
HAL Id: hal-01564019
https://hal.science/hal-01564019

Submitted on 18 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Dataflow Model for Efficient Programming
of Clustered Manycore Processors

Julien Hascoët, Karol Desnos, Jean-François Nezan, Benoît Dupont de
Dinechin

To cite this version:
Julien Hascoët, Karol Desnos, Jean-François Nezan, Benoît Dupont de Dinechin. Hierarchical
Dataflow Model for Efficient Programming of Clustered Manycore Processors. 28th Annual IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP 2017),
Jul 2017, Seattle, WA, United States. �hal-01564019�

https://hal.science/hal-01564019
https://hal.archives-ouvertes.fr

Hierarchical Dataflow Model for Efficient
Programming of Clustered Manycore Processors

Julien Hascoët1,2, Karol Desnos2, Jean-François Nezan2, Benoı̂t Dupont de Dinechin1
1 Kalray, Montbonnot-Saint-Martin, France

2 IETR, INSA Rennes, CNRS UMR 6164, UBL, Rennes, France
email: {jhascoet, benoit.dinechin}@kalray.eu, {kdesnos, jnezan}@insa-rennes.fr

Abstract—Programming Multiprocessor Systems-on-Chips
(MPSoCs) with hundreds of heterogeneous Processing Elements
(PEs), complex memory architectures, and Networks-on-Chips
(NoCs) remains a challenge for embedded system designers.
Dataflow Models of Computation (MoCs) are increasingly
used for developing parallel applications as their high-level of
abstraction eases the automation of mapping, task scheduling
and memory allocation onto MPSoCs. This paper introduces a
technique for deploying hierarchical dataflow graphs efficiently
onto MPSoC. The proposed technique exploits different
granularity of dataflow parallelism to generate both NoC-based
communications and nested OpenMP loops. Deployment of an
image processing application on a many-core MPSoC results in
speedups of up to 58.7 compared to the sequential execution.

I. INTRODUCTION

After decades of exponential growth, the processing capa-
bility of individual PEs have leveled-off, due to complexity
and power consumption considerations. In order to cope with
the rising complexity of modern embedded applications, such
as wireless communications or computer vision algorithms,
MPSoCs have now increased their processing capabilities by
integrating more and more PEs, a wide variety of memory ar-
chitectures, and complex on-chip interconnects. For example,
KeyStone is a shared memory architecture, whereas Epiphany
adopts a distributed memory architecture. Clustered architec-
tures [1] are also a promising step towards high performance
on-chip computing. A clustered architecture consists of a set
of clusters communicating through a NoC, where a cluster
designates a set of PEs sharing a local memory.

High-level Application Programming Interfaces (APIs)
OpenMP and OpenCL are widely used to program multi-
core architectures. Compared to manual thread programming,
these APIs ease the specification of parallel computation,
notably by relieving the developer from explicitly specifying
thread synchronizations. Despite their high-level abstraction
of parallelism, portability of OpenCL and OpenMP code is
not optimal. Indeed, the implementation efficiency of a given
OpenMP or OpenCL code will be different depending on the
targeted architecture and runtime; and the developer will often
have to adapt its code depending on the targeted architecture.

Dataflow MoCs are widely used for the specification of
data-driven algorithms in many application areas. A dataflow
graph is composed of communication edges representing First-
In First-Out queues (FIFOs), that connect vertices (actors)
responsible for performing computations. Dataflow MoCs are

architecture agnostic, which makes them highly valuable for
the specification of applications that can be deployed on a
wide variety of embedded systems. The process responsible for
generating efficient multi-core code from a portable dataflow
description, for a specified target architecture, is called soft-
ware synthesis [2].

The Synchronous Dataflow (SDF) MoC introduced in [3]
is a specialization of the dataflow MoC that specifies for
each FIFO the fixed number of data tokens produced and
consumed at each execution (firing) of connected actors. SDF
is probably the most studied dataflow MoC. Its popularity
is largely due to its analyzability, its predictability, and its
natural description of concurrency, which make it suitable for
efficient execution on MPSoCs. The analyzability of the SDF
MoC is a particularly strong asset when synthesizing software
from a dataflow description [2].

