

The Graph Edit Distance Problem treated by the Local Branching Heuristic

Mostafa Darwiche, Donatello Conte, Romain Raveaux, Vincent t'Kindt

► To cite this version:

Mostafa Darwiche, Donatello Conte, Romain Raveaux, Vincent t'Kindt. The Graph Edit Distance Problem treated by the Local Branching Heuristic. MIC17 12th Metaheuristics International Conference, Jul 2017, Barcelona, Spain. hal-01564079

HAL Id: hal-01564079 https://hal.science/hal-01564079

Submitted on 18 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Graph Edit Distance Problem treated by the Local Branching Heuristic

Mostafa Darwiche^{1,2}, Donatello Conte¹, Romain Raveaux¹, Vincent T'kindt²

¹ Laboratoire d'Informatique (LI), Université François Rabelais 64 avenue Jean Portalis, 37200 Tours, France {mostafa.darwiche,donatello.conte,romain.raveaux}@univ-tours.fr

 ² Laboratoire d'Informatique (LI), ERL-CNRS 6305, Université François Rabelais
 64 avenue Jean Portalis, 37200 Tours, France tkindt@univ-tours.fr

Abstract

The Graph Edit Distance (GED) is a well-known problem to match graphs. Solving the GED problem allows computing a dissimilarity measure between graphs that normally represent objects and patterns. It is known to be very flexible and can work on any type of graphs. GED^{EnA} (Edges no Attributes) is a sub-problem of GED that deals with a special type of graphs where edges do not carry attributes. Both are modeled as minimization problems and proven to be NP-Hard, they are exponential in the number of vertices of graphs. A great effort has been made to provide heuristic approaches with a compromise between the execution time and the solution quality. In addition, GED^{EnA} can be expressed efficiently by means of mathematical programming tools to generate Mixed Integer Linear Program (MILP) models. The present work takes advantage of a powerful MILP model and proposes a heuristic called Local Branching to solve the GED^{EnA} problem. Mainly, a MILP model is iteratively modified by adding additional constraints to define neighborhoods in the solution space which are explored using a black-box solver. A problem-dependent exploration is performed to find efficient solutions. Lastly, the proposed heuristic is evaluated considering two factors: its computational time and solution quality against literature heuristics and exact methods.

1 Introduction

Graph-based representation is a well-known tool to represent patterns and objects. Graphs are able to depict the components of a pattern by means of vertices, and relational properties between them using edges. Both vertices and edges can carry information and characteristics about the pattern through attributes. Moreover, comparing graphs is considered as an important task since it is very useful in pattern search and classification, and it is also known as the *Graph Matching* (GM) problem. GM problem is very popular in many fields such as computer vision, pattern recognition, biology and chemistry [13, 14]. However, for many years it has been a difficult problem to deal with, due to its computational complexity, especially for large graphs.

Graph Edit Distance (GED) problem belongs to the family of GM problems. It provides a dissimilarity measure between two graphs [6], by computing the cost of editing one graph to transform it into another one. The set of edit operations are substitution, insertion and deletion, and can be applied on both vertices and edges. Solving the GED problem consists in finding the set of edit operations that minimizes the total cost. It has received attention in the past years, because in many work it has been shown that changing the cost metric properties can result in solving other GM problems like maximum common subgraph, graph and subgraph isomorphism [4, 5]. However, GED problem remains a difficult problem and many work has been carried out tackling it with heuristic algorithms, in order to compute good solutions in a reasonable amount of time. The works in [15, 16] present fast algorithms, which mainly solve the linear sum assignment problem for vertices, and then deduce the edges assignment. In these algorithms, the vertices cost matrix includes information about the edges, through estimating the edges assignment cost implied by assigning two vertices from different graphs. However, one drawback in this approach is that, it takes into account only local structures, rather than the global one. Other

algorithms based on beam search are presented in [7, 12]. The first one builds the search tree for all vertices and edges assignment combinations, then only the beam-size nodes are processed. While the second computes an initial solution based on [15] and then tries to improve it by swapping two pairs of assigned vertices. The enumeration of the vertices to be permutated is carried out through a beam search. In the exact solution context, GED problem has been addressed by means of mathematical programming and formulations e.g. linear formulations as in [10] or quadratic formulations as in [2]. A sub-problem of GED is the GED^{EnA} where edges do not carry attributes. The same aforementioned heuristics and exact solution methods can be applied to the GED^{EnA} problem, in addition, a very efficient $MILP^{JH}$ model is found in [9] that works only for the GED^{EnA} . Knowing that GED^{EnA} problem is applied in *Structure-Activity Relationships* domain and considered to be very important [14], there is still a need for having powerful and efficient heuristics for this particular sub-problem.

This work proposes the use of *Local Branching* (LocBra) heuristic to solve the GED^{EnA} . It is presented originally in [8] as a general metaheuristic for *Mixed Integer Linear Program* (MILP). It makes use of a MILP solver in order to explore the solution space, through a defined branching scheme. As well, it involves techniques, such as intensification and diversification during the exploration. To the best of our knowledge, $MILP^{JH}$ is the most efficient model for GED^{EnA} problem, thus it has been chosen in the implementation of LocBra. An adapted version of LocBra is then designed, along with a very efficient diversification mechanism. Henceforth, the heuristic is referred to as $LocBra_{-}GED^{EnA}$. Subsequently, it is evaluated and compared with existing heuristic algorithms and an exact method.

The remainder is organized as follows: Section 2 presents the definition of GED^{EnA} problem and a review of $MILP^{JH}$ model. Then, Section 3 details the proposed heuristic, and Section 4 shows the results of the computational experiments. Finally, Section 5 highlights some concluding remarks.

2 GED^{EnA} definition and $MILP^{JH}$ model

To introduce the general *Graph Edit Distance* (GED) problem, the definition of attributed and directed graph is given first.

Definition 1. An attributed and directed graph is a 4-tuple $G = (V, E, \mu, \xi)$ where, V is the set of vertices, E is the set of edges, such that $E \subseteq V \times V$, $\mu : V \to L_V$ (resp. $\xi : E \to L_E$) is the function that assigns attributes to a vertex (resp. an edge), and L_V (resp. L_E) is the label space for vertices (resp. edges).

