
HAL Id: hal-01564079
https://hal.science/hal-01564079

Submitted on 18 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Graph Edit Distance Problem treated by the Local
Branching Heuristic

Mostafa Darwiche, Donatello Conte, Romain Raveaux, Vincent t’Kindt

To cite this version:
Mostafa Darwiche, Donatello Conte, Romain Raveaux, Vincent t’Kindt. The Graph Edit Distance
Problem treated by the Local Branching Heuristic. MIC17 12th Metaheuristics International Confer-
ence, Jul 2017, Barcelona, Spain. �hal-01564079�

https://hal.science/hal-01564079
https://hal.archives-ouvertes.fr

MIC/MAEB 2017 id–1

The Graph Edit Distance Problem treated by the Local
Branching Heuristic

Mostafa Darwiche1,2, Donatello Conte1, Romain Raveaux1, Vincent T’kindt2

1 Laboratoire d’Informatique (LI),
Université François Rabelais

64 avenue Jean Portalis, 37200 Tours, France
{mostafa.darwiche,donatello.conte,romain.raveaux}@univ-tours.fr

2 Laboratoire d’Informatique (LI), ERL-CNRS 6305,
Université François Rabelais

64 avenue Jean Portalis, 37200 Tours, France
tkindt@univ-tours.fr

Abstract

The Graph Edit Distance (GED) is a well-known problem to match graphs. Solving the GED
problem allows computing a dissimilarity measure between graphs that normally represent objects
and patterns. It is known to be very flexible and can work on any type of graphs. GEDEnA (Edges no
Attributes) is a sub-problem of GED that deals with a special type of graphs where edges do not carry
attributes. Both are modeled as minimization problems and proven to be NP-Hard, they are exponen-
tial in the number of vertices of graphs. A great effort has been made to provide heuristic approaches
with a compromise between the execution time and the solution quality. In addition, GEDEnA

can be expressed efficiently by means of mathematical programming tools to generate Mixed Inte-
ger Linear Program (MILP) models. The present work takes advantage of a powerful MILP model
and proposes a heuristic called Local Branching to solve the GEDEnA problem. Mainly, a MILP
model is iteratively modified by adding additional constraints to define neighborhoods in the solution
space which are explored using a black-box solver. A problem-dependent exploration is performed
to find efficient solutions. Lastly, the proposed heuristic is evaluated considering two factors: its
computational time and solution quality against literature heuristics and exact methods.

1 Introduction

Graph-based representation is a well-known tool to represent patterns and objects. Graphs are able
to depict the components of a pattern by means of vertices, and relational properties between them
using edges. Both vertices and edges can carry information and characteristics about the pattern through
attributes. Moreover, comparing graphs is considered as an important task since it is very useful in pattern
search and classification, and it is also known as the Graph Matching (GM) problem. GM problem is
very popular in many fields such as computer vision, pattern recognition, biology and chemistry [13, 14].
However, for many years it has been a difficult problem to deal with, due to its computational complexity,
especially for large graphs.

Graph Edit Distance (GED) problem belongs to the family of GM problems. It provides a dissimi-
larity measure between two graphs [6], by computing the cost of editing one graph to transform it into
another one. The set of edit operations are substitution, insertion and deletion, and can be applied on
both vertices and edges. Solving the GED problem consists in finding the set of edit operations that
minimizes the total cost. It has received attention in the past years, because in many work it has been
shown that changing the cost metric properties can result in solving other GM problems like maximum
common subgraph, graph and subgraph isomorphism [4, 5]. However, GED problem remains a difficult
problem and many work has been carried out tackling it with heuristic algorithms, in order to compute
good solutions in a reasonable amount of time. The works in [15, 16] present fast algorithms, which
mainly solve the linear sum assignment problem for vertices, and then deduce the edges assignment. In
these algorithms, the vertices cost matrix includes information about the edges, through estimating the
edges assignment cost implied by assigning two vertices from different graphs. However, one drawback
in this approach is that, it takes into account only local structures, rather than the global one. Other

Barcelona, July 4-7, 2017

id–2 MIC/MAEB 2017

algorithms based on beam search are presented in [7, 12]. The first one builds the search tree for all
vertices and edges assignment combinations, then only the beam-size nodes are processed. While the
second computes an initial solution based on [15] and then tries to improve it by swapping two pairs of
assigned vertices. The enumeration of the vertices to be permutated is carried out through a beam search.
In the exact solution context, GED problem has been addressed by means of mathematical programming
and formulations e.g. linear formulations as in [10] or quadratic formulations as in [2]. A sub-problem
of GED is the GEDEnA where edges do not carry attributes. The same aforementioned heuristics and
exact solution methods can be applied to the GEDEnA problem, in addition, a very efficient MILP JH

model is found in [9] that works only for the GEDEnA. Knowing that GEDEnA problem is applied in
Structure-Activity Relationships domain and considered to be very important [14], there is still a need
for having powerful and efficient heuristics for this particular sub-problem.

