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Abstract
A regularization of Wasserstein barycenters for random measures supported on Rd is

introduced via convex penalization. The existence and uniqueness of such barycenters is
proved for a large class of penalization functions. A stability result of regularized barycen-
ters in terms of Bregman distance associated to the penalization term is also given. This
allows to compare the case of data made of n probability measures with the more realistic
setting where we have only access to a dataset of random variables sampled from unknown
distributions. We also analyze the convergence of the regularized empirical barycenter of
a set of n iid random probability measures towards its population counterpart, and we
discuss its rate of convergence. This approach is shown to be appropriate for the sta-
tistical analysis of discrete or absolutely continuous random measures. In this setting,
we propose efficient algorithms for the computation of penalized Wasserstein barycenters.
This approach is finally illustrated with simulated and real data sets.

1 Introduction
This paper is concerned by the statistical analysis of data sets whose elements may be modeled
as random probability measures supported on Rd that are either discrete or absolutely con-
tinuous. In the one dimensional case (d = 1), examples can be found in neuroscience [WS11],
biodemographic and genomics studies [ZM11], economics [KU01], as well as in biomedical
imaging [PM15], while examples for the two dimensional case (d = 2) arise in spatial statis-
tics for replicated point processes [Ger16].

In this paper, we focus on first-order statistics methods for the purpose of estimating,
from such data, a population mean measure or density function.

The notion of averaging depends on the metric that is chosen to compare elements in
a given data set. In this work, we consider the Wasserstein distance W2 associated to the
quadratic cost for the comparison of probability measures. Let Ω be a convex subset of Rd and
P2(Ω) be the set of probability measures supported on Ω with finite order second moment. As
introduced in [AC11], an empirical Wasserstein barycenter ν̄n of set of n probability measures
ν1, . . . , νn (not necessarily random) in P2(Ω) is defined as a minimizer of

µ 7→ 1
n

n∑
i=1

W 2
2 (µ, νi), over µ ∈ P2(Ω). (1.1)

∗This work has been carried out with financial support from the French State, managed by the French
National Research Agency (ANR) in the frame of the GOTMI project (ANR-16-CE33-0010-01).



However, depending on the data at hand, such a barycenter may be irregular (and not
even uniquely defined) which is typically the case when the νi’s are discrete measures. As
an illustrative example, we consider a dataset of the locations of reported incidents of crime
(with the exception of murders) in Chicago in 2014 which is publicly available1 and that has
been recently studied in [Ger16]. A sample from this dataset is displayed in Figure 1. For each
month 1 ≤ i ≤ 12 of 2014, we let νi = 1

pi

∑pi
j=1 δXi,j be the discrete measure whose support is

the set of locations of reported crimes for the i-th month. As argued in [Ger16], the locations
of crimes Xi,j may be considered as a sample from random intensity functions whose values
change from one day to another as crime opportunities are not uniformly distributed in time.
In this setting, we show that a regularization of the Wasserstein barycenter of the νi’s (as
defined below) is a meaningful way to obtain a mean distribution of crimes locations which
is absolutely continuous on the area of the city.
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Figure 1: Spatial locations of reported incidents of crime in Chicago for 2 months of 2014. In
order to protect the privacy of crime victims, addresses are shown at the block level only and
specific locations are not identified.

Definition 1.1. Let Pνn = 1
n

∑n
i=1 δνi where δνi is the dirac distribution at νi. A regularized

empirical barycenter µγPνn of the discrete measure Pνn on P2(Ω) is a minimizer of

µ 7→ 1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) over µ ∈ P2(Ω), (1.2)

where E : P2(Ω) → R+ is a smooth convex penalty function, and γ > 0 is a regularization
parameter.

1.1 Related results in the literature

Statistical inference using optimal transport For d = 1, tools from optimal are used
in [PZ16] for the registration of multiple point processes which model repeated observations
organized in samples from independent subjects or experimental units. In [PZ16], a consistent

1https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data
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estimator of the population Wasserstein barycenter of multiple point processes is proposed.
It is based on a smoothed empirical Wasserstein barycenter obtained by a preliminary kernel
smoothing step of the observed point processes that is followed by quantile averaging. There-
fore, the way of constructing a smoothed Wasserstein barycenter in [PZ16] differs from the
approach followed in this paper where regularization of the empirical Wasserstein barycenter
via a penalty function is considered.

The penalized problem (1.2) is motivated by the nonparametric method introduced in
[BFS12] for the classical density estimation problem from discrete samples based on a varia-
tional regularization approach to optimal transport with the Wasserstein distance as a data
fidelity term. However, the adaptation of this work for the regularization of Wasserstein
barycenter has not been considered so far.

Generalized notions of Wasserstein barycenters A detailed characterization of em-
pirical Wasserstein barycenters in terms of existence, uniqueness and regularity is given in
[AC11]. There exists also a link between Wasserstein barycenters and the multi-marginal
problem in optimal transport as studied in [AC11] and [Pas13]. Recently, the notion of
Wasserstein barycenter has been generalized in [LGL16] for random probability measures
supported on a locally compact geodesic space. The main contributions in [LGL16] are the
proofs of existence, uniqueness and consistency of such barycenters. The case of probability
measures supported on a Riemannian manifolds is also studied in [KP14]. Trimmed barycen-
ters in the Wasserstein space P2(Rd) have been introduced in [ÁEdBCAM15] for the purpose
of combining informations from different experimental units in a parallelized or distributed
estimation setting.