Next, given two graphs $G = (V, E, \mu, \xi)$ and $G' = (V', E', \mu', \xi')$, solving the GED problem consists in transforming one graph source into another graph target. To accomplish this, some vertices and edges edit operations are available: $(u \to v)$ is the substitution of two vertices, $(u \to \epsilon)$ is the deletion of a vertex, and $(\epsilon \to v)$ is the insertion of a vertex, with $u \in V, v \in V'$ and ϵ refers to the empty vertex. The same logic goes for the edges. The set of operations that reflects a valid transformation of G into G' is called a complete edit path, defined as $\lambda(G, G') = \{e_i, i \in \{1, n\}\}$ where e_i is an elementary vertex (or edge) edit operation and n is the number of operations.

Definition 2. The Graph Edit Distance between two graphs G and G' is defined by:

$$d_{\min}(G, G') = \min_{\lambda \in \Gamma(G, G')} \sum_{e_i \in \lambda(G, G')} c(e_i)$$
(1)

where $\Gamma(G, G')$ is the set of all complete edit paths, d_{min} represents the minimal cost obtained by a complete edit path $\lambda(G, G')$, and c is a function that assigns the costs to elementary edit operations.

For GED^{EnA} problem, the graphs are the same as in Definition 1, but with $L_E = \{\phi\}$. Consequently, the costs of edge edit operations are 0 for substitution and a constant for insertion and deletion (i.e. $c(e \to f) = 0, c(e \to \epsilon) = const, c(\epsilon \to f) = const, \forall e, f \in E$).

 $MILP^{JH}$ is a model proposed in [9] that solves the GED^{EnA} problem. The main idea consists in determining the permutation matrix minimizing the L_1 norm of the difference between adjacency matrix

Figure 1: Local branching flow. a) depicts the left and right branching. b) shows the neighborhoods in the solution space

of the input graph and the permuted adjacency matrix of the target one. The details about the construction of the model can be found in [9]. The model is as follows:

$$\min_{P,S,T \in \{0,1\}^{N \times N}} \sum_{i=1}^{N} \sum_{j=1}^{N} c\left(\mu(u_i), \mu'(v_j)\right) P^{ij} + \left(\frac{1}{2} \times const \times (S+T)^{ij}\right)$$
(2)

such that

$$(AP - PA' + S - T)^{ij} = 0 \ \forall i, j \in \{1, N\}$$
(3)

$$\sum_{i=1}^{N} P^{ik} = \sum_{j=1}^{N} P^{kj} = 1 \ \forall k \in \{1, N\}$$
(4)

where A and A' are the adjacency matrices of graphs G and G' respectively, $c : (\mu(u_i), \mu'(v_j)) \to \mathbb{R}^+$ is the cost function that measures the distance between two vertices attributes. As for P, S and T, they are the permutation matrices of size $N \times N$, and of boolean type, with N = |V| + |V'|. P represents the vertices matching e.g. $P^{ij} = 1$ means a vertex $i \in V \cup \{\epsilon\}$ is matched with vertex $j \in V' \cup \{\epsilon\}$. While S and T are for edges matching. Hence, the objective function (Eq. 2) minimizes both, the cost of vertices and edges matching. As for constraint 3, it is to make sure that when matching two couples of vertices, the edges between each couple have to be mapped. Constraint 4 guarantees the integrity of P.

3 Local Branching Heuristic for GED^{EnA}

As presented in [8], LocBra heuristic is a local search approach that makes use of MILP solver to explore the neighborhoods of solutions through a branching scheme. In addition, it involves mechanisms such as intensification and diversification. Starting from an initial solution x_0 , it defines the *k*-opt neighborhood $N(x_0, k)$, with k a given integer. In other words, the neighborhood set contains the solutions that are within a distance no more than k from x_0 (in the sense of Hamming distance). This implies adding the following local branching constraint to the base $MILP^{JH}$ model:

$$\Delta(x, x_0) = \sum_{j \in S_0} (1 - x_j) + \sum_{j \in B \setminus S_0} x_j \le k$$
(5)

such that, B is the index set of binary variables defined in the model, and $S_0 = \{j \in B : \{x_0\}_j = 1\}$. This new model is then solved leading to the search of the best solution in $N(x_0, k)$. This phase

Algorithm 1: $LocBra_GED^{EnA}$ algorithm

1 bestUB := UB := ∞ ; $x^* := \overline{x} := \overline{x}$:= undefined; 2 tl := elapsed_time := $dv := l := dv_cons := 0;$ 3 mode_dv := false; opt := false; first_loop := true; **1** Function LocBraGED (k, k_dv, total_time_limit, node_time_limit, dv_max, l_max, dv_cons_max) **Output:** x^* , opt 2 InitLocBraGED(); 3 ImprovedSolution(); elapsed_time := tl; 4 while $elapsed_time < total_time_limit$ and $dv < dv_max$ and $dv_cons < dv_cons_max$ do 5 tl := min{tl, total_time_limit - elapsed_time}; 6 status := MIP_SOLVER(tl, UB, \tilde{x}); 7 8 tl := node_time_limit; if $ValueOf(\tilde{x}) = ValueOf(\bar{x})$ and $mode_dv = true$ then 1 := 1 + 1 else 1 := 0; 9 if $l \ge l_{max}$ then Diversification(); continue; 10 if status = "opt_sol_found" then 11 if $\tilde{x} \neq \bar{x}$ then ImprovedSolution() else Diversification(); 12 end 13 if status = "proven_infeasible" then Diversification(); 14 **if** status = "feasible_sol_found" **then** 15 16 if $ValueOf(\tilde{x}) < UB$ then ImprovedSolution(); 17 else 18 if mode_dv = false then Intensification() else Diversification(); 19 end 20 end 21 elapsed_time := elapsed_time + tl; 22 end 23 24 End 1 Function InitLocBraGED() status := MIP_SOLVER(tl, UB, \tilde{x}); 2 if status = "opt_sol_found" then opt := true; $x^* := \tilde{x}$; exit; 3 if status = "proven_infeasible" then opt := false; exit; 4 5 End 1 Function ImprovedSolution() if $mode_dv = false$ and $\bar{x} \neq undefined$ then 2 replace last constraint $\Delta(x, \bar{x}) \leq k$ with $\Delta(x, \bar{x}) \geq k + 1$; 3 end 4 5 $\bar{x} := \tilde{x}$; UB := ValueOf(\tilde{x}); mode_dv := false; dv_cons := 0; add new constraint $\Delta(x, \bar{x}) \leq k$; 6 if UB < bestUB then $x^* := \tilde{x}$; bestUB := $ValueOf(\tilde{x})$; 7 8 End 1 Function Diversification() replace last constraint $\Delta(x, \bar{x}) \leq k$ with $\Delta(x_{important}, \bar{x}) \geq k_{div}$; 2 3 UB := ∞ ; dv := dv + 1; mode_dv := true; dv_cons := dv_cons + 1; 4 End **1** Function Intensification() replace last constraint $\Delta(x, \bar{x}) \leq k$ with $\Delta(x, \bar{x}) \leq k - \frac{k}{2}$; 2 $mode_dv := false; dv_cons := 0;$ 3 4 End