This work proposes the use of Local Branching (LocBra) heuristic to solve the GEDEnA. It is
presented originally in [8] as a general metaheuristic for Mixed Integer Linear Program (MILP). It makes
use of a MILP solver in order to explore the solution space, through a defined branching scheme. As
well, it involves techniques, such as intensification and diversification during the exploration. To the
best of our knowledge, MILP JH is the most efficient model for GEDEnA problem, thus it has been
chosen in the implementation of LocBra. An adapted version of LocBra is then designed, along with a
very efficient diversification mechanism. Henceforth, the heuristic is referred to as LocBra GEDEnA.
Subsequently, it is evaluated and compared with existing heuristic algorithms and an exact method.

The remainder is organized as follows: Section 2 presents the definition of GEDEnA problem and
a review of MILP JH model. Then, Section 3 details the proposed heuristic, and Section 4 shows the
results of the computational experiments. Finally, Section 5 highlights some concluding remarks.

2 GEDEnA definition and MILP JH model

To introduce the general Graph Edit Distance (GED) problem, the definition of attributed and directed
graph is given first.

Definition 1. An attributed and directed graph is a 4-tuple G = (V,E, µ, ξ) where, V is the set of
vertices, E is the set of edges, such that E ⊆ V × V , µ : V → LV (resp. ξ : E → LE) is the function
that assigns attributes to a vertex (resp. an edge), and LV (resp. LE) is the label space for vertices (resp.
edges).

Next, given two graphsG = (V,E, µ, ξ) andG′ = (V ′, E′, µ′, ξ′), solving the GED problem consists
in transforming one graph source into another graph target. To accomplish this, some vertices and edges
edit operations are available: (u → v) is the substitution of two vertices, (u → ε) is the deletion of a
vertex, and (ε→ v) is the insertion of a vertex, with u ∈ V, v ∈ V ′ and ε refers to the empty vertex. The
same logic goes for the edges. The set of operations that reflects a valid transformation of G into G′ is
called a complete edit path, defined as λ(G,G′) = {ei, i ∈ {1, n}} where ei is an elementary vertex (or
edge) edit operation and n is the number of operations.

Definition 2. The Graph Edit Distance between two graphs G and G′ is defined by:

dmin(G,G′) = min
λ∈Γ(G,G′)

∑
ei∈λ(G,G′)

c(ei) (1)

where Γ(G,G′) is the set of all complete edit paths, dmin represents the minimal cost obtained by a
complete edit path λ(G,G′), and c is a function that assigns the costs to elementary edit operations.

For GEDEnA problem, the graphs are the same as in Definition 1, but with LE = {φ}. Conse-
quently, the costs of edge edit operations are 0 for substitution and a constant for insertion and deletion
(i.e. c(e→ f) = 0, c(e→ ε) = const, c(ε→ f) = const, ∀e, f ∈ E).

MILP JH is a model proposed in [9] that solves the GEDEnA problem. The main idea consists in
determining the permutation matrix minimizing the L1 norm of the difference between adjacency matrix

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–3

Figure 1: Local branching flow. a) depicts the left and right branching. b) shows the neighborhoods in
the solution space

of the input graph and the permuted adjacency matrix of the target one. The details about the construction
of the model can be found in [9]. The model is as follows:

min
P,S,T∈{0,1}N×N

N∑
i=1

N∑
j=1

c
(
µ(ui), µ

′(vj)
)
P ij +

(
1

2
× const× (S + T)ij

)
(2)

such that(
AP − PA′ + S − T

)ij
= 0 ∀i, j ∈ {1, N} (3)

N∑
i=1

P ik =
N∑
j=1

P kj = 1 ∀k ∈ {1, N} (4)

where A and A′ are the adjacency matrices of graphs G and G′ respectively, c : (µ(ui), µ
′(vj)) → R+

is the cost function that measures the distance between two vertices attributes. As for P, S and T , they
are the permutation matrices of size N × N , and of boolean type, with N = |V | + |V ′|. P represents
the vertices matching e.g. P ij = 1 means a vertex i ∈ V ∪ {ε} is matched with vertex j ∈ V ′ ∪ {ε}.
While S and T are for edges matching. Hence, the objective function (Eq. 2) minimizes both, the cost of
vertices and edges matching. As for constraint 3, it is to make sure that when matching two couples of
vertices, the edges between each couple have to be mapped. Constraint 4 guarantees the integrity of P .