For applications in image processing, a fast approximation of the Wasserstein distance
W2 between probability measures supported on Rd with d ≥ 2 has also been proposed in
[BRPP15, PFR12] using a sliced framework based one dimensional Wasserstein distances
along radial projections of the input measure.

However, in all these papers, incorporating regularization (through penalization) into the
computation of Wasserstein barycenters has not been considered, which is of interest when
the data are irregular probability measures.

Regularization of the transport map Alternatively, regularized barycenters may be
obtained by adding a convex regularization on optimal transport plans when computing the
Wasserstein distance between probability measures. This approach leads to the notion of regu-
larized transportation problems [BCC+15, CP16, DPR16, FPPA14], and it has recently gained
popularity in the literature on image processing and machine learning. Recent contributions
include the fast approach in [CD14] to compute smooth Wasserstein barycenters of discrete
measures via entropic regularization of the transport plan, and the so-called Sinkhorn’s al-
gorithm. In these works, such a regularization is motivated by the need to accelerate the
computation of the Wasserstein distance between probability measures supported on Rd with
d ≥ 2.

1.2 Contributions and structure of the paper

The presentation of the main results in this paper is organized as follows.

- In Section 2, we introduce various definitions and notation, and we prove a key result
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called subgradient’s inequality on which a large part of the developments in the paper
lean.

- In Section 3, we analyze the existence, uniqueness and stability of regularized Wasser-
stein barycenters that are solutions of (1.2) for various of penalty functions E and any
regularization parameter γ > 0.

- In Section 4, for the Bregman distance associated to the penalization term, we derive
convergence properties of empirical regularized barycenters toward their population
counterpart in the asymptotic setting where n tends to infinity and γ = γn is let going
to zero. In this context, we demonstrate that the bias term (as classically referred
to in nonparametric statistics) converges to zero when γ → 0 in Rd. We also show
(with additional regularity assumptions for d ≥ 2) that the variance term converges to
0 when limn→∞ γ

2
nn = +∞. We mainly focus on penalization functions that enforce

the Wasserstein barycenter to be an absolutely continuous (a.c.) measure with a smooth
probability density function (pdf). In this case, it is natural to use the Bregman distance
to asses the quality of estimation of the pdf of the population barycenter.

- To illustrate the benefits of regularized barycenters for data analysis, we propose to
use in Section 5 efficient minimization algorithms for the computation of regularized
barycenters as well as a selection strategy for the parameter γ. This approach is finally
applied to the statistical analysis of simulated and real data sets in P2(R) and P2(R2).

Finally, a brief overview of the concepts of Bregman divergence and subgradient are gath-
ered in the Appendix A, the proofs in a technical Appendix B and Appendix C contains
algorithmic details.

2 Definitions, notation and first results

2.1 Wasserstein distance and Kantorovich’s duality

For Ω a convex subset of Rd, we denote byM(Ω) the space of bounded Radon measures on Ω.
We recall that P2(Ω) is the set of probability measures over (Ω,B(Ω)) with finite second order
moment, where B(Ω) is the σ-algebra of Borel subsets of Ω. In particular, P2(Ω) ⊂M(Ω).

Definition 2.1. The Wasserstein distance W2(µ, ν) is defined for µ, ν ∈ P2(Ω) by

W 2
2 (µ, ν) = inf

π

∫
Ω

∫
Ω
|x− y|2dπ(x, y) (2.1)

where the infimum is taken over all probability measures π on the product space Ω×Ω with
respective marginals µ and ν.

The well known Kantorovich’s duality theorem leads to another formulation of the Wasser-
stein distance.

Theorem 2.2 (Kantorovich’s duality). For any µ, ν ∈ P2(Ω), one has that

W 2
2 (µ, ν) = sup

(φ,ψ)∈CW

∫
Ω
φ(x)dµ(x) +

∫
Ω
ψ(y)dν(y) (2.2)
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where CW is the set of all measurable functions (φ, ψ) ∈ L1(µ)× L1(ν) satisfying

φ(x) + ψ(y) ≤ |x− y|2, (2.3)

for µ-almost every x ∈ Ω and ν-almost every y ∈ Ω. A couple (φ, ψ) ∈ CW that attains the
supremum is called an optimal couple for (µ, ν).

For a detailed presentation of the Wasserstein distance and Kantorovich’s duality, we refer
to [Vil03, Vil08]. For µ, ν ∈ P2(Ω), we denote by πµ,ν an optimal transport plan, that is a
solution of (2.1) satisfying W 2

2 (µ, ν) =
∫∫
|x − y|2dπµ,ν(x, y). Likewise a pair (φµ,ν , ψµ,ν) ∈

L1(dµ)×L1(dν) achieving the supremum in (2.2) (under the constraint φµ,ν(x)+ψµ,ν(y) ≤ |x−
y|2) stands for the optimal couple in the Kantorovich duality formulation of the Wasserstein
distance between µ and ν.