In this paper, we show how the properties of the Interface-
Based Synchronous Dataflow (IBSDF) MoC, a hierarchical
extension of the SDF MoC, can be exploited to synthesize
efficient software for modern MPSoCs. The hierarchy feature
of the IBSDF MoC is used for the mapping of computation
on PEs, for code generation, and for efficient management of
off- and on-chip communications. A new code generation
scheme for IBSDF graphs, which automatically constructs
loop nests and inserts OpenMP directives, is detailed in this
paper. The portability of our approach, which makes it possible
to target both shared memory architectures (Intel x86 and
TI Keystone) and clustered architectures (Kalray MPPA R©), is
illustrated with a state-of-the-art computer vision application.
On the clustered architecture, inter-cluster parallelism relies on
automatically generated one-sided asynchronous NoC commu-
nications, while intra-cluster parallelism is based on OpenMP3
multi-threading directives.

The paper is organized as follows: Section II presents the
IBSDF MoC targeted in this work and related works from the
literature. Our contribution is then described in Section III.
Section IV presents a thorough evaluation of our technique for
the deployment of a computer vision application onto various
architectures. Section V concludes this paper.

II. CONTEXT AND RELATED WORK

A. Programming MPSoCs

Programming multi-/manycore architectures efficiently is a
huge challenge. Although many programming APIs adopting

978-1-5090-4825-0/17/$31.00 c© 2017 IEEE

various MoCs can be found in literature, no universal parallel
programming model fitting all architectures and all applica-
tions exist. Pthread and OpenMP3 are multi-thread program-
ming models for shared memory architectures where all the
PEs access a common memory address space. The memory
consistency between PEs is ensured at synchronization points
in multi-threaded programs.

OpenMP4, OpenCL and CUDA are acceleration program-
ming models. The purpose of acceleration programming mod-
els is to offload an application’s heavy computations onto
external computing resources, such as external CPUs, GPUs,
FPGAs or hardware specific accelerators. The memory coher-
ence is maintain by the execution runtime of the model.

The aforementioned programming models often propose
dedicated features, like dedicated preprocessing directives or
specific instructions via intrinsics, to target specific architec-
tures. In order to be usable, these programming models and
the target-specific features must be supported by the tool chain
of the hardware provider. The developer uses the available
features depending on the application, the targeted architecture
and identified bottlenecks. The programming thus requires
a deep understanding of the application, the hardware and
(available) runtime libraries. It often takes months to port an
application on a new architecture.

On the other hand, tools such as ORCC, PREESM, SCADE /
Lustre, or SigmaC are alternatives providing developers with
a higher level of abstraction based on dataflow MoC. SigmaC
is a language based on the Cyclo-Static Dataflow (CSDF)
model which is an extension of the SDF model. SigmaC [4]
was supported in the Kalray MPPA R© toolchain and was well-
suited for time-critical applications with a static behavior, i.e.
computations are the same for all data and cannot change
dynamically.

ORCC is a compilation framework based on a language
called RVC-CAL. This language is based on the Dataflow
Process Network (DPN) MoC which is a dynamic and non-
deterministic dataflow model [5]. Unfortunately this language
does not provide static analyzability for programming time-
critical embedded systems.

SCADE/Lustre is a language for reactive system program-
ming as it provides a logical time notion. The main differences
with the other approaches is that SCADE allows sampling
(sensors typically) in the firing of nodes. PREESM proposes
two SDF extensions IBSDF and Parameterized Interface Syn-
chronous Data-Flow (PiSDF), providing features that ease the
application description while retaining the predictability of
the SDF model. The work presented in this paper is based
on the IBSDF dataflow model. This predictability is used in
the proposed automatic mapping of the application onto the
targeted architecture.

B. IBSDF Dataflow Model Background

The Interface-Based Synchronous Dataflow (IBSDF) [6]
MoC is a hierarchical extension of the SDF model. In addition
to the SDF semantics, IBSDF adds the possibility to specify

the internal behavior of an actor with a dataflow subgraph
instead of specifying it with code.