3 Local Branching Heuristic for GEDEnA

As presented in [8], LocBra heuristic is a local search approach that makes use of MILP solver to explore
the neighborhoods of solutions through a branching scheme. In addition, it involves mechanisms such as
intensification and diversification. Starting from an initial solution x0, it defines the k-opt neighborhood
N(x0, k), with k a given integer. In other words, the neighborhood set contains the solutions that are
within a distance no more than k from x0 (in the sense of Hamming distance). This implies adding the
following local branching constraint to the base MILP JH model:

∆(x, x0) =
∑
j∈S0

(1− xj) +
∑

j∈B\S0

xj ≤ k (5)

such that, B is the index set of binary variables defined in the model, and S0 = {j ∈ B : {x0}j =
1}. This new model is then solved leading to the search of the best solution in N(x0, k). This phase

Barcelona, July 4-7, 2017

id–4 MIC/MAEB 2017

Algorithm 1: LocBra GEDEnA algorithm

1 bestUB := UB :=∞; x∗ := x̄ := x̃ := undefined;
2 tl := elapsed time := dv := l := dv cons := 0;
3 mode dv := false; opt := false; first loop := true;
1 Function

LocBraGED(k, k dv, total time limit, node time limit, dv max, l max, dv cons max)
Output: x∗, opt

2 InitLocBraGED();
3 ImprovedSolution();
4 elapsed time := tl;
5 while elapsed time < total time limit and dv < dv max and dv cons < dv cons max do
6 tl := min{tl, total time limit − elapsed time};
7 status := MIP SOLVER(tl, UB, x̃);
8 tl := node time limit;
9 if V alueOf(x̃) = V alueOf(x̄) and mode dv = true then l := l + 1 else l := 0;

10 if l ≥ l max then Diversification(); continue;
11 if status = ”opt sol found” then
12 if x̃ 6= x̄ then ImprovedSolution() else Diversification() ;
13 end
14 if status = ”proven infeasible” then Diversification() ;
15 if status = ”feasible sol found” then
16 if V alueOf(x̃) < UB then
17 ImprovedSolution();
18 else
19 if mode dv = false then Intensification() else Diversification();
20 end
21 end
22 elapsed time := elapsed time + tl;
23 end
24 End

1 Function InitLocBraGED()
2 status := MIP SOLVER(tl, UB, x̃);
3 if status = ”opt sol found” then opt := true; x∗ := x̃; exit;
4 if status = ”proven infeasible” then opt := false; exit;
5 End
1 Function ImprovedSolution()
2 if mode dv = false and x̄ 6= undefined then
3 replace last constraint ∆(x, x̄) ≤ k with ∆(x, x̄) ≥ k + 1;
4 end
5 x̄ := x̃; UB := V alueOf(x̃); mode dv := false; dv cons := 0;
6 add new constraint ∆(x, x̄) ≤ k;
7 if UB < bestUB then x∗ := x̃; bestUB := V alueOf(x̃) ;
8 End
1 Function Diversification()
2 replace last constraint ∆(x, x̄) ≤ k with ∆(x important, x̄) ≥ k div;
3 UB :=∞; dv := dv + 1; mode dv := true; dv cons := dv cons + 1;
4 End
1 Function Intensification()
2 replace last constraint ∆(x, x̄) ≤ k with ∆(x, x̄) ≤ k − k

2 ;
3 mode dv := false; dv cons := 0;
4 End

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–5

corresponds to intensifying the search in a neighborhood e.g. node 2 in Fig 1-a. If a new solution x1

is found, the constraint (Eq. 5) is replaced by ∆(x, x0) ≥ k + 1, at the right branch (node 3 in Fig.
1-a). Next, a left branch is recreated but now using x1, and the process is repeated until a stopping
criterion is met e.g. a total time limit is reached. However, and since solving sub-problems (with local
branching constraints) may not be possible in a reasonable time, a node time limit is imposed at each
branch. Therefore, it cannot be generalized that an improved solution could be found at a branch, due to
reasons such as node time limit is reached, or the problem has become infeasible. For instance, assuming
that at node 6 (Fig. 1-a) the solution of model MILP JH plus equation ∆(x, x2) ≤ k does not lead to a
feasible solution in the given time limit. It might be interesting to apply a complementary intensification
phase, by adding constraint ∆(x, x2) ≤ k/2 and solving the new model. If again, no feasible solution
is found (e.g. node 7 of Fig.1-a), then a diversification phases is applied to jump to another point in the
solution space (e.g. node 8). Fig. 1-b shows the evolution of the solution search and the neighborhoods.