corresponds to intensifying the search in a neighborhood e.g. node 2 in Fig 1-a. If a new solution x_1 is found, the constraint (Eq. 5) is replaced by $\Delta(x, x_0) \ge k + 1$, at the right branch (node 3 in Fig. 1-a). Next, a left branch is recreated but now using x_1 , and the process is repeated until a stopping criterion is met e.g. a *total time limit* is reached. However, and since solving sub-problems (with local branching constraints) may not be possible in a reasonable time, a *node time limit* is imposed at each branch. Therefore, it cannot be generalized that an improved solution could be found at a branch, due to reasons such as *node time limit* is reached, or the problem has become infeasible. For instance, assuming that at node 6 (Fig. 1-a) the solution of model $MILP^{JH}$ plus equation $\Delta(x, x_2) \le k$ does not lead to a feasible solution in the given time limit. It might be interesting to apply a complementary intensification phase, by adding constraint $\Delta(x, x_2) \le k/2$ and solving the new model. If again, no feasible solution is found (e.g. node 7 of Fig.1-a), then a diversification phases is applied to jump to another point in the solution space (e.g. node 8). Fig. 1-b shows the evolution of the solution search and the neighborhoods.

 $LocBra_GED^{EnA}$ is a modified and adapted version to deal with the GED^{EnA} problem, and is detailed in Algo. 1. The input parameters are: i- k is the neighborhood size, ii- $k_{-}dv$ is for diversification to skip current solution, iii- total_time_limit stopping criterion, represents the total running time, iv- node_time_limit forces the solver to exit and return the found solution (if any), v- dv_max stopping criterion, is the number of diversification allowed, vi- l_{-max} is to force a diversification after a sequence of branching returning the same solutions, vii- $dv_{-}cons_{-}max$ serves as a stopping criterion, in case consecutive diversifications have returned the same solutions, then the heuristic will stop. As for the output, the algorithm returns the best solution found x^* , and the optimality opt status. In detail, function LocBraGED describes the flow of the heuristic, it starts by calling the InitLocBraGED function, which initializes the heuristic by getting a first solution \bar{x} . It calls function *MIP_SOLVER* to solve the model as it is, with a time limit. If at this point, the model is solved to optimality or proven infeasible, the heuristic halts and returns the available solution and status. Else, the initial solution is set and the exploration begins. A loop takes place until at least one of the stopping criterion is violated. At each iteration and after a left/right branching constraint is added, the solver is called again and the returned status is considered to make the next decision. Three main cases may occur: i- The Optimal solution is found (line 11), and two cases must be distinguished. Either \tilde{x} (new solution) is better than \bar{x} (current solution), then ImprovedSolution is called to switch the current and best (if needed) solutions, also to add the local branching constraints and define a new neighborhood. Or it has found the same solution \bar{x} , thus *Diversification* is called to skip the current neighborhood. *Diversification* function ensures that the current solution is skipped with a distance $k_{-}dv$, and the upper bound UB is reset to ∞ . ii- The model is infeasible (line 14), therefore Diversification is triggered to switch the last local branching constraint and look into a new neighborhood. iii- A feasible solution is returned (line 15). This is very close to case **i**-, except when a worse solution is found ($ValueOf(\tilde{x}) < UB$), an *Intensification* step is introduced. It shrinks the neighborhood by k/2 to boost the exploration. However, a failed *Intensification* is then followed by a Diversification. In addition, there is the condition (at line 10) that forces the diversification, in the case where l_{-max} iterations have returned the same solution. This in turn guarantees the exploration of many neighborhoods, regardless of the new solutions' quality (whether better or worse).

The key point of this heuristic is the selection of the variables while branching. For instance, the x vector in $\Delta(x, \bar{x})$ contains only the set of binary variables that represent the vertices assignment (edges assignment are excluded). The reason behind this relies on the fact that edges assignment are driven by the vertices assignment, i.e. deleting one vertex implies deleting all edges that are connected to it, this is based on the definition of the GED^{EnA} problem. For diversification, it is slightly different, a vector x_{imp} is defined such that, instead of forcing $k_{\perp}dv$ flips over the whole set of vertices assignment variables, it is done over a subset of **important** variables. The selection of these variables is based on the assumption that one variable is important if changing its value from $1 \rightarrow 0$ (or the opposite) highly impacts the objective function's value. This, in turn, helps skipping local solutions and change the matching. Accordingly, the selection of variables in x_{imp} is done by computing a special cost matrix $[C_{ij}]$ for each possible assignment of a vertex $i \in V \cup {\epsilon}$, to a vertex $j \in V' \cup {\epsilon}$. Each value $C_{ij} = c_{ij} + \theta_{ij}$, where c_{ij} is the node operation cost induced by assigning vertex i to vertex j, and θ_{ij} is the

	$LocBra_GED^{EnA}$	CPLEX-12.48	CPLEX_LocBra-3.5	BeamSearch-5	SBPBeam-5
t_{min}	0.06	0.05	0.05	0.00	0.01
t_{avg}	3.03	1.97	1.79	0.01	0.14
t_{max}	12.25	12.48	6.41	0.03	0.37
d_{min}	0.00	0.00	0.00	0.00	0.00
d_{avg}	0.31	0.05	0.91	122.65	379.90
d_{max}	75.00	190.91	200.00	2400.00	4200.00
η_I	8716	8830	8553	433	100