For the sake of completeness, we also introduce the functional space Y := {g ∈ C(Ω) :
x 7→ g(x)/(1 + |x|2) is bounded

}
endowed with the norm ‖g‖Y = supx∈Ω |g(x)|/(1 + |x|2)

where C(Ω) is the space of continuous functions from Ω to R. We finally denote as Z the
closed subspace of Y given by Z =

{
g ∈ C(Ω) : lim|x|→∞ g(x)/(1 + |x|2) = 0

}
. The space

M(Ω) of bounded Radon measures is identified with the dual of C0(Ω) (space of continuous
functions that vanish at infinity). Finally, we denote by L1(µ) the set of integrable functions
g : Ω→ R with respect to the measure µ.

2.2 Regularized barycenters of a random measure

A probability measure ν in P2(Ω) is said to be random if it is sampled from a distribution
P on (P2(Ω),B (P2(Ω)), where B (P2(Ω)) is the Borel σ-algebra generated by the topology
induced by the distance W2. Throughout the paper, we use bold symbols ν,X,f , . . . to
denote random objects. Then, we introduce a Wasserstein distance between distributions of
random measures (see [LGL16] and [ÁEdBCAM15] for similar concepts), and the notion of
Wasserstein barycenter of a random probability measure ν.

Definition 2.3. Let W2(P2(Ω)) be the space of distributions P on P2(Ω) (endowed with the
Wasserstein distance W2) such that for some (thus for every) µ ∈ P2(Ω)

W2
2 (δµ,P) := EP(W 2

2 (µ,ν)) =
∫
P2(Ω)

W 2
2 (µ, ν)dP(ν) < +∞

where ν ∈ P2(Ω) is a random measure with distribution P. The Wasserstein barycenter of a
random probability measure with distribution P ∈W2(P2(Ω)) is defined as a minimizer of

µ ∈ P2(Ω) 7→ W2
2 (δµ,P) =

∫
P2(Ω)

W 2
2 (µ, ν)dP(ν) over µ ∈ P2(Ω) (2.4)

where δµ denotes the Dirac measure at the point µ.

Thanks to the results in [LGL16], there exists a minimizer of (2.4), and thus the notion
of Wasserstein barycenter of a random probability measure is well defined. Throughout the
paper, the following assumptions are made on the regularizing function E.

Assumption 2.1. Let E : P2(Ω)→ R+ be a proper, lower semicontinuous and differentiable
function that is strictly convex on its domain

D(E) = {µ ∈ P2(Ω) such that E(µ) < +∞} . (2.5)
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Regularized barycenters of a random measure are then defined as follows.

Definition 2.4. For a distribution P ∈ W2(P2(Ω)) and a regularization parameter γ ≥ 0,
the functional JγP : P2(Ω)→ R+ is defined as

JγP (µ) =
∫
P2(Ω)

W 2
2 (µ, ν)dP(ν) + γE(µ), µ ∈ P2(Ω). (2.6)

If it exists, a minimizer µγP of JγP is called a regularized Wasserstein barycenter of the random
measure ν with distribution P. In particular, if P is the discrete (or empirical) measure
defined by P = Pn = 1

n

∑n
i=1 δνi where νi ∈ P2(Ω) for i = 1, . . . , n, then JγP becomes

JγPn(µ) = 1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ). (2.7)

Note that JγP is strictly convex on D(E) by Assumption 2.1.

A typical example of a regularizing function satisfying Assumption 2.1 is the negative
entropy [BFS12] (see e.g. Lemma 1.4.3 in [DE97]) defined as

E(µ) =


∫
Rd f(x) log(f(x))dx, if µ admits a density f with respect to

the Lebesgue measure on Ω,
+∞ otherwise.

which enforces the barycenter to be a.c. with respect to the Lebesgue measure on Rd.

2.3 Subgradient’s inequality

In order to analyze the stability of the minimizers of JγP with respect to the distribution P,
the notion of Bregman divergence together with the concept of subgradient will be needed.
An overview of these tools is presented in an C.

In our case, since E is supposed differentiable, for µ ∈ M(Ω) we have that ∂E(µ) =
∇E(µ). Then for µ, ν ∈M(Ω), the (symmetric) Bregman distance is defined by

dE(µ, ν) = 〈∇E(µ)−∇E(ν), µ− ν〉 (2.8)

where the linear form is understood as 〈f, µ〉 =
∫

Ω f(x)dµ(x), for µ ∈ M(Ω) and f ∈ Cb(Ω)
the space of continuous bounded function from Ω to R.

Theorem 2.5 (Subgradient’s inequality). Let ν be a probability measure in P2(Ω), and define
the functional

J : µ ∈ P2(Ω) 7→W 2
2 (µ, ν) + γE(µ)

where E : P2(Ω)→ R is a proper, differentiable and convex function, and γ ≥ 0. If µ ∈ P2(Ω)
minimizes J , then there exists φµ,ν ∈ L1(µ) and ψ ∈ L1(ν) verifying φµ,ν(x) +ψ(y) ≤ |x−y|2
for all x, y in Ω such that (φµ,ν , ψ) is an optimal couple of the Kantorovich’s dual problem
associated to µ, ν (Theorem 2.2). Moreover, for all η ∈ P2(Ω),

γ 〈∇E(µ), µ− η〉 ≤ −
∫
φµ,νd(µ− η). (2.9)
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The proof of Theorem 2.5 is based on the two following lemmas whose proof can be found
in the Appendix B.1.