LocBra GEDEnA is a modified and adapted version to deal with the GEDEnA problem, and is
detailed in Algo. 1. The input parameters are: i- k is the neighborhood size, ii- k dv is for diversi-
fication to skip current solution, iii- total time limit stopping criterion, represents the total running
time, iv- node time limit forces the solver to exit and return the found solution (if any), v- dv max
stopping criterion, is the number of diversification allowed, vi- l max is to force a diversification after
a sequence of branching returning the same solutions, vii- dv cons max serves as a stopping criterion,
in case consecutive diversifications have returned the same solutions, then the heuristic will stop. As
for the output, the algorithm returns the best solution found x∗, and the optimality opt status. In detail,
function LocBraGED describes the flow of the heuristic, it starts by calling the InitLocBraGED function,
which initializes the heuristic by getting a first solution x̄. It calls function MIP SOLVER to solve the
model as it is, with a time limit. If at this point, the model is solved to optimality or proven infeasible,
the heuristic halts and returns the available solution and status. Else, the initial solution is set and the
exploration begins. A loop takes place until at least one of the stopping criterion is violated. At each
iteration and after a left/right branching constraint is added, the solver is called again and the returned
status is considered to make the next decision. Three main cases may occur: i- The Optimal solution is
found (line 11), and two cases must be distinguished. Either x̃ (new solution) is better than x̄ (current
solution), then ImprovedSolution is called to switch the current and best (if needed) solutions, also to
add the local branching constraints and define a new neighborhood. Or it has found the same solution x̄,
thus Diversification is called to skip the current neighborhood. Diversification function ensures that the
current solution is skipped with a distance k dv, and the upper bound UB is reset to∞. ii- The model
is infeasible (line 14), therefore Diversification is triggered to switch the last local branching constraint
and look into a new neighborhood. iii- A feasible solution is returned (line 15). This is very close to case
i-, except when a worse solution is found (V alueOf(x̃) < UB), an Intensification step is introduced. It
shrinks the neighborhood by k/2 to boost the exploration. However, a failed Intensification is then fol-
lowed by a Diversification. In addition, there is the condition (at line 10) that forces the diversification, in
the case where l max iterations have returned the same solution. This in turn guarantees the exploration
of many neighborhoods, regardless of the new solutions’ quality (whether better or worse).

The key point of this heuristic is the selection of the variables while branching. For instance, the x
vector in ∆(x, x̄) contains only the set of binary variables that represent the vertices assignment (edges
assignment are excluded). The reason behind this relies on the fact that edges assignment are driven
by the vertices assignment, i.e. deleting one vertex implies deleting all edges that are connected to it,
this is based on the definition of the GEDEnA problem. For diversification, it is slightly different, a
vector ximp is defined such that, instead of forcing k dv flips over the whole set of vertices assignment
variables, it is done over a subset of important variables. The selection of these variables is based
on the assumption that one variable is important if changing its value from 1 → 0 (or the opposite)
highly impacts the objective function’s value. This, in turn, helps skipping local solutions and change
the matching. Accordingly, the selection of variables in ximp is done by computing a special cost matrix
[Cij] for each possible assignment of a vertex i ∈ V ∪ {ε}, to a vertex j ∈ V ′ ∪ {ε}. Each value
Cij = cij+θij , where cij is the node operation cost induced by assigning vertex i to vertex j, and θij is the

Barcelona, July 4-7, 2017

id–6 MIC/MAEB 2017

LocBra GEDEnA CPLEX-12.48 CPLEX LocBra-3.5 BeamSearch-5 SBPBeam-5
tmin 0.06 0.05 0.05 0.00 0.01
tavg 3.03 1.97 1.79 0.01 0.14
tmax 12.25 12.48 6.41 0.03 0.37
dmin 0.00 0.00 0.00 0.00 0.00
davg 0.31 0.05 0.91 122.65 379.90
dmax 75.00 190.91 200.00 2400.00 4200.00
ηI 8716 8830 8553 433 100

Table 1: LocBra GEDEnA vs. literature heuristics on PAH instances

CPLEX-∞ LocBra GEDEnA

tmin 0.09 0.06
tavg 2.08 3.03
tmax 278.20 12.25
dmin - 0.00
davg - 0.35
dmax - 100.00
ηI 8836 6715
η′I - 8702
η′′I - 0