Table 1: $LocBra_GED^{EnA}$ vs. literature heuristics on PAH instances

	$CPLEX-\infty$	$LocBra_GED^{EnA}$
t_{min}	0.09	0.06
t_{avg}	2.08	3.03
t_{max}	278.20	12.25
d_{min}	-	0.00
d_{avg}	-	0.35
d_{max}	-	100.00
η_I	8836	6715
η'_I	-	8702
$\eta_I^{\prime\prime}$	-	0

Table 2: LocBra_GED^{EnA} vs. Exact solution on PAH instances

cost of assigning the set of edges $E_i = \{(i, v) \in E\}$ to $E_j = \{(j, v') \in E'\}$. This assignment problem, of size $max(|E_i|, |E_j|) \times max(|E_i|, |E_j|)$, is solved by the Hungarian algorithm [11] which requires $(O(max(|E_i|, |E_j|)^3))$ time. Next, the standard deviation is computed at each row of the matrix $[C_{ij}]$, resulting in a vector $[\sigma_i]$. Then, they are split into two clusters *min* and *max*, by starting with the minimum σ_{min} and maximum σ_{max} values as the centers of the clusters. $\forall i \in V \cup \{\epsilon\}$ if $|\sigma_i - avg_{min}| < |\sigma_i - avg_{max}|$ then $\sigma_i \to min$, otherwise $\sigma_i \to max$, with avg_{min} and avg_{max} are the averages of the existing values in the clusters. Finally, for every σ_i belonging to *max* cluster, all $\{x_{ij}, \forall j \in |V'| \cup \{\epsilon\}\}$ variables are added to x_{imp} . Henceforth, the diversification constraint is $\Delta(x_{imp}, \bar{x}) \ge k_{dv}$. Consequently, the local structure of a vertex is considered to assess its influence on the objective function value. Preliminary experiments, not reported here, have shown that such diversification helps improving the local branching heuristic better than the original diversification defined in [8].

4 Computational Experiments

This section shows the computational experiments conducted to evaluate the efficiency of $LocBra_GED^{EnA}$ heuristic, with respect to the literature algorithms. These experiments have been done on reference databases from Pattern Recognition community, where researches have introduced the GM problems. Therefore, two databases of chemical molecules graphs are chosen, MUTA [1] and PAH [3]. The first one contains different subsets of small and large graphs and is known to be difficult to solve. It has 7 subsets, each of which has 10 graphs of same size (10 to 70 vertices). The second database contains 94 graphs, with at most 28 vertices. Each pair of graphs is considered as an instance. Therefore, MUTA has a total of 700 instances (100 per subset) and PAH has 8836 instances.

Experiment settings and evaluation metrics: $LocBra_GED^{EnA}$ algorithm is implemented in C. The solver CPLEX 12.6.0 is used to solve the MILP formulation. Experiments are ran on a machine Intel Core *i*4 with 8 GB RAM. For each database, two experiments are conducted. The first one is to compare $LocBra_GED^{EnA}$ against existing heuristics, while the second one studies the quality of the solutions obtained by comparing them to the optimal or best known ones found by CPLEX without time or resource (e.g. RAM) limits. In the first experiment, the following metrics are computed for each heuristic: $t_{min}, t_{avg}, t_{max}$ are the minimum, average and maximum CPU time in seconds for all instances. Correspondingly, $d_{min}, d_{avg}, d_{max}$ are the deviation percentages for the solutions obtained by one heuristic, from the best solutions found. Given an instance *I* and an heuristic *H*, deviation percentage is equal to $\frac{solution_I^H - bestSolution_I}{bestSolution_I} \times 100$, with $bestSolution_I$ is the smallest value found by all heuristics for *I*. Lastly, η_I is the number of instances for which a given heuristic has found the best solutions. In