The repetition vector RV of an SDF graph G is a vector
containing an integer value RV (a) for each actor a of G. An
SDF graph completes a graph iteration when each actor is
executed as many times as specified by the RV , thus bringing
back the graph to its initial state in terms of number of data
tokens stored in each FIFO. RV is computed at compile time
using static data rates of actors [3]. The IBSDF compositional
feature enables independent computation of the RV of each
hierarchical (sub)graph [6].

w*(h+10*n) w*hw*(h/n+8) w*(h/n+4) w*h/nw*(h/n+10)w*h

Sobel ErosionDilation

Sobel Dilation Erosion(w*(h/n+8)) (w*(h/n+4))(w*(h/n+10)) (w*(h/n))
m m m m

Read
frame Split Display

input output

1 Framen Slices n*m Slices1 Frame n*m Slices...

Fig. 1: IBSDF Graph of the Application Use-Case

The IBSDF graph of an image processing use-case is
presented in figure 1. The IBSDF graph is composed of six
actors at the top level of the hierarchy. Three actors of the
top-level graph (with orange borders) are hierarchical actors.
Each of the three hierarchical subgraphs includes a single actor
whose production and consumption rates, and thus its number
of executions, are controlled by a parameter m. Indivisible
data tokens exchanged in this graph are pixel lines of width
w. The ReadFrame actor produces an image that is then
divided into overlapping slices by the Split actor. Then, the
Sobel, Dilation, and Erosion actors perform standard image
processing filtering and morphological operations.

The topology of this application graph illustrates the op-
portunity to map successive hierarchical actors on a single
compute cluster, thus reducing data movements and increasing
the arithmetic intensity which is the amount of processing
done for each byte of data transferred to a compute cluster.
Maximizing the arithmetic intensity is essential for achieving
decent performance on applications running on a clustered
architecture or any other multi-core CPUs.

Another hierarchical generalization of the SDF MoC called
Deterministic SDF with Shared FIFOs (DSSF) is proposed
in [7]. The main difference between the DSSF and the IBSDF
MoCs is that DSSF compositionality results from a graph anal-
ysis, whereas IBSDF graphs are inherently compositional. In
DSSF, a bottom-up analysis is used to expose compositionality
of the of hierarchical graph, when possible. Based on this
analysis, hierarchical actor can be translated into equivalent
modular code with variable consumption and production rates.

In the IBSDF MoC, the compositionality is enforced by the
model semantics and execution rules, which make it possible
to translate each hierarchical actor into an equivalent code with
fixed production and consumption rates.

C. IBSDF-based Design Flow and Limitations

The development flow presented in figure 2 shows typical
design and compilation steps from the IBSDF graph specifi-
cation by the developer, using a graphical user interface, to
the software synthesis.

Software
Synthesis

User
Interface

Hierarchical
Flattening

Scheduling
Mapping

Memory
Allocation

Single Rate
Transform

Fig. 2: Rapid Prototyping Flow

In the last version of PREESM, hierarchical IBSDF actors
are systematically flattened: hierarchical actors are replaced
by all actors and FIFOs contained in their subgraphs. The
flattening decreases the graph granularity as actors of lower
levels of hierarchy are all gathered in a single graph.

The Single-Rate transformation is applied to the flattened
graph in order to reveal all application parallelism. The single-
rate transformation consists of converting the SDF graph
into an equivalent single-rate SDF graph where each actor
is duplicated as many times as specified by the RV . The
resulting Single-Rate SDF graph is used for subsequent map-
ping, scheduling, memory allocation, and code generation
operations.

Flattening all the hierarchy is problematic when targeting
large dataflow graphs and architectures with hundreds of PEs.
First because the mapping, the scheduling, and the memory
allocation are NP-hard problems. Second because fine-grained
synchronizations can strongly degrade system performances.
Let’s consider the use-case in the figure 1 with the flattening
operation: the number of automatically generated actors after
the Single-Rate transformation becomes 3 ∗ n ∗m.

III. CONTRIBUTION

A. Hierarchical Approach

The hierarchical approach consists of exploiting the graph
hierarchy in the different steps of the development flow
presented in figure 2 instead of systematically flattening it.
In our method, we propose specifying whether or not the
hierarchical actors shall be flattened. The method exploits
several granularities of parallelism captured by nested, non-
flattened, hierarchical graphs. We define a clustered actor as
a non-flattened hierarchical actor. Clustered actors are large
in terms of memory footprint and computation. They can be
mapped to a PE as a single actor, and are thus simpler to map
than the equivalent set of actors resulting from a flattening of
the graph. We use the heterogeneous memory static allocator
described in [8] to allocate buffers in the system, not only
for the distributed memory architecture, but also for shared
memory architectures. The memory allocation is simpler and
more efficient on clustered actors.

In the targeted architectures, two levels of parallelism are
exploited: both coarse-grained and fine-grained parallelism.