Table 2: LocBra GEDEnA vs. Exact solution on PAH instances

cost of assigning the set of edges Ei = {(i, v) ∈ E} to Ej = {(j, v′) ∈ E′}. This assignment problem,
of size max(|Ei|, |Ej |) × max(|Ei|, |Ej |), is solved by the Hungarian algorithm [11] which requires
(O(max(|Ei|, |Ej |)3)) time. Next, the standard deviation is computed at each row of the matrix [Cij],
resulting in a vector [σi]. Then, they are split into two clusters min and max, by starting with the minimum
σmin and maximum σmax values as the centers of the clusters. ∀i ∈ V ∪ {ε} if |σi − avgmin| < |σi −
avgmax| then σi → min, otherwise σi → max, with avgmin and avgmax are the averages of the existing
values in the clusters. Finally, for every σi belonging to max cluster, all {xij ,∀j ∈ |V ′| ∪ {ε}} variables
are added to ximp. Henceforth, the diversification constraint is ∆(ximp, x̄) ≥ kdv. Consequently, the
local structure of a vertex is considered to assess its influence on the objective function value. Preliminary
experiments, not reported here, have shown that such diversification helps improving the local branching
heuristic better than the original diversification defined in [8].

4 Computational Experiments

This section shows the computational experiments conducted to evaluate the efficiency ofLocBra GEDEnA

heuristic, with respect to the literature algorithms. These experiments have been done on reference
databases from Pattern Recognition community, where researches have introduced the GM problems.
Therefore, two databases of chemical molecules graphs are chosen, MUTA [1] and PAH [3]. The first
one contains different subsets of small and large graphs and is known to be difficult to solve. It has 7
subsets, each of which has 10 graphs of same size (10 to 70 vertices). The second database contains 94
graphs, with at most 28 vertices. Each pair of graphs is considered as an instance. Therefore, MUTA has
a total of 700 instances (100 per subset) and PAH has 8836 instances.

Experiment settings and evaluation metrics: LocBra GEDEnA algorithm is implemented in C.
The solver CPLEX 12.6.0 is used to solve the MILP formulation. Experiments are ran on a machine
Intel Core i4 with 8 GB RAM. For each database, two experiments are conducted. The first one is
to compare LocBra GEDEnA against existing heuristics, while the second one studies the quality of
the solutions obtained by comparing them to the optimal or best known ones found by CPLEX without
time or resource (e.g. RAM) limits. In the first experiment, the following metrics are computed for
each heuristic: tmin, tavg, tmax are the minimum, average and maximum CPU time in seconds for all
instances. Correspondingly, dmin, davg, dmax are the deviation percentages for the solutions obtained by
one heuristic, from the best solutions found. Given an instance I and an heuristicH , deviation percentage
is equal to solutionH

I −bestSolutionI

bestSolutionI
×100, with bestSolutionI is the smallest value found by all heuristics

for I . Lastly, ηI is the number of instances for which a given heuristic has found the best solutions. In

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–7

S 10 20 30 40 50 60 70
LocBra GEDEnA tmin 0.06 0.13 0.28 0.45 0.69 0.95 1.36

tavg 0.17 1.12 212.36 364.86 580.04 753.48 751.44
tmax 2.92 3.63 900.13 900.12 900.17 900.27 900.36
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.06 0.02 0.17 0.59
dmax 0.00 0.00 0.00 3.90 2.03 3.35 5.57
ηI 100 100 100 98 99 93 79

CPLEX-900 tmin 0.06 0.14 0.28 0.49 0.77 1.18 1.70
tavg 0.13 1.02 141.07 247.80 451.40 723.68 745.91
tmax 0.49 3.52 900.20 900.42 900.46 900.71 900.92
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00 0.30 0.55 1.05
dmax 0.00 0.00 0.00 0.00 6.42 5.04 8.57
ηI 100 100 100 100 90 81 68

CPLEX LocBra-180 tmin 0.09 0.22 0.41 0.73 1.03 1.45 1.98
tavg 0.21 1.51 60.36 104.19 141.43 167.59 181.18
tmax 0.74 5.77 182.86 194.08 195.43 217.38 263.60
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.16 1.16 1.41 4.24
dmax 0.00 0.00 0.00 3.90 7.19 6.70 27.20
ηI 100 100 100 94 72 57 41

CPLEX LocBra-800 tmin 0.08 0.21 0.38 0.67 1.01 1.40 1.94
tavg 0.20 1.34 130.26 230.68 424.70 662.58 688.13
tmax 0.71 3.90 802.16 806.16 821.39 839.69 869.65
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.04 0.38 0.60 1.06
dmax 0.00 0.00 0.00 3.90 6.42 5.04 11.27
ηI 100 100 100 99 89 80 69

BeamSearch-5 tmin 0.00 0.00 0.01 0.01 0.02 0.04 0.06
tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.18
tmax 0.07 0.02 0.04 0.11 0.09 0.13 0.22
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 15.17 36.60 47.21 58.69 72.13 62.96 68.71
dmax 110.00 124.59 147.37 186.67 200.00 146.37 210.71
ηI 35 10 10 10 10 10 10

