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The Graph Edit Distance Problem treated by the Local Branching Heuristic

The Graph Edit Distance (GED) is a well-known problem to match graphs. Solving the GED problem allows computing a dissimilarity measure between graphs that normally represent objects and patterns. It is known to be very flexible and can work on any type of graphs. GED EnA (Edges no Attributes) is a sub-problem of GED that deals with a special type of graphs where edges do not carry attributes. Both are modeled as minimization problems and proven to be NP-Hard, they are exponential in the number of vertices of graphs. A great effort has been made to provide heuristic approaches with a compromise between the execution time and the solution quality. In addition, GED EnA can be expressed efficiently by means of mathematical programming tools to generate Mixed Integer Linear Program (MILP) models. The present work takes advantage of a powerful MILP model and proposes a heuristic called Local Branching to solve the GED EnA problem. Mainly, a MILP model is iteratively modified by adding additional constraints to define neighborhoods in the solution space which are explored using a black-box solver. A problem-dependent exploration is performed to find efficient solutions. Lastly, the proposed heuristic is evaluated considering two factors: its computational time and solution quality against literature heuristics and exact methods.

Introduction

Graph-based representation is a well-known tool to represent patterns and objects. Graphs are able to depict the components of a pattern by means of vertices, and relational properties between them using edges. Both vertices and edges can carry information and characteristics about the pattern through attributes. Moreover, comparing graphs is considered as an important task since it is very useful in pattern search and classification, and it is also known as the Graph Matching (GM) problem. GM problem is very popular in many fields such as computer vision, pattern recognition, biology and chemistry [START_REF] Raveaux | Structured representations in a content based image retrieval context[END_REF][START_REF] Willett | Maximum common subgraph isomorphism algorithms for the matching of chemical structures[END_REF]. However, for many years it has been a difficult problem to deal with, due to its computational complexity, especially for large graphs.

Graph Edit Distance (GED) problem belongs to the family of GM problems. It provides a dissimilarity measure between two graphs [START_REF] Bunke | Inexact graph matching for structural pattern recognition[END_REF], by computing the cost of editing one graph to transform it into another one. The set of edit operations are substitution, insertion and deletion, and can be applied on both vertices and edges. Solving the GED problem consists in finding the set of edit operations that minimizes the total cost. It has received attention in the past years, because in many work it has been shown that changing the cost metric properties can result in solving other GM problems like maximum common subgraph, graph and subgraph isomorphism [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF][START_REF] Bunke | Error correcting graph matching: On the influence of the underlying cost function[END_REF]. However, GED problem remains a difficult problem and many work has been carried out tackling it with heuristic algorithms, in order to compute good solutions in a reasonable amount of time. The works in [START_REF] Riesen | Bipartite graph matching for computing the edit distance of graphs[END_REF][START_REF] Serratosa | Fast computation of bipartite graph matching[END_REF] present fast algorithms, which mainly solve the linear sum assignment problem for vertices, and then deduce the edges assignment. In these algorithms, the vertices cost matrix includes information about the edges, through estimating the edges assignment cost implied by assigning two vertices from different graphs. However, one drawback in this approach is that, it takes into account only local structures, rather than the global one. Other algorithms based on beam search are presented in [START_REF] Ferrer | Improving bipartite graph matching by assessing the assignment confidence[END_REF][START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF]. The first one builds the search tree for all vertices and edges assignment combinations, then only the beam-size nodes are processed. While the second computes an initial solution based on [START_REF] Riesen | Bipartite graph matching for computing the edit distance of graphs[END_REF] and then tries to improve it by swapping two pairs of assigned vertices. The enumeration of the vertices to be permutated is carried out through a beam search. In the exact solution context, GED problem has been addressed by means of mathematical programming and formulations e.g. linear formulations as in [START_REF] Lerouge | Exact graph edit distance computation using a binary linear program[END_REF] or quadratic formulations as in [START_REF] Bougleux | Graph edit distance as a quadratic assignment problem[END_REF]. A sub-problem of GED is the GED EnA where edges do not carry attributes. The same aforementioned heuristics and exact solution methods can be applied to the GED EnA problem, in addition, a very efficient M ILP JH model is found in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF] that works only for the GED EnA . Knowing that GED EnA problem is applied in Structure-Activity Relationships domain and considered to be very important [START_REF] Willett | Maximum common subgraph isomorphism algorithms for the matching of chemical structures[END_REF], there is still a need for having powerful and efficient heuristics for this particular sub-problem.