	0	10	20	20	10	50	(0	70
I D GEDEnd	<u> </u>	10	20	30	40	50	60	70
LocBra_GED ^{EnA}	t_{min}	0.06	0.13	0.28	0.45	0.69	0.95	1.36
	t_{avg}	0.17	1.12	212.36	364.86	580.04	753.48	751.44
	t_{max}	2.92	3.63	900.13	900.12	900.17	900.27	900.36
	d_{min}	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	d_{avg}	0.00	0.00	0.00	0.06	0.02	0.17	0.59
-	d_{max}	0.00	0.00	0.00	3.90	2.03	3.35	5.57
	η_I	100	100	100	98	99	93	79
CPLEX-900	t_{min}	0.06	0.14	0.28	0.49	0.77	1.18	1.70
	t_{ava}	0.13	1.02	141.07	247.80	451.40	723.68	745.91
	tman	0.49	3.52	900.20	900.42	900.46	900.71	900.92
	durin	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	d	0.00	0.00	0.00	0.00	0.30	0.55	1.05
	d	0.00	0.00	0.00	0.00	6.42	5.04	8.57
	max	100	100	100	100	0.42	91 91	69
CDLEV L. D. 100	- 11	0.00	0.22	0.41	0.72	1.02	1 45	1.09
CPLEA_LOCBra-160	l _{min}	0.09	0.22	0.41	0.75	1.05	1.45	1.98
	t_{avg}	0.21	1.51	00.30	104.19	141.43	167.59	181.18
	tmax	0.74	5.77	182.86	194.08	195.43	217.38	263.60
	d_{min}	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	d_{avg}	0.00	0.00	0.00	0.16	1.16	1.41	4.24
	d_{max}	0.00	0.00	0.00	3.90	7.19	6.70	27.20
	η_I	100	100	100	94	72	57	41
CPLEX_LocBra-800	t_{min}	0.08	0.21	0.38	0.67	1.01	1.40	1.94
	t_{avg}	0.20	1.34	130.26	230.68	424.70	662.58	688.13
	t_{max}	0.71	3.90	802.16	806.16	821.39	839.69	869.65
_	d_{min}	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	d_{avg}	0.00	0.00	0.00	0.04	0.38	0.60	1.06
	d_{max}	0.00	0.00	0.00	3.90	6.42	5.04	11.27
	m -	100	100	100	00	00	00	(0)
_	111	100	100	100	99	89	80	69
BeamSearch-5	t_{min}	0.00	0.00	0.01	0.01	0.02	0.04	0.06
BeamSearch-5	t_{min} t_{avg}	0.00	0.00	0.01 0.01	0.01 0.03	0.02 0.07	0.04 0.11	0.06 0.18
BeamSearch-5		0.00 0.00 0.07	0.00 0.00 0.02	0.01 0.01 0.04	0.01 0.03 0.11	0.02 0.07 0.09	0.04 0.11 0.13	0.06 0.18 0.22
BeamSearch-5	$\begin{array}{c} \eta_{I} \\ t_{min} \\ t_{avg} \\ \hline t_{max} \\ \hline d_{min} \end{array}$	0.00 0.00 0.07 0.00	0.00 0.00 0.02 0.00	0.01 0.01 0.04 0.00	0.01 0.03 0.11 0.00	89 0.02 0.07 0.09 0.00	80 0.04 0.11 0.13 0.00	0.06 0.18 0.22 0.00
BeamSearch-5	$\begin{array}{c} \eta_{I} \\ t_{min} \\ t_{avg} \\ \hline t_{max} \\ \hline d_{min} \\ d_{avg} \end{array}$	0.00 0.07 0.00 15.17	0.00 0.00 0.02 0.00 36.60	0.01 0.01 0.04 0.00 47.21	0.01 0.03 0.11 0.00 58.69	89 0.02 0.07 0.09 0.00 72.13	80 0.04 0.11 0.13 0.00 62.96	0.06 0.18 0.22 0.00 68.71
BeamSearch-5	$\begin{array}{c} \eta_{I} \\ t_{min} \\ t_{avg} \\ \hline t_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ d_{max} \end{array}$	0.00 0.00 0.07 0.00 15.17 110.00	0.00 0.00 0.02 0.00 36.60 124.59	100 0.01 0.01 0.04 0.00 47.21 147.37	99 0.01 0.03 0.11 0.00 58.69 186.67	89 0.02 0.07 0.09 0.00 72.13 200.00	80 0.04 0.11 0.13 0.00 62.96 146.37	69 0.06 0.18 0.22 0.00 68.71 210.71
BeamSearch-5	η_I t_{min} t_{avg} d_{min} d_{avg} d_{max} η_I	$ \begin{array}{r} 100 \\ 0.00 \\ 0.07 \\ 0.00 \\ 15.17 \\ 110.00 \\ 35 \\ \end{array} $	100 0.00 0.00 0.02 0.00 36.60 124.59 10	100 0.01 0.01 0.04 0.00 47.21 147.37 10	99 0.01 0.03 0.11 0.00 58.69 186.67 10	89 0.02 0.07 0.09 0.00 72.13 200.00 10	80 0.04 0.11 0.13 0.00 62.96 146.37 10	69 0.06 0.18 0.22 0.00 68.71 210.71 10
BeamSearch-5	$ \begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \end{array} $	100 0.00 0.07 0.00 15.17 110.00 35 0.00	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24	09 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28
BeamSearch-5	$ \begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{I} \\ t_{min} \\ t_{avg} \end{array} $	0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 10	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29	09 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66
BeamSearch-5 BeamSearch-15000	$ \begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \end{array} $	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11
BeamSearch-5 BeamSearch-15000	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \end{array}$	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 0.00	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 0.00	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00	0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00
BeamSearch-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{min} \\ d_{max} \end{array}$	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62 57	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76
BeamSearch-5 BeamSearch-15000	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{avg} \\ d_{avgg} \\ d_{maxg} \\ \end{array}$	$\begin{array}{c} 100 \\ \hline 0.00 \\ \hline 0.00 \\ \hline 0.07 \\ \hline 0.00 \\ 15.17 \\ \hline 110.00 \\ \hline 35 \\ \hline 0.00 \\ 8.57 \\ \hline 31.52 \\ \hline 0.00 \\ 1.35 \\ \hline 30.00 \\ \end{array}$	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79
BeamSearch-5 BeamSearch-15000	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{II} \\ \eta_{II} $	$\begin{array}{c} 100\\ \hline 0.00\\ \hline 0.00\\ \hline 0.07\\ \hline 0.00\\ \hline 15.17\\ \hline 110.00\\ \hline 35\\ \hline 0.00\\ \hline 8.57\\ \hline 31.52\\ \hline 0.00\\ \hline 1.35\\ \hline 30.00\\ \hline 88\\ \end{array}$	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10
BeamSearch-5 BeamSearch-15000	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ \eta_{II} \\ \end{array}$	$\begin{array}{c} 100\\ \hline 0.00\\ \hline 0.00\\ \hline 0.07\\ \hline 0.00\\ \hline 15.17\\ \hline 110.00\\ \hline 35\\ \hline 0.00\\ \hline 8.57\\ \hline 31.52\\ \hline 0.00\\ \hline 1.35\\ \hline 30.00\\ \hline 88\\ \hline 0.01\\ \hline \end{array}$	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 200.00	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{I} \\ t_{min} \end{array}$	$\begin{array}{c} 100\\ \hline 0.00\\ \hline 0.00\\ \hline 0.07\\ \hline 0.00\\ \hline 15.17\\ \hline 110.00\\ \hline 35\\ \hline 0.00\\ \hline 8.57\\ \hline 31.52\\ \hline 0.00\\ \hline 1.35\\ \hline 30.00\\ \hline 88\\ \hline 0.01\\ \hline 0.01\\ \hline 0.01\\ \hline \end{array}$	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{min} \\ t_$	$\begin{array}{c} 100\\ \hline 0.00\\ \hline 0.00\\ \hline 0.07\\ \hline 0.00\\ \hline 15.17\\ \hline 110.00\\ \hline 35\\ \hline 0.00\\ \hline 8.57\\ \hline 31.52\\ \hline 0.00\\ \hline 1.35\\ \hline 30.00\\ \hline 88\\ \hline 0.01\\ \hline 0.01\\ \hline 0.05\\ \end{array}$	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{min} \\ t_{avg} \\ d_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ d_{min} \\ d_{min} \\ d_{avg} \\ d_{max} \\ d_{min} \\ d_$	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00	100 0.00 0.00 0.00 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_$	100 0.00 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00	100 0.00 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00	100 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02	0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ d_{min} \\ d_{avg} \\ d_{min} \\ d_{min} \\ d_{avg} \\ d_{min} \\ d_$	$\begin{array}{c} 100\\ \hline 0.00\\ \hline 0.00\\ \hline 0.07\\ \hline 0.00\\ \hline 15.17\\ \hline 110.00\\ \hline 35\\ \hline 0.00\\ \hline 8.57\\ \hline 31.52\\ \hline 0.00\\ \hline 1.35\\ \hline 30.00\\ \hline 88\\ \hline 0.01\\ \hline 0.01\\ \hline 0.05\\ \hline 0.00\\ \hline 20.43\\ \hline 0.00\\ \hline \end{array}$	100 0.00 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.00	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.20	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 108 50	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.26