BeamSearch-15000 tmin 0.00 0.00 0.03 0.10 0.55 0.24 2.28
tavg 8.57 80.65 167.48 279.11 439.68 640.29 938.66
tmax 31.52 118.71 230.63 419.73 771.90 878.89 1385.11
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 1.35 26.66 47.45 52.35 63.98 62.57 63.76
dmax 30.00 142.31 165.52 180.00 150.00 157.63 226.79
ηI 88 12 10 10 10 10 10

SBPBeam-5 tmin 0.01 0.08 0.31 1.11 2.69 4.87 9.02
tavg 0.01 0.10 0.45 1.37 3.19 5.56 10.72
tmax 0.05 0.14 0.54 1.60 3.71 6.85 12.79
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 76.45 82.54 98.90 95.02 94.62
dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36
ηI 15 10 10 10 10 10 10

SBPBeam-500 tmin 0.76 9.02 39.85 116.11 288.38 548.04 1019
tavg 0.84 10.02 47.65 139.75 322.43 590.86 1155
tmax 0.96 11.27 54.11 152.34 360.47 657.26 1310
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 76.45 82.54 98.90 95.02 94.62
dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36
ηI 15 10 10 10 10 10 10

Table 3: LocBra GEDEnA vs. literature heuristics on MUTA instances

CPLEX-∞ (4 threads) LocBra GEDEnA (1 thread) LocBra GEDEnA (4 threads)
S tmin tavg tmax ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I tmin tavg tmax dmin davg dmax ηI η′I η′′I
10 0.07 0.12 0.32 100 0.06 0.17 2.92 0.00 0.00 0.00 100 100 0 0.07 0.16 0.48 0.00 0.00 0.00 100 100 0
20 0.15 0.95 19.74 100 0.13 1.12 3.63 0.00 0.00 0.00 100 100 0 0.14 1.00 21.8 0.00 0.00 0.00 100 100 0
30 0.31 101 2865 100 0.28 212 900 0.00 0.00 0.00 78 100 0 0.32 101 900 0.00 0.00 0.00 91 100 0
40 0.52 266 9244 99 0.45 365 900 0.00 0.06 3.90 63 98 0 0.49 179 900 0.00 0.00 0.00 84 100 0
50 0.83 683 4213 92 0.69 580 900 -1.79 0.04 4.14 37 97 1 0.73 435 900 -1.79 0.00 2.07 54 98 1
60 1.24 2419 14732 71 0.95 753 900 -2.68 0.36 3.57 16 82 2 1.09 718 902 -3.31 -0.03 3.21 21 90 6
70 1.80 3740 24185 35 1.36 751 900 -2.67 0.78 8.85 17 52 14 1.48 741 901 -3.90 0.22 3.65 18 60 16

Table 4: LocBra GEDEnA vs. Exact solution on MUTA instances

Barcelona, July 4-7, 2017

id–8 MIC/MAEB 2017

the second experiment, time and deviation metrics are calculated for each method as stated previously.
In addition, ηI , η′I , η

′′
I are, respectively, the number of optimal solutions found, the number of solutions

found that are equal to the optimal or best known ones, and the number solutions that are better than the
best known ones.

Comparative methods: CPLEX-t heuristic is ran on MILP JH , where t represents the time limit
for CPLEX to try finding the optimal solution. The method becomes exact when t is set to∞, therefore
CPLEX will not stop until the optimal solution is found, or there are no more resources available on the
machine, and in this case the solution obtained is referred to as the best known solution. Also, CPLEX
has its own local branching implementation, which gets applied only on nodes of the B&B’s tree where
a new incumbent solution is found. To include it in the evaluation, a feasible solution is computed first
(as an incumbent solution) and then CPLEX local branching is called on the first node of the tree. This
is called CPLEX LocBra-t, with t is the time limit allowed to compute the feasible solution. From the
literature, to the best of our knowledge, the heuristics BeamSearch-α [12] and SBPBeam-α [7] are known
to be the best, so they are chosen in the evaluation (α is the beam size).

Results and analysis:

• PAH tests: In order to set the parameters of the heuristics, preliminary tests were done but are
not shown here. PAH instances are small, which means that CPLEX is capable of finding the
optimal solutions in few seconds. The parameters of LocBra GEDEnA are set to: k = 20,
k dv = 30, total time limit = 12.25s, node time limit = 1.75s, dv max = 5, l max = 3,
dv cons max = 2. For CPLEX with time limit, t = 12.48s. CPLEX LocBra-t is launched with
t = 3.5s. Lastly, α is set to 5 for BeamSearch and SBPBeam as in the experiments done in [7].