This work proposes the use of Local Branching (LocBra) heuristic to solve the GED EnA . It is presented originally in [START_REF] Fischetti | Local branching[END_REF] as a general metaheuristic for Mixed Integer Linear Program (MILP). It makes use of a MILP solver in order to explore the solution space, through a defined branching scheme. As well, it involves techniques, such as intensification and diversification during the exploration. To the best of our knowledge, M ILP JH is the most efficient model for GED EnA problem, thus it has been chosen in the implementation of LocBra. An adapted version of LocBra is then designed, along with a very efficient diversification mechanism. Henceforth, the heuristic is referred to as LocBra GED EnA . Subsequently, it is evaluated and compared with existing heuristic algorithms and an exact method.

The remainder is organized as follows: Section 2 presents the definition of GED EnA problem and a review of M ILP JH model. Then, Section 3 details the proposed heuristic, and Section 4 shows the results of the computational experiments. Finally, Section 5 highlights some concluding remarks.

GED EnA definition and M ILP JH model

To introduce the general Graph Edit Distance (GED) problem, the definition of attributed and directed graph is given first. Definition 1. An attributed and directed graph is a 4-tuple G = (V, E, µ, ξ) where, V is the set of vertices, E is the set of edges, such that E ⊆ V × V , µ : V → L V (resp. ξ : E → L E ) is the function that assigns attributes to a vertex (resp. an edge), and L V (resp. L E ) is the label space for vertices (resp. edges).

Next, given two graphs G = (V, E, µ, ξ) and G = (V , E , µ , ξ ), solving the GED problem consists in transforming one graph source into another graph target. To accomplish this, some vertices and edges edit operations are available: (u → v) is the substitution of two vertices, (u → ) is the deletion of a vertex, and ( → v) is the insertion of a vertex, with u ∈ V, v ∈ V and refers to the empty vertex. The same logic goes for the edges. The set of operations that reflects a valid transformation of G into G is called a complete edit path, defined as λ(G, G ) = {e i , i ∈ {1, n}} where e i is an elementary vertex (or edge) edit operation and n is the number of operations. Definition 2. The Graph Edit Distance between two graphs G and G is defined by:

d min (G, G ) = min λ∈Γ(G,G ) e i ∈λ(G,G ) c(e i ) (1) 
where Γ(G, G ) is the set of all complete edit paths, d min represents the minimal cost obtained by a complete edit path λ(G, G ), and c is a function that assigns the costs to elementary edit operations.

For GED EnA problem, the graphs are the same as in Definition 1, but with L E = {φ}. Consequently, the costs of edge edit operations are 0 for substitution and a constant for insertion and deletion (i.e. c(e → f ) = 0, c(e

→ ) = const, c( → f ) = const, ∀e, f ∈ E).
M ILP JH is a model proposed in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF] that solves the GED EnA problem. The main idea consists in determining the permutation matrix minimizing the L 1 norm of the difference between adjacency matrix Barcelona, July 4-7, 2017 of the input graph and the permuted adjacency matrix of the target one. The details about the construction of the model can be found in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF]. The model is as follows:

min P,S,T ∈{0,1} N ×N N i=1 N j=1 c µ(u i ), µ (v j ) P ij + 1 2 × const × (S + T ) ij (2) 
such that

AP -P A + S -T ij = 0 ∀i, j ∈ {1, N } (3) 
N i=1 P ik = N j=1 P kj = 1 ∀k ∈ {1, N } (4) 
where A and A are the adjacency matrices of graphs G and G respectively, c : (µ(u i ), µ (v j )) → R + is the cost function that measures the distance between two vertices attributes. As for P, S and T , they are the permutation matrices of size N × N , and of boolean type, with N = |V | + |V |. P represents the vertices matching e.g.

P ij = 1 means a vertex i ∈ V ∪ { } is matched with vertex j ∈ V ∪ { }.
While S and T are for edges matching. Hence, the objective function (Eq. 2) minimizes both, the cost of vertices and edges matching. As for constraint 3, it is to make sure that when matching two couples of vertices, the edges between each couple have to be mapped. Constraint 4 guarantees the integrity of P .