Coarse-grained parallelism is found at the top-level of the
hierarchy, where the graph contains clustered actors. Fine-
grained parallelism is retrieved in subgraphs of non-flattened
hierarchical actors. In our case, the fine-grain parallelism is
extracted from RV s during the software synthesis of hierar-
chical actors.

This approach is not only adapted for clustered many-core
processors but also for off-the-shelf processors and multi-
core Digital Signal Processing (DSP). Indeed, the software
synthesis for hierarchical actors produces For-Loops that are
exploited by compiler optimizations to extract the instruction
level parallelism. Therefore, our proposal takes advantage of
both low-level (Section III-C) parallelization at core level and
high-level (Section III-B) parallelism for the cluster (but also
for the core) using the hierarchical mapping strategy.

Finally, our approach provides the possibility of choosing
the best hierarchy level. The PREESM user decides in his
own interest and even depending on the architecture what
must remain hierarchical and what should be flattened. The
scheduling is executed after the single-rate graph transforma-
tion is applied. These tuning capabilities are performed by the
PREESM user for rapid-prototyping on MPSoC.

B. High-Level Hierarchy (Inter-Cluster)

The high-level mapping of hierarchical actors is more effi-
cient as it is adapted for coarse-grained granularity. The high-
level hierarchy is applied to inter-cluster parallelism. Coarse-
grained mapping is provided by the hierarchy feature and
provides several advantages.

First, the hierarchical actor software synthesis makes it
possible to generate automatically memory access coalescing
for actors of their subgraph, whereas flattening the hierarchy
generates many smaller data transfers (one for each firing of
the actor in the flattened subgraph). Memory coalescing is a
key to increasing performance on parallel code running on a
manycore processor as it reduces the number of Remote Direct
Memory Access (RDMA) transactions.

Secondly, the hierarchical actor software synthesis reduces
drastically the mapping complexity when the number of cores
and actors increases. The compute clusters of the MPPA R© pro-
cessor are seen as a single multi-core CPU for coarse-grained
application mapping. On a clustered architecture, hierarchical
actors will be mapped on a compute cluster, whereas actors
of subgraphs will be mapped at core level.

Cluster 1

Cluster 2

Cluster 3

Cluster n

Read
frame Split DilationSobel Erosion Display

DilationSobel Erosion

DilationSobel Erosion

DilationSobel Erosion

Synchro Synchro

Fig. 3: Gantt Chart of the Hierarchic Scheduling

Figure 3 shows the inter-cluster parallelism at the top-
level of hierarchy. The compute clusters run concurrently in
parallel with the mapped hierarchical actors (Sobel, Dilation
and Erosion hierarchical actors) and performs inter-cluster
synchronizations. The Split (zero copy) actor has a fork role
and unlocks all other compute clusters (from 1 to n) when the
data are ready to be computed. Once the parallel region of the
compute cluster is ended all contributors merge all results to
the Display actor (zero copy).

C. Low-Level Hierarchy (Intra-Cluster)

The new support of hierarchical actors mapping and code
generation allows both code factorization and more compu-
tation efficiency on fine-grained code regions. The low-level
hierarchy exploits intra-cluster parallelism.

Fine-grained parallelism implies several concurrent compu-
tations where the synchronization and memory consistency
need to be managed efficiently. The generated code sections
of hierarchical actors are automatically parallelized using
OpenMP (if available). The intra-cluster parallelism is au-
tomatically extracted from RV s in sub-graphs that contains
actors that have a potential source of parallelism. For instance,
if a hierarchical actor A consumes N ∗M tokens and actor
B in hierarchical actor A consumes N , an RV of M (see l.8,
12, 16 in Fig. 4) will automatically be extracted and generated
by the parallel code generator. This new feature allows for the
automatic extraction of the RV s in sub-graphs that contains
actors that have a potential source of parallelism. Repetition
vectors are generated in C language using a static finite For-
Loop. Naively, a For-Loop is sequential, but our new software
synthesis adds an ”omp parallel for” to get parallelism for any
architecture supporting OpenMP3 (multi-threading model).
The parallel section is automatically generated contrary to [5]
where it is manually inserted. In this case, OpenMP3 is very
efficient as the number of For-Loop iterations is fixed and
thus it is solved at compile time. Thus thread-level parallelism
is reached in the clustered actors that are mapped onto the
compute clusters (or cores). Synchronization points are done
via fork and join regions of the OpenMP runtime (see l.7, 11,
15 in Fig. 4). As such, the memory consistency points and
the synchronization point placements are known at compile
time. Therefore, it provides predictable execution time, not
only for sequential execution, but also for parallel execution
when using OpenMP3 on finite For-Loops.