The results of the heuristics comparison is shown in Table 1. CPLEX-12.48 has an average de-
viation of 0.05% which is the smallest among all the heuristics. Next LocBra GEDEnA comes
with 0.31%. Clearly, CPLEX-12.48 has performed better than the proposed heuristic. However,
an important note is the dmax: LocBra GEDEnA has 75% against 190.91% for CPLEX-12.48,
which means that the former provides the closest solutions to the best ones in the worst case.
CPLEX LocBra-3.5 comes at the third position, with an average deviation less than 1%. The
beam-search based heuristics are strongly outperformed by the other MILP-based heuristics with
a high average deviation. On the other hand, the beam-search based heuristics seems to be very
fast (tavg < 1s), while the proposed heuristics is the slowest with tavg = 3.03s. Moreover, Table
2 shows the results of comparing the heuristic against the exact solution. CPLEX-∞ is on the
average faster than LocBra GEDEnA but in the worst case CPLEX becomes computationally
expensive (up to 278.20s), while LocBra GEDEnA remains at 12.25s max. Further, the average
deviation is 0.35% with 8702 instances having the same solutions as the optimal ones, shows that
LocBra GEDEnA is able to find the optimal solutions or stay very close to them.

• MUTA tests: The instances of MUTA database are much more difficult to solve than PAH in-
stances, therefore the time limits are increased. LocBra GEDEnA parameters are set to: k = 20,
k dv = 30, total time limit = 900s, node time limit = 180s, dv max = 5, l max = 3,
dv cons max = 2. t is set to 900s in CPLEX heuristic. Then, two cases are considered for
CPLEX local branching: CPLEX LocBra-180 where 180s is spent to compute a feasible solu-
tion, which is the same time as one iteration of LocBra GEDEnA. And CPLEX LocBra-800
spends 800s to find a feasible solution, this will give a time limit ' 900s as the total time limit
of LocBra GEDEnA. For the beam-search based heuristics, and since their performances de-
pend on the beam size, two versions of each are considered: BeamSearch-5, Beam Search-15000,
SBPBeam-5 and SBPBeam-400. The reason for which α is set to 15000 and 400 is to give the
heuristics an average time close to the total time limit (900s) of LocBra GEDEnA. As well in
the exact solution, CPLEX-∞ is set to work with 4 threads to make use of maximum resources of
the machine and the power of CPLEX to find the optimal or best solutions. Then, two versions
of LocBra GEDEnA are considered with the same parameters as stated previously, but the first
version has only 1 thread while the second has 4 threads.

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–9

Based on the results shown in Table 3, the heuristicsLocBra GEDEnA, CPLEX-900, CPLEX LocBra-
180 and CPLEX LocBra-800, which are MILP-based, have the highest ηI for all the subsets, and
they strongly outperform the four beam search-based heuristics. On easy instances (graphs’ sub-
sets between 10 and 40), they have yielded the best solutions for almost all instances (except
few instances for subset 40). However, a major difference starts to appear on hard instances
(subsets 50, 60, 70), where LocBra GEDEnA scores the highest values, with 99, 93, 79 (over
100) best solutions. Next, CPLEX-900 and CPLEX LocBra-800 seem to be very close in the
number of best solutions obtained, however the former is slightly better. CPLEX LocBra-180
comes at fourth place, with less number of best solutions. Remarkably CPLEX-900 achieves
better values than both CPLEX LocBra 180 and 800, which means that the default behavior of
the solver with the default embedded heuristics is more efficient. Considering the average devia-
tions, LocBra GEDEnA on hard instances has the smallest value (davg less than 0.6%), and again
CPLEX-900 and CPLEX LocBra-800 are close with 0% ≤ davg ≤ 1.06%. The beam-search based
heuristics are very poor in terms of solutions quality, their davg are very high (reaches 98.9%) and
the numbers of best solutions are very small. Considering the solution time, BeamSearch-5 and
SBPBeam-5 are the fastest with time between 0 and 10 seconds. Moreover, even after increasing
the beam size, which increases their solution time, both are not able to provide better solutions
and the average deviations remain high. The Results of comparing the proposed heuristic with
the exact solution of MILP JH are reported in Table 4. For easy instances (graphs’ subsets be-
tween 10 and 40), all optimal solutions, but one, are found by CPLEX-∞ (4 threads), and both
LocBra GEDEnA with 1 and 4 threads have 0% as davg (except for 2 instances in subset 40).
This clearly means that the heuristic is able to find the same best solutions. However, in terms of
CPU time, CPLEX-∞ (4 threads) spent more time (> 900s) proving optimality, while the heuris-
tic has reached the same solutions with less time (max of 900sec). For hard instances, davg is
always less than 1%, and even less than 0% (−0.03%) with LocBra GEDEnA (4 threads) for
subset 60. It is important to note as well, that the CPU time drastically increases for CPLEX-∞
and reaches thousands (tavg = 3740s), while the heuristic has a max tavg = 751s. η′′I for hard
instances reveals that the heuristics have outperformed CPLEX-∞ and found improved solutions
(better than the best ones obtained) for 17 instances with 1 thread and 23 instances with 4 threads.
As a conclusion, LocBra GEDEnA is capable of finding the optimal or best solutions as CPLEX
in exact solution mode, and even better in some cases.