Local Branching Heuristic for GED EnA

As presented in [START_REF] Fischetti | Local branching[END_REF], LocBra heuristic is a local search approach that makes use of MILP solver to explore the neighborhoods of solutions through a branching scheme. In addition, it involves mechanisms such as intensification and diversification. Starting from an initial solution x 0 , it defines the k-opt neighborhood N (x 0 , k), with k a given integer. In other words, the neighborhood set contains the solutions that are within a distance no more than k from x 0 (in the sense of Hamming distance). This implies adding the following local branching constraint to the base M ILP JH model:

∆(x, x 0 ) = j∈S 0 (1 -x j ) + j∈B\S 0 x j ≤ k (5) 
such that, B is the index set of binary variables defined in the model, and 5 while elapsed time < total time limit and dv < dv max and dv cons < dv cons max do 6 tl := min{tl, total time limitelapsed time}; is found, the constraint (Eq. 5) is replaced by ∆(x, x 0 ) ≥ k + 1, at the right branch (node 3 in Fig. 1-a). Next, a left branch is recreated but now using x 1 , and the process is repeated until a stopping criterion is met e.g. a total time limit is reached. However, and since solving sub-problems (with local branching constraints) may not be possible in a reasonable time, a node time limit is imposed at each branch. Therefore, it cannot be generalized that an improved solution could be found at a branch, due to reasons such as node time limit is reached, or the problem has become infeasible. For instance, assuming that at node 6 (Fig. 1-a) the solution of model M ILP JH plus equation ∆(x, x 2 ) ≤ k does not lead to a feasible solution in the given limit. It might be interesting to apply a complementary intensification phase, by adding constraint ∆(x, x 2 ) ≤ k/2 and solving the new model. If again, no feasible solution is found (e.g. node 7 of Fig. 1-a), then a diversification phases is applied to jump to another point in the solution space (e.g. node 8). Fig. 1-b shows the evolution of the solution search and the neighborhoods.

S 0 = {j ∈ B : {x 0 } j = 1}.
LocBra GED EnA is a modified and adapted version to deal with the GED EnA problem, and is detailed in Algo. 1. The input parameters are: ik is the neighborhood size, iik dv is for diversification to skip current solution, iiitotal time limit stopping criterion, represents the total running time, ivnode time limit forces the solver to exit and return the found solution (if any), vdv max stopping criterion, is the number of diversification allowed, vil max is to force a diversification after a sequence of branching returning the same solutions, viidv cons max serves as a stopping criterion, in case consecutive diversifications have returned the same solutions, then the heuristic will stop. As for the output, the algorithm returns the best solution found x * , and the optimality opt status. In detail, function LocBraGED describes the flow of the heuristic, it starts by calling the InitLocBraGED function, which initializes the heuristic by getting a first solution x. It calls function MIP SOLVER to solve the model as it is, with a time limit. If at this point, the model is solved to optimality or proven infeasible, the heuristic halts and returns the available solution and status. Else, the initial solution is set and the exploration begins. A loop takes place until at least one of the stopping criterion is violated. At each iteration and after a left/right branching constraint is added, the solver is called again and the returned status is considered to make the next decision. Three main cases may occur: i-The Optimal solution is found (line 11), and two cases must be distinguished. Either x (new solution) is better than x (current solution), then ImprovedSolution is called to switch the current and best (if needed) solutions, also to add the local branching constraints and define a new neighborhood. Or it has found the same solution x, thus Diversification is called to skip the current neighborhood. Diversification function ensures that the current solution is skipped with a distance k dv, and the upper bound U B is reset to ∞. ii-The model is infeasible (line 14), therefore Diversification is triggered to switch the last local branching constraint and look into a new neighborhood. iii-A feasible solution is returned (line 15). This is very close to case i-, except when a worse solution is found (V alueOf (x) < U B), an Intensification step is introduced. It shrinks the neighborhood by k/2 to boost the exploration. However, a failed Intensification is then followed by a Diversification. In addition, there is the condition (at line 10) that forces the diversification, in the case where l max iterations have returned the same solution. This in turn guarantees the exploration of many neighborhoods, regardless of the new solutions' quality (whether better or worse).