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline d_{max$	100 0.00 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10	100 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10	0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ \hline \end{array}$	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 0.02	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.28	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10
BeamSearch-5 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{t$	100 0.00 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76 0.84	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10 C2	100 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 120.75	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 323.42	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 500 86	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1015
BeamSearch-5 BeamSearch-15000 SBPBeam-5 SBPBeam-500	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ t_{avg} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ \\ d_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ \\ d_{max} \\ \hline \\ \\ \eta_{I} \\ \hline \\ t_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ \\ t_{min} \\ t_{avg} \\ \hline \\ t_{min} \\ t_{avg} \\ t_{min} \\ t_{min} \\ t_{avg} \\ t_{min} \\ t_{min$	100 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76 0.84 0.06	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10.02	100 0.01 0.04 0.03 147.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65 5.4	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 139.75 145.24	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 322.43 260.47	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 590.86 657.27	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1019 1155 1210
BeamSearch-5 BeamSearch-15000 SBPBeam-5 SBPBeam-500	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ t_{min} \\ t_{avg} \\ \hline \\ \\ t_{max} \\ \hline \\ \\ d_{max} \\ \hline \\ \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ \\ t_{max} \\ \hline \\ \\ \\ d_{min} \\ d_{avg} \\ \hline \\ \\ \\ d_{min} \\ \hline \\ \\ d_{avg} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	100 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76 0.84 0.96	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10.02 11.27	100 0.01 0.04 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65 54.11 0.00	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 139.75 152.34 0.00	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 322.43 360.47 0.02	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 590.86 657.26	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1019 1155 1310 0.002
BeamSearch-5 BeamSearch-15000 SBPBeam-5 SBPBeam-500	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ d_{min} \\ d_{avg} \\ \hline \\ d_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ \eta_{I} \\ \hline \\ t_{min} \\ t_{avg} \\ \hline \\ t_{max} \\ \hline \\ d_{min} \\ \hline \\ t_{max} \\ \hline \\ d_{min} \\ \hline \\ \end{array}$	100 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76 0.84 0.96 0.00 20.42	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10.02 11.27 0.00	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65 54.11 0.00 76.45	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 139.75 152.34 0.00 82.54	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 322.43 360.47 0.00	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 590.86 657.26 0.00	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1019 1155 1310 0.00 94.62
BeamSearch-15000 BeamSearch-15000 SBPBeam-5	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ t_{avg} \\ t_{max} \\ \hline \eta_{I} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ t_{max} \\ d_{min} \\ t_{max} \\ d_{min} \\ t_{max} \\ d_{min} \\ t_{max} \\ d_{min} \\ t_{max} \\ t_{m$	100 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 20.43 90.00 15 0.76 0.84 0.96 0.00 20.43	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10.02 11.27 0.00 44.90 127.87 10 9.02 10.27 67	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65 54.11 0.00 76.45	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.11 0.00 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 139.75 152.34 0.00 82.54 0.00 82.54 0.00	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 322.43 360.47 0.00 98.90	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 590.86 657.26 0.00 95.02 198.50	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1019 1155 1310 0.00 94.62 26.36
BeamSearch-5 BeamSearch-15000 SBPBeam-5 SBPBeam-500	$\begin{array}{c} \eta_{II} \\ t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ \hline t_{min} \\ t_{avg} \\ \hline t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ \hline t_{min} \\ t_{avg} \\ t_{max} \\ \hline d_{min} \\ d_{avg} \\ d_{max} \\ \hline \eta_{I} \\ \hline t_{min} \\ t_{avg} \\ \hline t_{min} \\ t_{avg} \\ \hline d_{max} \\ \hline \eta_{I} \\ \hline t_{min} \\ t_{avg} \\ \hline t_{max} \\ \hline d_{min} \\ d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{max} \\ \hline d_{max} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{avg} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{min} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{max} \\ \hline d_{min} \\ \hline d_{min} \\ \hline d_{max} \\ \hline $	100 0.00 0.07 0.00 15.17 110.00 35 0.00 8.57 31.52 0.00 1.35 30.00 88 0.01 0.05 0.00 15 0.76 0.84 0.96 0.00 20.43 90.00	100 0.00 0.00 0.02 0.00 36.60 124.59 10 0.00 80.65 118.71 0.00 26.66 142.31 12 0.08 0.10 0.14 0.00 44.90 127.87 10 9.02 10.02 11.27 0.00 44.90 127.87	100 0.01 0.01 0.04 0.00 47.21 147.37 10 0.03 167.48 230.63 0.00 47.45 165.52 10 0.31 0.45 0.54 0.00 76.45 206.90 10 39.85 47.65 54.11 0.00 76.45 206.90	99 0.01 0.03 0.11 0.00 58.69 186.67 10 0.11 0.11 0.00 58.69 186.67 10 0.10 279.11 419.73 0.00 52.35 180.00 10 1.11 1.37 1.60 0.00 82.54 204.71 10 116.11 139.75 152.34 0.00 82.54 204.71	89 0.02 0.07 0.09 0.00 72.13 200.00 10 0.55 439.68 771.90 0.00 63.98 150.00 10 2.69 3.19 3.71 0.00 98.90 314.29 10 288.38 322.43 360.47 0.00 98.90 314.29	80 0.04 0.11 0.13 0.00 62.96 146.37 10 0.24 640.29 878.89 0.00 62.57 157.63 10 4.87 5.56 6.85 0.00 95.02 198.50 10 548.04 590.86 657.26 0.00 95.02 198.50 10	69 0.06 0.18 0.22 0.00 68.71 210.71 10 2.28 938.66 1385.11 0.00 63.76 226.79 10 9.02 10.72 12.79 0.00 94.62 280.36 10 1019 1155 1310 0.00 94.62 280.36