Lemma 2.6. The two following assertions are equivalent:

1. µ ∈ P2(Ω) minimizes J over P2(Ω),

2. there exists a subgradient φ ∈ ∂J(µ) such that 〈φ, η − µ〉 ≥ 0 for all η ∈ P2(Ω).

Lemma 2.7. Let µ ∈ P2(Ω) and φ ∈ L1(µ), then

φ ∈ ∂1W
2
2 (µ, ν)⇔ ∃ ψ ∈ L1(ν) / φ(x) + ψ(y) ≤ |x− y|2

and W 2
2 (µ, ν) =

∫
φdµ +

∫
ψdν where ∂1W

2
2 (µ, ν) denote the subdifferential of the function

W 2
2 (·, ν) at µ.

Proof of Theorem 2.5. Let µ ∈ P2(Ω) be a minimizer of J . From Lemma 2.6, we know
that there exists φ a subgradient of J in µ such that 〈φ, η − µ〉 ≥ 0 for all η ∈ P2(Ω).
Since ζ 7→ E(ζ) is convex differentiable, ζ 7→ W 2

2 (ζ, ν) is a continuous convex function and
µ minimizes J , we have by the subdifferential of the sum (Theorem 4.10 in [Cla13]) that
∂J(µ) = ∂1W

2
2 (µ, ν) + γ ∇E(µ). This implies that all φ ∈ ∂J(µ) is written φ = φ1 + φ2

with φ1 = φµ,ν optimal for the couple (µ, ν) (by Lemma 2.7) and φ2 = γ∇E(µ). Finally,
we have that 〈φµ,ν + γ∇E(µ), η − µ〉 ≥ 0 for all η ∈ P2(Ω) that is γ 〈∇E(µ), µ − η〉 ≤
−
∫
φµ,νd(µ− η), ∀η ∈ P2(Ω).

3 Existence, uniqueness and stability of regularized barycen-
ters

In this section, we present some properties of the minimizers of the functional JγP (see Defi-
nition 2.4) in terms of existence and stability.

3.1 Existence and uniqueness

In a first part, we state that the minimization problem (2.6) admits a unique minimum in the
particular setting where P is a discrete distribution on P2(Ω) that is we study the problem

min
µ∈P2(Ω)

JγPn(µ) =
∫
W 2

2 (µ, ν)dPn(ν) + γE(µ) = 1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) (3.1)

where Pn = 1
n

∑n
i=1 δνi ∈W2(P2(Ω)) with ν1, . . . , νn measures in P2(Ω). In a second part, we

prove the existence and uniqueness of (2.6) in a general case.

Theorem 3.1. Suppose that Assumption 2.1 holds and that γ > 0. Then, the functional JγPn
defined by (3.1) admits a unique minimizer on P2(Ω) which belongs to the domain D(E) of
the regularizing function E, as defined in (2.5).

The proof of Theorem 3.1 is given in the Appendix B.2. Thanks to this result, one may
impose the regularized Wasserstein barycenter µγPn to be a.c. with respect to Lebesgue measure
on Ω by choosing the negative entropy E(µ) =

∫
Ω log (dµ(x)) dµ(x) for the regularization

function E. For this choice, (3.1) becomes a problem of minimization over a set of pdf with
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entropy regularization. Examples of the use of the negative entropy as a regularization term
are given in Section 5 on numerical experiments.

From Theorem 3.1, it is possible to prove the general case (whose proof is also given in
Appendix B.2).

Theorem 3.2. Suppose that Assumption 2.1 holds and that γ > 0. Then, the functional JγP
defined by (2.6) admits a unique minimizer.

3.2 Stability

We now study the stability of the solution with respect to the symmetric Bregman distance
dE (2.8) associated to the differentiable function E. Let ν1, . . . , νn ∈ P2(Ω) and η1, . . . , ηn ∈
P2(Ω) . We denote by Pνn (resp. Pηn) the discrete measure 1

n

∑n
i=1 δνi (resp. 1

n

∑n
i=1 δηi) in

W2(P2(Ω)).

Theorem 3.3. Suppose that Ω is bounded. Let µν , µη ∈ P2(Ω) with µν minimizing JγPνn and
µη minimizing JγPηn defined by (3.1). Then, the symmetric Bregman distance associated to E
can be upper bounded as follows

dE(µν , µη) ≤
2
γn

inf
σ∈Sn

n∑
i=1

W2(νi, ησ(i)), (3.2)

where Sn is the permutation group of the set {1, . . . , n}.

The proof of Theorem 3.3 is given in Appendix B.3. To better interpret the upper
bound (3.2), we need the notion of Kantorovich transport distance TW2 on the metric space
(P2(Ω),W2), see [Vil03]. For P,Q ∈ W2(P2(Ω)) endowed with the Wasserstein distance W2,
we have that

TW2(P,Q) := inf
Π

∫
P2(Ω)×P2(Ω)

W2(µ, ν)dΠ(µ, ν),

where the minimum is taken over all probability measures Π on the product space P2(Ω) ×
P2(Ω) with marginals P and Q. Since Pνn and Pηn are discrete probability measures supported
on P2(Ω), it follows that the upper bound (3.2) in Theorem 3.3 can also be written as (by
Birkhoff’s theorem for bi-stochastic matrices, see e.g. [Vil03])

dE(µν , µη) ≤
2
γ
TW2(Pνn,Pηn).