The key point of this heuristic is the selection of the variables while branching. For instance, the x vector in ∆(x, x) contains only the set of binary variables that represent the vertices assignment (edges assignment are excluded). The reason behind this relies on the fact that edges assignment are driven by the vertices assignment, i.e. deleting one vertex implies deleting all edges that are connected to it, this is based on the definition of the GED EnA problem. For diversification, it is slightly different, a vector x imp is defined such that, instead of forcing k dv flips over the whole set of vertices assignment variables, it is done over a subset of important variables. The selection of these variables is based on the assumption that one variable is important if changing its value from 1 → 0 (or the opposite) highly impacts the objective function's value. This, in turn, helps skipping local solutions and change the matching. Accordingly, the selection of variables in x imp is done by computing a special cost matrix 

[C ij ] for each possible assignment of a vertex i ∈ V ∪ { }, to a vertex j ∈ V ∪ { }. Each value C ij = c ij +θ ij ,

Computational Experiments

This section shows the computational experiments conducted to evaluate the efficiency of LocBra GED EnA heuristic, with respect to the literature algorithms. These experiments have been done on reference databases from Pattern Recognition community, where researches have introduced the GM problems. Therefore, two databases of chemical molecules graphs are chosen, MUTA [START_REF] Abu-Aisheh | A graph database repository and performance evaluation metrics for graph edit distance[END_REF] and PAH [START_REF] Brun | Greyc's chemistry dataset[END_REF]. The first one contains different subsets of small and large graphs and is known to be difficult to solve. It has 7 subsets, each of which has 10 graphs of same size (10 to 70 vertices). The second database contains 94 graphs, with at most 28 vertices. Each pair of graphs is considered as an instance. Therefore, MUTA has a total of 700 instances (100 per subset) and PAH has 8836 instances. Experiment settings and evaluation metrics: LocBra GED EnA algorithm is implemented in C. The solver CPLEX 12.6.0 is used to solve the MILP formulation. Experiments are ran on a machine Intel Core i4 with 8 GB RAM. For each database, two experiments are conducted. The first one is to compare LocBra GED EnA against existing heuristics, while the second one studies the quality of the solutions obtained by comparing them to the optimal or best known ones found by CPLEX without time or resource (e.g. RAM) limits. In the first experiment, the following metrics are computed for each heuristic: t min , t avg , t max are the minimum, average and maximum CPU time in seconds for all instances. Correspondingly, d min , d avg , d max are the deviation percentages for the solutions obtained by one heuristic, from the best solutions found. Given an instance I and an heuristic H, deviation percentage is equal to the second experiment, time and deviation metrics are calculated for each method as stated previously.

In addition, η I , η I , η I are, respectively, the number of optimal solutions found, the number of solutions found that are equal to the optimal or best known ones, and the number solutions that are better than the best known ones.

Comparative methods: CPLEX-t heuristic is ran on M ILP JH , where t represents the time limit for CPLEX to try finding the optimal solution. The method becomes exact when t is set to ∞, therefore CPLEX will not stop until the optimal solution is found, or there are no more resources available on the machine, and in this case the solution obtained is referred to as the best known solution. Also, CPLEX has its own local branching implementation, which gets applied only on nodes of the B&B's tree where a new incumbent solution is found. To include it in the evaluation, a feasible solution is computed first (as an incumbent solution) and then CPLEX local branching is called on the first node of the tree. This is called CPLEX LocBra-t, with t is the time limit allowed to compute the feasible solution. From the literature, to the best of our knowledge, the heuristics BeamSearch-α [START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF] and SBPBeam-α [START_REF] Ferrer | Improving bipartite graph matching by assessing the assignment confidence[END_REF] are known to be the best, so they are chosen in the evaluation (α is the beam size).

Results and analysis:

• PAH tests: In order to set the parameters of the heuristics, preliminary tests were done but are not shown here. PAH instances are small, which means that CPLEX is capable of finding the optimal solutions in few seconds. The parameters of LocBra GED EnA are set to: k = 20, k dv = 30, total time limit = 12.25s, node time limit = 1.75s, dv max = 5, l max = 3, dv cons max = 2. For CPLEX with time limit, t = 12.48s. CPLEX LocBra-t is launched with t = 3.5s. Lastly, α is set to 5 for BeamSearch and SBPBeam as in the experiments done in [START_REF] Ferrer | Improving bipartite graph matching by assessing the assignment confidence[END_REF].

