that ‖Zk − Zk+1‖ ≤ rn, we obtain

|γ̂rn(Xi, Xj)| ≥ |γXi→Xj
| − AMLr2

n. (21)

Let us now obtain a bound for the number of nodes L in the path
γ̂rn(Xi, Xj). Necessarily, by construction, we have

‖Zk − Zk+1‖+ ‖Zk+1 − Zk+2‖ > rn, k = 0, . . . , L− 2. (22)

Indeed, if it was not the case, we would have ‖Zk−Zk+2‖ ≤ rn, hence the path
{Zk, Zk+2} would be shorter in the graph Gi,jn than the path {Zk, Zk+1, Zk+2}
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which is impossible. Therefore, summing up (22) for k ∈ {0, . . . L − 2}, we
obtain

Lr2
n ≤ 2 |γ̂rn(Xi, Xj)|+ r2

n,

hence, in view of (19), (21) and reminding that |γXi→Xj
| is uniformly bounded,

we get (20).
This inequality and (19) finally imply∣∣|γ̂rn(Xi, Xj)| − |γXi→Xj

|
∣∣ ≤ CM max

(
ρ2
n

r2
n

, rn

)
, (23)

where the constant CM > 0 only depends on the manifold M . This yields
the estimate (1) and concludes the proof.

3.2 Proof of Corollary 1

Reasoning as in [1], since M is of class C1, one can cover M with νn ≤ C n
(with C > 0) deterministic balls of radius εn = (1/n)1/d′ . Let ωd′ be the
volume of the d′ − dimensional unit ball. We then classically have

PX

(
dh(Xn,M) ≥

(
2λ

δωd′

lnn

n

)1/d′
)
≤ C n1−2λ+o(1),

for any λ > 0.
Applying the Borel-Cantelli Lemma, we deduce that, for any λ > 1,

dh(Xn,M) ≤
(

2λ

δωd′

lnn

n

)1/d′

e.a.s.

Applying the Theorem 1 then gives the result.

3.3 Proof of Corollary 2

Let
tn = max

i
(min

j
‖Xi −Xj‖).

Applying the result of M.D. Penrose in [11], we have

nωd′ t
d′
n

lnn

a.s.−→ f−1
0 .

Therefore, one can easily deduce that(
1

2f0 ωd′

lnn

n

)1/d′

≤ tn ≤
(

2

f0 ωd′

lnn

n

)1/d′

e.a.s.

Since we have rn = (c tn)2/3, the assumptions of the Corollary 1 are fulfilled,
which allows to conclude the proof.
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3.4 Proof of Theorem 2

In view of (3) and (4), let us introduce the following estimators :

Φ(x) =
1

n

∑
i

(|γx→Xi
|k),

Φ̂(x) =
1

n

∑
i

(|γ̂rn(x,Xi)|k). (24)

At first, let us prove that there exits a deterministic constant D > 0 such
that

max
i
|Φ̂(Xi)− Φ(Xi)| = D

(
lnn

n

)min{2/3d′,1/2}

e.a.s (25)

Indeed, the manifold M being compact, one can apply the Hoeffding
inequality and obtain that

∀x ∈M, PX(|Φ(x)− Φ(x)| ≥ εn) ≤ 2 exp(−2nε2
n/L

2k),

L > 0 being the constant introduced in the proof of Theorem 1. Hence,

PX(∃i ∈ {1, . . . , n} ; |Φ(Xi)− Φ(Xi)| ≥ εn) ≤ 2n exp(−2nε2
n/L

2k).

Setting εn =
√

2Lk
√

lnn/n in this last inequality yields

PX(max
i
|Φ(Xi)− Φ(Xi)| ≥ εn) ≤ 2n−3

so that the Borel-Cantelli Lemma allows to conclude that

max
i
|Φ(Xi)− Φ(Xi)| = O

(
lnn

n

)1/2

e.a.s. (26)

Now, noticing that the assumptions of Corollary 2 are fulfilled, we have

max
i
|Φ̂(Xi)− Φ(Xi)| = O

(
lnn

n

)2/3d′

e.a.s.

Combining this with (26), we obtain (25).
Next, Φ being continuous on the compact set M , and in view of assump-

tions (3), the gradient of Φ vanishes at the (unique) minimum point x∗, hence
there exist r0 > 0, c0 > 0, c1 > 0 and ε0 such that

∀x ∈M ∩Bc, Φ(x) ≥ Φ(x∗) + ε0, (27)

∀x ∈M ∩B, c0||x− x∗||2 ≤ Φ(x)− Φ(x∗) ≤ c1||x− x∗||2, (28)

11



where B = B(x∗, r0) is the open ball in Rd of center x∗ and radius r0. The
second inequality holds due to the positiveness of the Hessian matrix HΦ(x∗).

Now, since the assumptions of Corollary 2 are satisfied, there exists C > 0
such that dh(Xn,M) ≤ C(lnn/n)1/d′ . Thus, e.a.s.

∃i0 ∈ {1, . . . , n} ; ‖Xi0 − x∗‖ ≤ C

(
lnn

n

)1/d′

.

For n large enough, we have r0 > C (lnn/n)1/d′ , hence, in view of (28), Xi0

satisfies

Φ(Xi0) ≤ Φ(x∗) + c1C
2

(
lnn

n

)2/d′

,

and by (25):

Φ̂(Xi0) ≤ Φ(x∗) + c1C
2

(
lnn

n

)2/d′

+D

(
lnn

n

)2α

,

with

α = min

{
1

3d′
,
1

4

}
,

that is, for n large enough, we have

∃i0 ∈ {1, . . . , n}, Φ̂(Xi0) ≤ Φ(x∗) + 2D

(
lnn

n

)2α

. (29)

Assume now that n is large enough so that that ε0 > 4D(lnn/n)2α. For any
i ∈ {1, . . . , n} such that

‖Xi − x∗‖ ≥
2D
√
c0

(
lnn

n

)α
,

in view of (27) and (28), this point satisfies

Φ(Xi) ≥ Φ(x∗) + 4D

(
lnn

n

)2α

.

Thus, in view of (25), we have

‖Xi − x∗‖ ≥
2D
√
c0

(
lnn

n

)α
⇒ Φ̂(Xi) ≥ Φ(x∗) + 3D

(
lnn

n

)2α

. (30)

Finally, let i∗ ∈ {1, . . . , n} such that Xi∗ realizes the minimum (4). From
(24) and (29), it is clear that

Φ̂(Xi∗) ≤ Φ(x∗) + 2D

(
lnn

n

)2α

,

and (30) allows to conclude the proof.
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