The above upper bound means that the Bregman distance between the regularized Wasser-
stein barycenters µν and µη is controlled by the Kantorovich transport distance between the
distributions Pνn and Pηn.

3.3 Discussion

Theorem 3.3 is of particular interest in the setting where the νi’s and ηi’s are discrete prob-
ability measures on Rd. If we assume that νi = 1

p

∑p
j=1 δXi,j and ηi = 1

p

∑p
j=1 δY i,j where

(Xi,j)1≤i≤n;1≤j≤p and (Y i,j)1≤i≤n;1≤j≤p are (possibly random) vectors in Rd, then by (3.2),

dE(µν , µη) ≤
2
γn

inf
σ∈Sn

n∑
i=1

 inf
λ∈Sp

1
p

p∑
j=1
|Xi,j − Y σ(i),λ(j)|2


1/2

.
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Theorem 3.3 is also useful to compare the computation of regularized Wasserstein barycen-
ter between the case of data made of n a.c. probability measures ν1, . . . , νn, with the more
realistic setting where we have only access to random variables X = (Xi,j)1≤i≤n; 1≤j≤pi or-
ganized in the form of n experimental units, such that Xi,1, . . . ,Xi,pi are iid observations in
Rd sampled from the measure νi for each 1 ≤ i ≤ n. If we denote by νpi = 1

pi

∑pi
j=1 δXi,j the

usual empirical measure associated to νi, it follows from inequality (3.2) that

E
(
d2
E

(
µγPνn ,µ

γ
X

))
≤ 4
γ2n

n∑
i=1

E
(
W 2

2 (νi,νpi)
)
,

where µγX is the random density satisfying

µγX = argmin
µ∈P2(Ω)

1
n

n∑
i=1

W 2
2

µ, 1
pi

pi∑
j=1

δXi,j

+ γE(µ).

This result allows to discuss the rate of convergence (for the symmetric squared Bregman
distance) of µγX to µγPνn as a function of the rate of convergence (for the squared Wasserstein
distance) of the empirical measure νpi to νi for each 1 ≤ i ≤ n (in the asymptotic setting
where p = min1≤i≤n pi is let going to infinity).

As an illustrative example, in the one-dimensional case (that is d = 1), one may use
Theorem 5.1 in [BL14], to obtain that

E
(
W 2

2 (νi,νpi)
)
≤ 2
pi + 1J2(νi), with J2(νi) =

∫
Ω

Fi(x)(1− Fi(x))
fi(x) dx,

where fi is the pdf of νi, and Fi denotes its cumulative distribution function. Therefore,
provided that J2(νi) is finite for each 1 ≤ i ≤ n, one obtains the following rate of convergence
of µγX to µγPνn (for d = 1)

E
(
d2
E

(
µγPνn ,µ

γ
X

))
≤ 8
γ2n

n∑
i=1

J2(νi)
pi + 1 ≤

8
γ2

(
1
n

n∑
i=1

J2(νi)
)
p−1. (3.3)

When the measures ν1, . . . , νn are supported on Rd with d ≥ 2, we refer to [FG15] for further
results on the rate of convergence of an empirical measure in Wasserstein distance that may
be used to derive rates of convergence for dE

(
µγPνn ,µ

γ
X

)
.

4 Convergence properties of regularized empirical barycenters
In this section, when Ω is a compact of Rd, we study the convergence of the regularized
Wasserstein barycenter of a set ν1, . . . ,νn of independent random measures sampled from
a distribution P towards a minimizer of J0

P , that is a population Wasserstein barycenter of
the probability distribution P ∈ W2(P2(Ω)). To this end, we first introduce and recall some
notation.

Definition 4.1. For ν1, . . . ,νn iid random measures in P2(Ω) sampled from a distribution
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P ∈W2(P2(Ω)), we let Pn = 1
n

∑n
i=1 δνi . Moreover, we use the notation

µγPn ∈ argmin
µ∈P2(Ω)

JγPn(µ) =
∫
W 2

2 (µ, ν)dPn(ν) + γE(µ) (4.1)

µγP ∈ argmin
µ∈P2(Ω)

JγP (µ) =
∫
W 2

2 (µ, ν)dP(ν) + γE(µ) (4.2)

µ0
P ∈ argmin

µ∈P2(Ω)
J0
P(µ) =

∫
W 2

2 (µ, ν)dP(ν), (4.3)

that will be respectively referred as to the empirical Wasserstein barycenter (4.1), the regu-
larized population Wasserstein barycenter (4.2) and the population Wasserstein barycenter
(4.3).

In what follows, we obtain a rate of convergence in expected squared Bregman distance
between µγPn and µγP which depends on n and γ. A general result is first stated in Section 4.1.
Complementary results are given in Section 4.2 for d = 1 and in Section 4.3 for d ≥ 2. Then,
in Section 4.4, we prove the convergence in Bregman divergence (as γ → 0) of the regularized
population Wasserstein barycenter µγP towards µ0

P.