Based on all the experiments reported in this section, the proposed local branching heuristic signifi-
cantly improves the literature heuristics and provides near optimal solutions. This is due, to the analysis
and the branching scheme combined with the efficiency reached by CPLEX when solving MILP JH

model. A second important element is the diversification procedure which is problem dependent and
really helps the algorithm to escape local optima.

5 Conclusion

This work presents a local branching heuristic for GEDEnA problem based on the MILP JH formula-
tion presented in [9]. Starting from an initial solution, the heuristic mainly focuses on searching locally
in a specific neighborhood for an improved solution. In addition, to avoid getting stuck in local minima,
it uses a specific diversification mechanism, that ensures defining and visiting important neighborhoods.
Next, the heuristic is evaluated on two databases of chemical graphs MUTA and PAH. Two factors are
considered, the solution time and the solutions quality in comparison to other heuristics, and the solutions
closeness to the optimal or best known ones. The results on easy instances (PAH database) show that the
heuristic is capable of finding very good solutions in a short period of time and compete with CPLEX in
the exact mode. The results obtained on MUTA database confirm the large superiority of the proposed
local branching heuristic over the literature heuristics. Remarkably, the local branching heuristic is gen-
eral enough to be tested on the GED problem at the cost of replacing MILP JH model by a model valid
for this problem. Tackling the general problem is planned as next step in the near future.

Barcelona, July 4-7, 2017

id–10 MIC/MAEB 2017

References

[1] Zeina Abu-Aisheh, Romain Raveaux, and Jean-Yves Ramel. A graph database repository and
performance evaluation metrics for graph edit distance. In Graph-Based Representations in Pattern
Recognition - 10th IAPR-TC-15.Proceedings, pages 138–147, 2015.

[2] Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario
Vento. Graph edit distance as a quadratic assignment problem. Pattern Recognition Letters, 2016.

[3] Luc Brun. Greyc’s chemistry dataset. https://brunl01.users.greyc.fr/CHEMISTRY/.

[4] Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern
Recognition Letters, 18(8):689–694, 1997.

[5] Horst Bunke. Error correcting graph matching: On the influence of the underlying cost function.
IEEE transactions on pattern analysis and machine intelligence, 21(9):917–922, 1999.

[6] Horst Bunke and Gudrun Allermann. Inexact graph matching for structural pattern recognition.
Pattern Recognition Letters, 1(4):245–253, 1983.

[7] Miquel Ferrer, Francesc Serratosa, and Kaspar Riesen. Improving bipartite graph matching by
assessing the assignment confidence. Pattern Recognition Letters, 65:29–36, 2015.

[8] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming, 98(1-3):23–47,
2003.

[9] Derek Justice and Alfred Hero. A binary linear programming formulation of the graph edit distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200–1214, 2006.

[10] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. Exact
graph edit distance computation using a binary linear program. In Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pages 485–495. Springer, 2016.

[11] James Munkres. Algorithms for the assignment and transportation problems. Journal of the society
for industrial and applied mathematics, 5(1):32–38, 1957.

[12] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
of graph edit distance. In Joint IAPR International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages 163–172.
Springer, 2006.

[13] Romain Raveaux, Jean-Christophe Burie, and Jean-Marc Ogier. Structured representations in
a content based image retrieval context. J. Visual Communication and Image Representation,
24(8):1252–1268, 2013.

[14] John W Raymond and Peter Willett. Maximum common subgraph isomorphism algorithms for
the matching of chemical structures. Journal of computer-aided molecular design, 16(7):521–533,
2002.

[15] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Bipartite graph matching for computing the
edit distance of graphs. In International Workshop on Graph-Based Representations in Pattern
Recognition, pages 1–12. Springer, 2007.

[16] Francesc Serratosa. Fast computation of bipartite graph matching. Pattern Recognition Letters,
45:244–250, 2014.

Barcelona, July 4-7, 2017