D. Automatic Explicit Communications

In order to exploit the performance of complex manycore
processors, the application needs to be broken into pieces (ie:
actors communicating with FIFO) and it implies effort. On
such architecture, the efficiency of communications is crucial.
One contribution in this paper is the use of automatically
generated RDMA explicit memory accesses onto the targeted
massively parallel processor, which outperforms the shared
memory approach provided by data caches through Load/S-
tore. Thenceforth, the introduced code generation is similar

1 /* Inter-Cluster Synchronization */
2 synchro(...);
3 /* Global to Local Memory Coalescing */
4 get(..., tag); /* reads buffer */
5 wait(tag); /* wait end of transfer */
6 /* Parallel Hierarchical Sobel */
7 #pragma omp parallel for /* intra-cluster */
8 for(int i=0;i<M;i++)
9 sobel(...); /* Sobel Kernel */

10 /* Parallel Hierarchical Dilation */
11 #pragma omp parallel for /* intra-cluster */
12 for(int i=0;i<M;i++)
13 dilation(...); /* Dilation Kernel */
14 /* Parallel Hierarchical Erosion */
15 #pragma omp parallel for /* intra-cluster */
16 for(int i=0;i<M;i++)
17 erosion(...); /* Erosion Kernel */
18 /* Local to Global Memory Coalescing */
19 put(..., tag); /* send buffer */
20 wait(tag); /* wait end of transfer */
21 /* Inter-Cluster Synchronization */
22 synchro(...);

Fig. 4: Parallel Codegen for Compute Cluster of the MPPA R©

to [9] based on OpenMP mixed with MPI-3 and using one-
sided communications. The main difference is that our parallel
code is generated automatically from an IBSDF dataflow graph
and not handwritten like in [9]. The basic concept of one-sided
communications is that each compute cluster is a master of one
or several remote memories, which are, in our case, the global
DDR memories and other compute cluster local memories.

Regarding inter-cluster parallelism, the synchronizations use
explicit transfers directly across compute clusters (l.2, 22 in
Fig. 4). In our current software synthesis, inter-cluster data
transfers go through the main global memory (DDRs).

The compute clusters perform explicit memory data trans-
fers that are based on highly efficient RDMA put-get memory
accesses because of the local memories. Figure 4 shows where
RDMA accesses are done with put and get primitives (l.19, 4
in Fig. 4 respectively). The RDMA transaction completion is
ensured by the wait primitive (l.5, 20 in Fig. 4).

Such code generation has several advantages for an archi-
tecture like the MPPA R© but also for other DSPs or general
purpose processors. On the MPPA R© we automatically catch
coalesced memory accesses at code generation as shown
in figure 4. Memory coalescing means that multiple data
transfers are merged in one. It allows both the reduction
of global memory data requests (requests traffic) and opti-
mizes the usage of the scratch-pad memory (local memory).
When chaining kernels locally without any communications
other than intra-cluster communications and synchronizations
(shared memory), the execution is very efficient. The auto-
matic optimization provided with code generation allows for
the limitation of data movement that are both very time and
power consuming. The code generation in figure 4 illustrates
what is done on dataflow applications where both spatial and
temporal data locality are exploited.

Multi-core
CPUs

TI C6678 EVM
1 GHz

Core i7-3820
3.6 GHz

Nb Cores FPS Speedup FPS Speedup
1 8.9 1.0 49.3 1.0
2 17.6 1.9 91.6 1.8
4 33.8 3.8 155.6 3.1
8 64.4 7.2 211.5 4.2

TABLE I: Parallel For-Loop onto TI DSP and Intel Processor

IV. EXPERIMENTAL EVALUATION

The targeted use case is an image filtering application con-
sisting of basic image processing application building blocks,
namely the sobel, erosion, and dilation kernels. Benchmarks
have been run with a VGA resolution (640 ∗ 480) for all
targeted architectures. The main purpose of this experimental
evaluation is to show that the proposed hierarchical code gen-
eration has benefits for both mapping/scheduling as well as for
the memory allocation. All benchmarks have been compiled
using the GCC GNU Compiler using O3 optimization. No
assembly nor intrinsic optimization are used.