4.1 Rate of convergence of µγPn towards µγP in symmetrized Bregman dis-
tance

To compute a rate of convergence between µγPn and µγP, we will need results from the empirical
process theory. Thus, we first introduce some notions borrowed from [VDVW96].

Definition 4.2. Let F = {f : U 7→ R} be a class of real-valued functions defined on a given
set U , endowed with a norm ‖·‖. An envelope function of F is any function u 7→ F (u) such that
|f(u)| ≤ F (u) for every u ∈ U and f ∈ F . The minimal envelope function is u 7→ supf |f(u)|.
The covering number N(ε,F , ‖ · ‖) is the minimum number of balls {‖g− f‖ < ε} of radius ε
and center g needed to cover the set F . The metric entropy is the logarithm of the covering
number. Finally, we define

I(δ,F) = sup
Q

∫ δ

0

√
1 + logN(ε‖F‖L2(Q),F , ‖ · ‖L2(Q))dε (4.4)

where the supremum is taken over all discrete probability measures Q supported on U with
‖F‖L2(Q) =

(∫
|F (u)|2dQ(u)

)1/2
> 0.

Theorem 4.3. If Ω is a compact of Rd, then one has that

E(d2
E(µγPn , µ

γ
P)) ≤

CI(1,H)‖H‖L2(P)
γ2n

(4.5)

where C is a positive constant, and

H = {hµ : ν ∈ P2(Ω) 7→W 2
2 (µ, ν) ∈ R;µ ∈ P2(Ω)} (4.6)

is a class of functions defined on P2(Ω) with envelope H.

The proof of Theorem 4.3 is given in the Appendix B.4. To complete this result, one
needs to prove that I(1,H) <∞, which depends on the rate of of convergence of the metric
entropy towards infinity as ε tends to zero.
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4.2 The one-dimensional case

For probability measures ν1, . . . ,νn supported in the real line, we can prove that the right-
hand side of (4.5) is finite by using existing results on the notion of bracketing number defined
below.
Definition 4.4. Given two real-valued functions l and r, the bracket [l, r] is the set of all
functions f with l ≤ f ≤ r. An ε-bracket is a bracket [l, r] with ‖l − r‖ < ε. The bracketing
number N[](ε,F , ‖ · ‖) is the minimum number of ε-brackets needed to cover F .
Theorem 4.5. If Ω is a compact of R, then there exists a finite constant C > 0 such that
E(d2

E

(
µγPn , µ

γ
P)
)
≤ C

γ2n .

Proof. In what follows, C denotes a universal constant whose value may change from line to
line. We define the envelope function H : ν ∈ P2(Ω) 7→ sup

µ∈P2(Ω)
{W2(µ, ν);W 2

2 (µ, ν)}. Since

for hµ ∈ H we have

|hµ(ν)| ≤ 2
∫
|x|2dµ(x) + 2

∫
|y|2dν(y) ≤ 4δ(Ω) for all ν ∈ P2(Ω)

where δ(Ω) = sup
x∈Ω
|x|2, then for all Q ∈W2(P2(Ω)),

‖H‖L2(Q) =
(∫

H(ν)2dQ(ν)
)1/2

≤
(

16δ(Ω)2
∫
dQ(ν)

)1/2
≤ 4δ(Ω).

Now, it remains to control the term I(1,H) in the upper bound (4.5). By the triangle reverse
inequality, we have

|hµ(ν)− hµ′(ν)| = |W2(ν, µ)−W2(ν, µ′)| (W2(ν, µ) +W2(ν, µ′))
≤ W2(µ, µ′) 2H(ν).

Then, from Theorem 2.7.11 in [VDVW96], and since Theorem 4 in [KT59] allows us to bound
the metric entropy by the bracket entropy, we get

logN(ε‖H‖L2(Q),H, ‖ · ‖L2(Q)) ≤ logN[](ε‖H‖L2(Q),H, ‖ · ‖L2(Q))
≤ logN(ε,P2(Ω),W2) ≤ logN[](ε,P2(Ω),W2). (4.7)

Also, for d = 1, we have

W2(µ, µ′) =
(∫ 1

0
|F−µ (t)− F−µ′ (t)|

2dt

)1/2
= ‖F−µ − F−µ′‖L2([0,1]) (4.8)

where F−µ is the quantile function of the cumulative distribution function Fµ of µ. We denote
by G = {F−µ , µ ∈ P2(Ω)} the class of quantile functions of probability measures µ in P2(Ω),
which are monotonic functions. Moreover, we can observe that F−µ : [0, 1]→ [F−µ (0), F−µ (1)] ⊆
Ω, where Ω is a compact included in R. Hence, G is uniformly bounded, say by a constant
M > 0. Finally, by Theorem 2.7.5. of [VDVW96] concerning the bracket entropy of the class
of monotonic functions, we obtain that logN[](ε,G,L2[0, 1]) ≤ CM

ε , for some constant C > 0.
Finally, from relations (4.7) and (4.8), we can deduce that

I(1,H) =sup
Q

∫ 1

0

√
1 + logN(ε‖H‖L2(Q),H,L2(Q))dε ≤

∫ 1

0

√
1 + CM

ε
dε <∞.
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Therefore, when ν1, . . . ,νn are iid random measures with support included in a compact
interval Ω, it follows from Theorem 4.5 that if γ = γn is such that limn→∞ γ

2
nn = +∞ then

limn→∞ E(d2
E

(
µγPν

n
, µ0

P)
)

= 0.