Table 3: $LocBra_GED^{EnA}$ vs. literature heuristics on MUTA instances

	$CPLEX-\infty$ (4 threads)					$LocBra_GED^{EnA}$ (1 thread)								$LocBra_GED^{EnA}$ (4 threads)								
S	t_{min}	t_{avg}	t_{max}	η_I	t_{min}	t_{avg}	t_{max}	d_{min}	d_{avg}	d_{max}	η_I	η'_I	η_I''	t_{min}	t_{avg}	t_{max}	d_{min}	d_{avg}	d_{max}	η_I	η'_I	η''_I
10	0.07	0.12	0.32	100	0.06	0.17	2.92	0.00	0.00	0.00	100	100	0	0.07	0.16	0.48	0.00	0.00	0.00	100	100	0
20	0.15	0.95	19.74	100	0.13	1.12	3.63	0.00	0.00	0.00	100	100	0	0.14	1.00	21.8	0.00	0.00	0.00	100	100	0
30	0.31	101	2865	100	0.28	212	900	0.00	0.00	0.00	78	100	0	0.32	101	900	0.00	0.00	0.00	91	100	0
40	0.52	266	9244	99	0.45	365	900	0.00	0.06	3.90	63	98	0	0.49	179	900	0.00	0.00	0.00	84	100	0
50	0.83	683	4213	92	0.69	580	900	-1.79	0.04	4.14	37	97	1	0.73	435	900	-1.79	0.00	2.07	54	98	1
60	1.24	2419	14732	71	0.95	753	900	-2.68	0.36	3.57	16	82	2	1.09	718	902	-3.31	-0.03	3.21	21	90	6
70	1.80	3740	24185	35	1.36	751	900	-2.67	0.78	8.85	17	52	14	1.48	741	901	-3.90	0.22	3.65	18	60	16

Table 4: $LocBra_GED^{EnA}$ vs. Exact solution on MUTA instances

the second experiment, time and deviation metrics are calculated for each method as stated previously. In addition, η_I , η'_I , η''_I are, respectively, the number of optimal solutions found, the number of solutions found that are equal to the optimal or best known ones, and the number solutions that are better than the best known ones.

Comparative methods: *CPLEX-t* heuristic is ran on $MILP^{JH}$, where t represents the time limit for CPLEX to try finding the optimal solution. The method becomes exact when t is set to ∞ , therefore CPLEX will not stop until the optimal solution is found, or there are no more resources available on the machine, and in this case the solution obtained is referred to as the best known solution. Also, CPLEX has its own local branching implementation, which gets applied only on nodes of the B&B's tree where a new incumbent solution is found. To include it in the evaluation, a feasible solution is computed first (as an incumbent solution) and then CPLEX local branching is called on the first node of the tree. This is called *CPLEX_LocBra-t*, with t is the time limit allowed to compute the feasible solution. From the literature, to the best of our knowledge, the heuristics *BeamSearch*- α [12] and *SBPBeam*- α [7] are known to be the best, so they are chosen in the evaluation (α is the beam size).

Results and analysis:

PAH tests: In order to set the parameters of the heuristics, preliminary tests were done but are not shown here. PAH instances are small, which means that CPLEX is capable of finding the optimal solutions in few seconds. The parameters of LocBra_GED^{EnA} are set to: k = 20, k_dv = 30, total_time_limit = 12.25s, node_time_limit = 1.75s, dv_max = 5, l_max = 3, dv_cons_max = 2. For CPLEX with time limit, t = 12.48s. CPLEX_LocBra-t is launched with t = 3.5s. Lastly, α is set to 5 for BeamSearch and SBPBeam as in the experiments done in [7].

The results of the heuristics comparison is shown in Table 1. CPLEX-12.48 has an average deviation of 0.05% which is the smallest among all the heuristics. Next $LocBra_GED^{EnA}$ comes with 0.31%. Clearly, CPLEX-12.48 has performed better than the proposed heuristic. However, an important note is the d_{max} : $LocBra_GED^{EnA}$ has 75% against 190.91% for CPLEX-12.48, which means that the former provides the closest solutions to the best ones in the worst case. $CPLEX_LocBra-3.5$ comes at the third position, with an average deviation less than 1%. The beam-search based heuristics are strongly outperformed by the other MILP-based heuristics with a high average deviation. On the other hand, the beam-search based heuristics seems to be very fast ($t_{avg} < 1s$), while the proposed heuristics is the slowest with $t_{avg} = 3.03s$. Moreover, Table 2 shows the results of comparing the heuristic against the exact solution. $CPLEX-\infty$ is on the average faster than $LocBra_GED^{EnA}$ but in the worst case CPLEX becomes computationally expensive (up to 278.20s), while $LocBra_GED^{EnA}$ remains at 12.25s max. Further, the average deviation is 0.35% with 8702 instances having the same solutions as the optimal ones, shows that $LocBra_GED^{EnA}$ is able to find the optimal solutions or stay very close to them.

• MUTA tests: The instances of MUTA database are much more difficult to solve than PAH instances, therefore the time limits are increased. LocBra_GED^{EnA} parameters are set to: k = 20, k_dv = 30, total_time_limit = 900s, node_time_limit = 180s, dv_max = 5, l_max = 3, dv_cons_max = 2. t is set to 900s in CPLEX heuristic. Then, two cases are considered for CPLEX local branching: CPLEX_LocBra-180 where 180s is spent to compute a feasible solution, which is the same time as one iteration of LocBra_GED^{EnA}. And CPLEX_LocBra-800 spends 800s to find a feasible solution, this will give a time limit ≈ 900s as the total time limit of LocBra_GED^{EnA}. For the beam-search based heuristics, and since their performances depend on the beam size, two versions of each are considered: BeamSearch-5, Beam Search-15000, SBPBeam-5 and SBPBeam-400. The reason for which α is set to 15000 and 400 is to give the heuristics an average time close to the total time limit (900s) of LocBra_GED^{EnA}. As well in the exact solution, CPLEX-∞ is set to work with 4 threads to make use of maximum resources of the machine and the power of CPLEX to find the optimal or best solutions. Then, two versions of LocBra_GED^{EnA} are considered with the same parameters as stated previously, but the first version has only 1 thread while the second has 4 threads.