The results of the heuristics comparison is shown in Table 1. CPLEX-12.48 has an average deviation of 0.05% which is the smallest among all the heuristics. Next LocBra GED EnA comes with 0.31%. Clearly, CPLEX-12.48 has performed better than the proposed heuristic. However, an important note is the d max : LocBra GED EnA has 75% against 190.91% for CPLEX-12.48, which means that the former provides the closest solutions to the best ones in the worst case. CPLEX LocBra-3.5 comes at the third position, with an average deviation less than 1%. The beam-search based heuristics are strongly outperformed by the other MILP-based heuristics with a high average deviation. On the other hand, the beam-search based heuristics seems to be very fast (t avg < 1s), while the proposed heuristics is the slowest with t avg = 3.03s. Moreover, Table 2 shows the results of comparing the heuristic against the exact solution. CPLEX-∞ is on the average faster than LocBra GED EnA but in the worst case CPLEX becomes computationally expensive (up to 278.20s), while LocBra GED EnA remains at 12.25s max. Further, the average deviation is 0.35% with 8702 instances having the same solutions as the optimal ones, shows that LocBra GED EnA is able to find the optimal solutions or stay very close to them.

• MUTA tests: The instances of MUTA database are much more difficult to solve than PAH instances, therefore the time limits are increased. LocBra GED EnA parameters are set to: k = 20, k dv = 30, total time limit = 900s, node time limit = 180s, dv max = 5, l max = 3, dv cons max = 2. t is set to 900s in CPLEX heuristic. Then, two cases are considered for CPLEX local branching: CPLEX LocBra-180 where 180s is spent to compute a feasible solution, which is the same time as one iteration of LocBra GED EnA . And CPLEX LocBra-800 spends 800s to find a feasible solution, this will give a time limit 900s as the total time limit of LocBra GED EnA . For the beam-search based heuristics, and since their performances depend on the beam size, two versions of each are considered: BeamSearch-5, Beam Search-15000, SBPBeam-5 and SBPBeam-400. The reason for which α is set to 15000 and 400 is to give the heuristics an average time close to the total time limit (900s) of LocBra GED EnA . As well in the exact solution, CPLEX-∞ is set to work with 4 threads to make use of maximum resources of the machine and the power of CPLEX to find the optimal or best solutions. This clearly means that the heuristic is able to find the same best solutions. However, in terms of CPU time, CPLEX-∞ (4 threads) spent more time (> 900s) proving optimality, while the heuristic has reached the same solutions with less time (max of 900sec). For hard instances, d avg is always less than 1%, and even less than 0% (-0.03%) with LocBra GED EnA (4 threads) for subset 60. It is important to note as well, that the CPU time drastically increases for CPLEX-∞ and reaches thousands (t avg = 3740s), while the heuristic has a max t avg = 751s. η I for hard instances reveals that the heuristics have outperformed CPLEX-∞ and found improved solutions (better than the best ones obtained) for 17 instances with 1 thread and 23 instances with 4 threads. As a conclusion, LocBra GED EnA is capable of finding the optimal or best solutions as CPLEX in exact solution mode, and even better in some cases.

Based on all the experiments reported in this section, the proposed local branching heuristic significantly improves the literature heuristics and provides near optimal solutions. This is due, to the analysis and the branching scheme combined with the efficiency reached by CPLEX when solving M ILP JH model. A second important element is the diversification procedure which is problem dependent and really helps the algorithm to escape local optima.

Conclusion

This work presents a local branching heuristic for GED EnA problem based on the M ILP JH formulation presented in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF]. Starting from an initial solution, the heuristic mainly focuses on searching locally in a specific neighborhood for an improved solution. In addition, to avoid getting stuck in local minima, it uses a specific diversification mechanism, that ensures defining and visiting important neighborhoods. Next, the heuristic is evaluated on two databases of chemical graphs MUTA and PAH. Two factors are considered, the solution time and the solutions quality in comparison to other heuristics, and the solutions closeness to the optimal or best known ones. The results on easy instances (PAH database) show that the heuristic is capable of finding very good solutions in a short period of time and compete with CPLEX in the exact mode. The results obtained on MUTA database confirm the large superiority of the proposed local branching heuristic over the literature heuristics. Remarkably, the local branching heuristic is general enough to be tested on the GED problem at the cost of replacing M ILP JH model by a model valid for this problem. Tackling the general problem is planned as next step in the near future.
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 2 LocBra GED EnA vs. Exact solution on PAH instances cost of assigning the set of edges E

i = {(i, v) ∈ E} to E j = {(j, v ) ∈ E }. This assignment problem, of size max(|E i |, |E j |) × max(|E i |, |E j |)

, is solved by the Hungarian algorithm

[START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF] 

which requires (O(max(|E i |, |E j |) 3 )) time. Next, the standard deviation is computed at each row of the matrix [C ij ], resulting in a vector [σ i ]. Then, they are split into two clusters min and max, by starting with the minimum σ min and maximum σ max values as the centers of the clusters.