4.3 The Rd case with additional regularization

In the case d ≥ 2, the class of functions H defined in (4.6) is too large to control the metric
entropy so that I(1,H) is finite. To solve this issue, we impose more smoothness on the
regularized Wasserstein barycenter as follows.

We assume that Ω is a smooth and uniformly convex set, and we choose

E(µ) =
{ ∫

Rd f(x) log(f(x))dx+ ‖f‖2
Hk(Ω), if f = dµ

dx and f > α,

+∞ otherwise.
(4.9)

where ‖ · ‖Hk(Ω) denotes the Sobolev norm associated to the L2(Ω) space and α > 0 is
arbitrarily small. Then, the following result holds.

Theorem 4.6. Suppose that Ω is a compact and uniformly convex set with a C1 boundary.
Assume that the penalty function E is given by (4.9) for some α > 0 and k > d − 1. Then,
there exists a finite contant C > 0 such that E(d2

E

(
µγPn , µ

γ
P)
)
≤ C

γ2n .

Proof. Supposing that Ω has a C1 boundary, we have by the Sobolev embedding theorem
that Hk(Ω) is included in the Hölder space Cm,β(Ω̄) for any integer m and β ∈]0, 1] satisfying
m + β = k − d/2. Hence, the densities of µγPn and µγP given by (4.1) and (4.2) belong to
Cm,β(Ω̄).

Arguing as in the proof of Theorem 4.5, we have |hµ(ν)− hµ′(ν)| ≤W2(µ, µ′) 2H(ν) and
‖H‖L2(Q) < ∞, where H(ν) = sup

µ∈D(E)
{W2(µ, ν);W 2

2 (µ, ν)} where D(E) is defined by (2.5).

Thus, instead of controlling the metric entropy N(ε‖H‖L2(Q),H, ‖ · ‖L2(Q)), it is enough to
bound the metric entropy N(ε,D(E),W2) thanks to Theorem 2.7.11 in [VDVW96].

To this end, since µ, µ′ ∈ D(E) are a.c. measures, one has that

W2(µ, µ′) ≤
(∫

Ω
|T (x)− T ′(x)|2dx

)1/2
where T#λd = µ and T ′#λd = µ′,

with λd denoting the Lebesgue measure on Ω. Thanks to Theorem 3.3 in [DPF14] on the
regularity of optimal maps (results initally due to Caffarelli, [Caf92] and [Caf96]), the coordi-
nates of T and T ′ are Cm+1,β(Ω̄) functions λd− a.e.. Thus, we can bound N(ε,D(E),W2) by
the bracket entropy N[](ε, Cm+1,β(Ω̄),L2(Ω)) since |T (x)− T ′(x)|2 =

∑d
j=1 |Tj(xj)− T ′j(xj)|2

where Tj , T ′j : Ω→ R. Now, by Corollary 2.7.4 in [VDVW96],

logN[](ε, Cm+1,β(Ω̄),L2(Ω)) ≤ K
(1
ε

)V
for any V ≥ d/(m + 1). Hence, as soon as V/2 < 1 (for which the condition k > d − 1 is
sufficient if V = d/(m + 1)), the upper bound in (4.5) is finite for H = {hµ : ν ∈ P2(Ω) 7→
W 2

2 (µ, ν) ∈ R;µ ∈ D(E)}, which yields the result of Theorem 4.6 by finally following the
arguments in the proof of Theorem 4.5.
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4.4 Convergence of µγP towards µ0
P in Bregman divergence

Theorem 4.7. If Ω is a compact of Rd and ∇E(µ0
P) is a bounded function on Ω then

lim
γ→0

DE(µγP, µ
0
P) = 0,

where DE denotes the Bregman divergence between two measures µ and ν defined as DE(µ, ν) =
E(µ)− E(ν)− 〈∇E(ν), µ− ν〉.

Proof. By definition (4.2) of µγP, we get that∫
W 2

2 (µγP, ν)dP(ν)−
∫
W 2

2 (µ0
P, ν)dP(ν) + γ(E(µγP)− E(µ0

P)) ≤ 0. (4.10)

By definition (4.3) of µ0
P, one has

∫
W 2

2 (µγP, ν)dP(ν) −
∫
W 2

2 (µ0
P, ν)dP(ν) ≥ 0. Therefore, by

definition of the Bregman divergence, inequality (4.10) gives

DE(µγP, µ
0
P) ≤ 〈∇E(µ0

P), µ0
P − µ

γ
P〉 ≤ C sup

‖φ‖BL≤1
〈φ, µ0

P − µ
γ
P〉 ≤ CdBL∗(µ

0
P, µ

γ
P),

where dBL∗ is the bounded Lipschitz distance and ‖φ‖BL := ‖φ‖∞ + ‖φ‖Lip. We denote by
‖ · ‖Lip the norm define on the space of all Lipschitz functions on (Ω, d) with d(x, y) = 1x 6=y.
By hypothesis, ‖∇E(µ0