Kalray MPPA R© Bostan Second Generation: Regarding
the benchmark environment, the MPPA2-256 is plugged into
the motherboard of an Intel host processor where MPPA R©’s
IOs perform PCI-Express communications in real-time. Two
modes of execution are used. The first one uses the software
emulated L2 cache where global memory accesses are done
by Load-Store. The second uses RDMA to perform explicit
memory accesses, as illustrated in the code in figure 4. We
focus our analysis on explicit memory accesses over RDMA
as the software emulated L2 cache provides lower perfor-
mances because of irregular memory access patterns. Kalray’s
OpenMP implementation is based on GCC libgomp which
is ported over Kalray’s proprietary OS providing pthread
primitives enabling OpenMP3. When the L2 cache is not used,
the buffer allocation done by [8] should never exceed the 2
Mega bytes of local memory for each cluster.

Texas Instruments C66X: TI C66X runs 8 DSP cores at
1 GHz. This MPSoC has a hardware L2 data cache enabling
accesses to the global memory. I/Os are managed before and
after running the application. Paper [10] presents the efficient
bare metal implementation of OpenMP3 for the TI C66x.

A. Results and Discussions

This section presents the results for several multi-core
architectures, but the main focus will be given to the Kalray’s
manycore processor. Table I presents the measured perfor-
mances using the hierarchical actor software synthesis pre-
sented in III-C. Compared to the single-core execution, a
fair speedup is achieved on the TI C66X, with a maximum
speedup of 7.2 on 8 cores. The Intel Sandybridge off-the-shelf
processor also presents fair speedup, up to 4.2, which is fair
for an architecture with 4 hyper-threaded cores.

Table II shows mono-cluster (CPU of 16 VLIW cores) re-
sults using explicit communications and the distributed shared

memory which emulates a software L2 data cache for off-
chip memory accesses. As described in figure 4, the software
synthesis that uses explicit memory accesses using RDMA
outperforms the naive shared memory approach over data
cache by 22%. This table shows speedups of 13.4 when using
explicit communications and 11.2 when data accesses are
performed by L2 data cache, thus the scalability is honorable
in both cases.

The application mapping is performed at cluster level.
Clusters are considered as multi-core CPUs in order to map
clustered actors and we exploit subgraph parallelism inside
clusters when possible to obtain thread-level parallelism.

Figure 5b plots the application performance in frames per
second (FPS), observed when using a variable number of
cores per clusters, and variable number of clusters on the
MPPA R©. Using one core in each of the 16 clusters provides
lower performance than using 16 cores of a single cluster
because of the intensive usage of the local on-chip memory
and NoC communications are reduced compared to the multi-
cluster approach. However, in our case, this runtime overhead
remains low as the parallelism is known statically. It can be
noticed that performances in 5b for one cluster are lower than
the ones shown in the mono-cluster configuration of table II.
This is due to the used Operating System (OS) running on the
compute cluster which is a bare-like-system providing better
results (however not usable for OpenMP3).

A total speedup of 58.7 is reached when using all 16 cores of
all 16 compute clusters. Although we have a good scalability
but we hit the memory bandwidth wall (Section IV-B2) of
many-core processors when the 256 cores are competing for
the global main memory. Thus we focus on local memory
usage at code generation to save main memory bandwidth.

B. Comparisons with Flat IBSDF Mapping

1) Performances Analysis: For shared memory architec-
tures Intel and TI C6678 EVM, the flat IBSDF gives same
performances as in table I. Figure 5a performances are lower
than 5b by 4% when using all processing elements of the
manycore. This difference is mainly due to RDMA memory
accesses coalescing, which are provided by the hierarchical
mapping approach. The flat state-of-the-art IBSDF mapping
makes each core perform RDMA transactions, which increase
the ratio communication vs compute by 7.8% compared to
our new hierarchical approach.