∀i ∈ V ∪ { } if |σ i -avg min | < |σ iavg max | then σ i → min, otherwise σ i → max,

with avg min and avg max are the averages of the existing values in the clusters. Finally, for every σ i belonging to max cluster, all {x ij , ∀j ∈ |V | ∪ { }} variables are added to x imp . Henceforth, the diversification constraint is ∆(x imp , x) ≥ k dv . Consequently, the local structure of a vertex is considered to assess its influence on the objective function value. Preliminary experiments, not reported here, have shown that such diversification helps improving the local branching heuristic better than the original diversification defined in

[START_REF] Fischetti | Local branching[END_REF]

.

  × 100, with bestSolution I is the smallest value found by all heuristics for I. Lastly, η I is the number of instances for which a given heuristic has found the best solutions. In
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		S	10	20	30	40	50	60	70
	LocBra GED EnA	t min	0.06	0.13	0.28	0.45	0.69	0.95	1.36
		t avg	0.17	1.12	212.36	364.86	580.04	753.48	751.44
		t max	2.92	3.63	900.13	900.12	900.17	900.27	900.36
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	0.00	0.00	0.00	0.06	0.02	0.17	0.59
		d max	0.00	0.00	0.00	3.90	2.03	3.35	5.57
		η I	100	100	100	98	99	93	79
	CPLEX-900	t min	0.06	0.14	0.28	0.49	0.77	1.18	1.70
		t avg	0.13	1.02	141.07	247.80	451.40	723.68	745.91
		t max	0.49	3.52	900.20	900.42	900.46	900.71	900.92
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	0.00	0.00	0.00	0.00	0.30	0.55	1.05
		d max	0.00	0.00	0.00	0.00	6.42	5.04	8.57
		η I	100	100	100	100	90	81	68
	CPLEX LocBra-180	t min	0.09	0.22	0.41	0.73	1.03	1.45	1.98
		t avg	0.21	1.51	60.36	104.19	141.43	167.59	181.18
		t max	0.74	5.77	182.86	194.08	195.43	217.38	263.60
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	0.00	0.00	0.00	0.16	1.16	1.41	4.24
		d max	0.00	0.00	0.00	3.90	7.19	6.70	27.20
		η I	100	100	100	94	72	57	41
	CPLEX LocBra-800	t min	0.08	0.21	0.38	0.67	1.01	1.40	1.94
		t avg	0.20	1.34	130.26	230.68	424.70	662.58	688.13
		t max	0.71	3.90	802.16	806.16	821.39	839.69	869.65
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	0.00	0.00	0.00	0.04	0.38	0.60	1.06
		d max	0.00	0.00	0.00	3.90	6.42	5.04	11.27
		η I	100	100	100	99	89	80	69
	BeamSearch-5	t min	0.00	0.00	0.01	0.01	0.02	0.04	0.06
		t avg	0.00	0.00	0.01	0.03	0.07	0.11	0.18
		t max	0.07	0.02	0.04	0.11	0.09	0.13	0.22
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	15.17	36.60	47.21	58.69	72.13	62.96	68.71
		d max	110.00	124.59	147.37	186.67	200.00	146.37	210.71
		η I	35	10	10	10	10	10	10
	BeamSearch-15000	t min	0.00	0.00	0.03	0.10	0.55	0.24	2.28
		t avg	8.57	80.65	167.48	279.11	439.68	640.29	938.66
		t max	31.52	118.71	230.63	419.73	771.90	878.89	1385.11
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	1.35	26.66	47.45	52.35	63.98	62.57	63.76
		d max	30.00	142.31	165.52	180.00	150.00	157.63	226.79
		η I	88	12	10	10	10	10	10
	SBPBeam-5	t min	0.01	0.08	0.31	1.11	2.69	4.87	9.02
		t avg	0.01	0.10	0.45	1.37	3.19	5.56	10.72
		t max	0.05	0.14	0.54	1.60	3.71	6.85	12.79
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	20.43	44.90	76.45	82.54	98.90	95.02	94.62
		d max	90.00	127.87	206.90	204.71	314.29	198.50	280.36
		η I	15	10	10	10	10	10	10
	SBPBeam-500	t min	0.76	9.02	39.85	116.11	288.38	548.04	1019
		t avg	0.84	10.02	47.65	139.75	322.43	590.86	1155
		t max	0.96	11.27	54.11	152.34	360.47	657.26	1310
		d min	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		d avg	20.43	44.90	76.45	82.54	98.90	95.02	94.62
		d max	90.00	127.87	206.90	204.71	314.29	198.50	280.36
		η I	15	10	10	10	10	10	10
	solution H I -bestSolution I							
	bestSolution I								
	Barcelona, July 4-7, 2017								