Based on the results shown in Table 3, the heuristics LocBra_GED^{EnA}, CPLEX-900, CPLEX_LocBra-180 and CPLEX_LocBra-800, which are MILP-based, have the highest η_I for all the subsets, and they strongly outperform the four beam search-based heuristics. On easy instances (graphs' subsets between 10 and 40), they have yielded the best solutions for almost all instances (except few instances for subset 40). However, a major difference starts to appear on hard instances (subsets 50, 60, 70), where $LocBra_GED^{EnA}$ scores the highest values, with 99, 93, 79 (over 100) best solutions. Next, CPLEX-900 and CPLEX_LocBra-800 seem to be very close in the number of best solutions obtained, however the former is slightly better. CPLEX_LocBra-180 comes at fourth place, with less number of best solutions. Remarkably CPLEX-900 achieves better values than both CPLEX LocBra 180 and 800, which means that the default behavior of the solver with the default embedded heuristics is more efficient. Considering the average deviations, $LocBra_GED^{EnA}$ on hard instances has the smallest value (d_{avg} less than 0.6%), and again *CPLEX-900* and *CPLEX_LocBra-800* are close with $0\% \le d_{avg} \le 1.06\%$. The beam-search based heuristics are very poor in terms of solutions quality, their d_{avg} are very high (reaches 98.9%) and the numbers of best solutions are very small. Considering the solution time, BeamSearch-5 and SBPBeam-5 are the fastest with time between 0 and 10 seconds. Moreover, even after increasing the beam size, which increases their solution time, both are not able to provide better solutions and the average deviations remain high. The Results of comparing the proposed heuristic with the exact solution of $MILP^{JH}$ are reported in Table 4. For easy instances (graphs' subsets between 10 and 40), all optimal solutions, but one, are found by CPLEX- ∞ (4 threads), and both $LocBra_GED^{EnA}$ with 1 and 4 threads have 0% as d_{avg} (except for 2 instances in subset 40). This clearly means that the heuristic is able to find the same best solutions. However, in terms of CPU time, CPLEX- ∞ (4 threads) spent more time (> 900s) proving optimality, while the heuristic has reached the same solutions with less time (max of 900sec). For hard instances, d_{avg} is always less than 1%, and even less than 0% (-0.03%) with $LocBra_GED^{EnA}$ (4 threads) for subset 60. It is important to note as well, that the CPU time drastically increases for CPLEX- ∞ and reaches thousands $(t_{avg} = 3740s)$, while the heuristic has a max $t_{avg} = 751s$. η''_I for hard instances reveals that the heuristics have outperformed *CPLEX*- ∞ and found improved solutions (better than the best ones obtained) for 17 instances with 1 thread and 23 instances with 4 threads. As a conclusion, $LocBra_GED^{EnA}$ is capable of finding the optimal or best solutions as CPLEX in exact solution mode, and even better in some cases.

Based on all the experiments reported in this section, the proposed local branching heuristic significantly improves the literature heuristics and provides near optimal solutions. This is due, to the analysis and the branching scheme combined with the efficiency reached by *CPLEX* when solving $MILP^{JH}$ model. A second important element is the diversification procedure which is problem dependent and really helps the algorithm to escape local optima.

5 Conclusion

This work presents a local branching heuristic for GED^{EnA} problem based on the $MILP^{JH}$ formulation presented in [9]. Starting from an initial solution, the heuristic mainly focuses on searching locally in a specific neighborhood for an improved solution. In addition, to avoid getting stuck in local minima, it uses a specific diversification mechanism, that ensures defining and visiting important neighborhoods. Next, the heuristic is evaluated on two databases of chemical graphs MUTA and PAH. Two factors are considered, the solution time and the solutions quality in comparison to other heuristics, and the solutions closeness to the optimal or best known ones. The results on easy instances (PAH database) show that the heuristic is capable of finding very good solutions in a short period of time and compete with CPLEX in the exact mode. The results obtained on MUTA database confirm the large superiority of the proposed local branching heuristic over the literature heuristics. Remarkably, the local branching heuristic is general enough to be tested on the GED problem at the cost of replacing $MILP^{JH}$ model by a model valid for this problem. Tackling the general problem is planned as next step in the near future.

References

- Zeina Abu-Aisheh, Romain Raveaux, and Jean-Yves Ramel. A graph database repository and performance evaluation metrics for graph edit distance. In *Graph-Based Representations in Pattern Recognition - 10th IAPR-TC-15.Proceedings*, pages 138–147, 2015.
- [2] Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario Vento. Graph edit distance as a quadratic assignment problem. *Pattern Recognition Letters*, 2016.
- [3] Luc Brun. Greyc's chemistry dataset. https://brunl01.users.greyc.fr/CHEMISTRY/.
- [4] Horst Bunke. On a relation between graph edit distance and maximum common subgraph. *Pattern Recognition Letters*, 18(8):689–694, 1997.
- [5] Horst Bunke. Error correcting graph matching: On the influence of the underlying cost function. *IEEE transactions on pattern analysis and machine intelligence*, 21(9):917–922, 1999.
- [6] Horst Bunke and Gudrun Allermann. Inexact graph matching for structural pattern recognition. *Pattern Recognition Letters*, 1(4):245–253, 1983.
- [7] Miquel Ferrer, Francesc Serratosa, and Kaspar Riesen. Improving bipartite graph matching by assessing the assignment confidence. *Pattern Recognition Letters*, 65:29–36, 2015.
- [8] Matteo Fischetti and Andrea Lodi. Local branching. *Mathematical programming*, 98(1-3):23–47, 2003.
- [9] Derek Justice and Alfred Hero. A binary linear programming formulation of the graph edit distance. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(8):1200–1214, 2006.
- [10] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. Exact graph edit distance computation using a binary linear program. In *Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)*, pages 485–495. Springer, 2016.
- [11] James Munkres. Algorithms for the assignment and transportation problems. *Journal of the society for industrial and applied mathematics*, 5(1):32–38, 1957.
- [12] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation of graph edit distance. In *Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)*, pages 163–172. Springer, 2006.
- [13] Romain Raveaux, Jean-Christophe Burie, and Jean-Marc Ogier. Structured representations in a content based image retrieval context. J. Visual Communication and Image Representation, 24(8):1252–1268, 2013.
- [14] John W Raymond and Peter Willett. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. *Journal of computer-aided molecular design*, 16(7):521–533, 2002.
- [15] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Bipartite graph matching for computing the edit distance of graphs. In *International Workshop on Graph-Based Representations in Pattern Recognition*, pages 1–12. Springer, 2007.
- [16] Francesc Serratosa. Fast computation of bipartite graph matching. *Pattern Recognition Letters*, 45:244–250, 2014.