2) Memory-Wall of Manycore: In this application, NoC
communications are less than 8% of the whole processing time

Mono-cluster
MPPA R©

MPPA R© 400 MHz
L2 Cache

MPPA R© 400 MHz
RDMA

Nb Cores FPS Speedup FPS Speedup
1 3.6 1.0 3.7 1.0
2 6.9 1.9 7.4 2.0
4 13.3 3.7 14.5 3.9
8 24.4 6.8 27.4 7.4

16 40.5 11.2 49.4 13.4

TABLE II: Parallel For-Loop onto an MPPA R© Cluster

(a) Flat Mapping (b) Hierarchical Mapping

Fig. 5: MPPA R© Matrix Result in FPS

when using 1/4 of the processor’s capabilities (for instance 8
clusters with 8 cores in each cluster). We hit the memory wall
when using more than half of the chip’s capability. The ratio
between computation and NoC communications is more than
30% when all PEs are computing. Indeed, there are a lot of
processing elements competing for global memory accesses.

3) Mapping: The mapping problem is well-known to be
NP-complete. Its complexity increases exponentially with the
number of cores and actors. On a manycore with 256 process-
ing elements it becomes very complex for both theoretical
mapping algorithms and their implementation efficiency in
real life. In our case use, once the application parallelism is
revealed by applying the flattening and single-rate transforma-
tion to all hierarchical actors, the resulting graph contains more
than 1,000 actors and 800 edges to be mapped on 256 cores.
Thus, the flat IBSDF graph takes 26 minutes to be scheduled
and mapped on the processing elements. In the hierarchical
mapping approach, it takes less than one second. On more
complex applications, for instance use cases with more than
10,000 actors, the hierarchical approach is a must-have feature
as the mapping time explodes.

V. CONCLUSION & FUTURE WORKS

This paper proposes a new technique to exploit both coarse-
grained and fine-grained parallelism based on a hierarchical
dataflow MoC. The main advantage of this special actor is
that it provides the transformation workflow with scheduling
and code generation simplifications. It also helps retrieving
data locality, which is crucial for high performances and
power consumption. Indeed data movement costs a lot for
embedded MPSoC. The fine-grained parallelism is retrieved by
applying omp parallel for onto RV s automatically extracted
in a hierarchical actor. We show that this approach not
only matches manycore processors with a distributed mem-
ory architecture but also multi-core architectures with shared
memory. In the future, System-on-Chip (SoC) will embeds
more and more heterogeneous cores, therefore, the mapping
of such architectures will become more and more complex.

In our use-case we targeted a low-level image processing
application which shows significant speedup when the number
of cores increases. The mapping of an application is not a
simple problem and it is becoming more and more complex
with increases to architectural complexity (number of cores,
core heterogeneity within the same SoC, memory hierarchy,
hardware accelerators). Future work will consider software
synthesis for more complex hierarchical actors.

REFERENCES

[1] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in DATE, 2012, pp. 983–987.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software synthesis
from dataflow graphs. Springer Science & Business Media, 2012, vol.
360.

[3] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[4] B. Dupont de Dinechin, R. Ayrignac, P.E. Beaucamps, P. Couvert,
B. Ganne, P. Guironnet de Massas, F. Jacquet, S. Jones, N. Morey
Chaisemartin, F. Riss, T. Strudel, “A Clustered Manycore Processor
Architecture for Embedded and Accelerated Applications,” in High Per-
formance Extreme Computing Conference (HPEC), 2013 IEEE, 2013.

[5] M. Chavarras, F. Pescador, M. J. Garrido, E. Juarez, and C. Sanz, “A
multicore DSP HEVC decoder using an actorbased dataflow model and
OpenMP,” in IEEE Transactions on Consumer Electronics, vol. 61,
no. 2, pp. 236–244.

[6] J. Piat, S. Bhattacharyya, and M. Raulet, “Interface-based hierarchy
for synchronous data-flow graphs,” in Signal Processing Systems, 2009.
SiPS 2009. IEEE Workshop on. IEEE, 2009, pp. 145–150.

[7] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee, “Compo-
sitionality in synchronous data flow: Modular code generation from
hierarchical sdf graphs,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 3, p. 83, 2013.

[8] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi, “Distributed memory
allocation technique for synchronous dataflow graphs,” in Signal Pro-
cessing Systems (SiPS), 2016 IEEE International Workshop on. IEEE,
2016, pp. 45–50.

[9] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “Leveraging mpis one-sided commu-
nication interface for shared-memory programming,” in European MPI
Users’ Group Meeting. Springer, 2012, pp. 132–141.

[10] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell, and
I. Lintault, “Openmp on the low-power ti keystone ii arm/dsp system-
on-chip,” in International Workshop on OpenMP. Springer, 2013, pp.
114–127.