Table 3 :

 3 LocBra GED EnA vs. literature heuristics on MUTA instances

		CPLEX-∞ (4 threads)	LocBra GED EnA (1 thread)			LocBra GED EnA (4 threads)		
	S	tmin tavg	tmax	η I	tmin tavg tmax dmin davg dmax η I	η I	η I	tmin tavg tmax dmin davg dmax η I	η I	η I
	10	0.07 0.12 0.32	100	0.06 0.17 2.92 0.00 0.00 0.00 100 100 0	0.07 0.16 0.48 0.00 0.00 0.00 100 100 0
	20	0.15 0.95 19.74 100	0.13 1.12 3.63 0.00 0.00 0.00 100 100 0	0.14 1.00 21.8 0.00 0.00 0.00 100 100 0
	30	0.31 101	2865	100	0.28 212 900	0.00 0.00 0.00 78	100 0	0.32 101 900	0.00 0.00 0.00 91	100 0
	40	0.52 266	9244	99	0.45 365 900	0.00 0.06 3.90 63	98	0	0.49 179 900	0.00 0.00 0.00 84	100 0
	50	0.83 683	4213	92	0.69 580 900	-1.79 0.04 4.14 37	97	1	0.73 435 900	-1.79 0.00 2.07 54	98	1
	60	1.24 2419 14732 71	0.95 753 900	-2.68 0.36 3.57 16	82	2	1.09 718 902	-3.31 -0.03 3.21 21	90	6
	70	1.80 3740 24185 35	1.36 751 900	-2.67 0.78 8.85 17	52	14	1.48 741 901	-3.90 0.22 3.65 18	60	16

Table 4 :

 4 LocBra GED EnA vs. Exact solution on MUTA instances

	Barcelona, July 4-7, 2017

  Then, two versions of LocBra GED EnA are considered with the same parameters as stated previously, but the first version has only 1 thread while the second has 4 threads.Based on the results shown in Table3, the heuristics LocBra GED EnA , CPLEX-900, CPLEX LocBra-180 and CPLEX LocBra-800, which are MILP-based, have the highest η I for all the subsets, and they strongly outperform the four beam search-based heuristics. On easy instances (graphs' subsets between 10 and 40), they have yielded the best solutions for almost all instances (except few instances for subset 40). However, a major difference starts to appear on hard instances (subsets 50, 60, 70), where LocBra GED EnA scores the highest values, with 99, 93, 79 (over 100) best solutions. Next, CPLEX-900 and CPLEX LocBra-800 seem to be very close in the number of best solutions obtained, however the former is slightly better. CPLEX LocBra-180 comes at fourth place, with less number of best solutions. Remarkably CPLEX-900 achieves better values than both CPLEX LocBra 180 and 800, which means that the default behavior of the solver with the default embedded heuristics is more efficient. Considering the average deviations, LocBra GED EnA on hard instances has the smallest value (d avg less than 0.6%), and again CPLEX-900 and CPLEX LocBra-800 are close with 0% ≤ d avg ≤ 1.06%. The beam-search based heuristics are very poor in terms of solutions quality, their d avg are very high (reaches 98.9%) and the numbers of best solutions are very small. Considering the solution time, BeamSearch-5 and SBPBeam-5 are the fastest with time between 0 and 10 seconds. Moreover, even after increasing the beam size, which increases their solution time, both are not able to provide better solutions and the average deviations remain high. The Results of comparing the proposed heuristic with the exact solution of M ILP JH are reported in Table4. For easy instances (graphs' subsets between 10 and 40), all optimal solutions, but one, are found by CPLEX-∞ (4 threads), and both LocBra GED EnA with 1 and 4 threads have 0% as d avg (except for 2 instances in subset 40).
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