P)‖BL is finite. For sequence of probability measures, convergence in
distance dBL∗ is equivalent to weak convergence (e.g. Section 1.2.1 of [Vil03]). Hence, by
Theorem 2.1.(d) in [Bra06], JγP Γ-converges to J0

P . Indeed for every sequence (µγ)γ ⊂ P2(Ω)
converging to µ ∈ P2(Ω) in bounded Lipchitz distance,

J0
P(µ) ≤ lim inf

γ→0
JγP (µγ)

by lower semicontinuity of JγP in W2. Moreover, there exists a sequence (µγ)γ converging to
µ (for instance take (µγ)γ constant equals to µ) such that lim

γ→0
JγP (µγ) = lim

γ→0
JγP (µ) = J0

P(µ).

One can also notice that JγP : P2(Ω) → R is equi-coercive: for all t ∈ R, the set {ν ∈
P2(Ω) such that JγP (ν) ≤ t} is included in a compact Kt since it is closed in the compact
set P2(Ω) (by compactness of Ω). Therefore, we can apply the fundamental theorem of
Γ-convergence (Theorem 2.10 in [Bra06]) to the bounded Lipschitz metric to obtain that
dBL∗(µ0

P, µ
γ
P) −→

γ→0
0.

5 Algorithmic approach and numerical experiments
In this section, we first present a method to automatically choose the parameter γ. Then, we
present numerical experiments on simulated and real data sets in R and R2. A discretization of
the minimization problem (1.2) is used to compute a numerical approximation of a regularized
Wasserstein barycenter µγPn . It consists of using a fixed grid {xk}Nk=1 of equally spaced
points xk ∈ Rd, and to approximate µγPn by the discrete measure

∑N
k=1 f

kδxk where the fk
are positive weights summing to one which minimize a discrete version of the optimisation
problem (1.2). Further algorithmic details are given in an C. In these numerical experiments,
we focus on the case where E(µ) = +∞ if µ is not a.c. to enforce the regularized Wasserstein
barycenter to have a smooth pdf (we write E(f) = E(µf ) if µ has a density f). In this setting,
if the grid of points is of sufficiently large size, then the weights fk yield a good approximation
of this pdf.
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5.1 Choice of the parameter γ

By analogy with the work in [BM07] based on the Lepskii balancing principle, we use an au-
tomatic selection of the regularization parameter γ. The method proposed in [BM07] requires
the knowledge of an upper bound on the decay to zero of the variance term E(d2

E(µγPn , µ
γ
P))

as γ → 0 which is given by (4.5). To match their notation, we set λ = 1/γ. Hence λ→ +∞
corresponds to γ → 0.

Without the knowledge of µP, the Lepskii balancing principle described in [BM07] to select
an appropriate λ works as follows:

- For σ > 1 and a threshold Λ > 0, the Look-Ahead function is defined as lΛ,σ(λ) =
min{min{κ|ρ(λ) > σρ(κ)},Λ} where the choice ρ : λ 7→ 1

λ comes from the upper bound
(4.5).

- For δ > 0, the balancing functional reads

bΛ,σ(λ) = max
λ<κ≤lΛ,σ(λ)

{ 1
4δ dE(µ1/λ

Pn ,µ
1/κ
Pn )ρ(κ)}

- The data-driven choice is given by λΛ,σ,ε = min{λ ≤ Λ ; BΛ,σ(λ) ≤ ε} where BΛ,σ(λ) =
max
λ<κ≤Λ

{bΛ,σ(κ)} is the smooth balancing functional, and ε > 0 is a parameter to control

the stability of regularized barycenters for successive choices of λ = 1/γ.

We display in Figure 2 an example of the smooth balancing functional BΛ,σ(λ) associated
to the simulated Gaussian data from Section 5.2 for three different choices for the penalty
function E.

In this paper, instead of choosing a value for ε, we use the fact that BΛ,σ is a decreasing
function, and that it has the shape of a L-curve. Hence, a data-driven value λ̂Λ,σ is chosen
by determining the location where the curve BΛ,σ has an “elbow” (change of curvature). In
Figure 2, this strategy leads to a data-driven value for λ that is close to the ideal choice given
by the minimizer of λ 7→ dE(µP, µ1/λ

Pn )/minλ dE(µP, µ1/λ
Pn ).

5.2 Numerical experiments for d = 1
Simulated data We consider a simulated example where the measures νi are discrete and
supported on a small number pi of data points. To this end, for each i = 1, . . . , n, we simulate a
sequence (Xij)1≤j≤pi of iid random variables sampled from a Gaussian distribution N (µi,σ2

i )
where the pi’s are ranging from 5 to 10, and the µi’s (resp. σi) are iid random variables such
that −2 ≤ µi ≤ 2 and 0 ≤ σi ≤ 1 with E(µi) = 0 and E(σi) = 1/2. The target measure that
we wish to estimate in these simulations is the population (or true) Wasserstein barycenter of
the random distribution N (µ1,σ

2
1) which is N (0, 1/4) thanks to the assumptions E(µ1) = 0

and E(σ1) = 1/2. Then, we define the random discrete measure νi = 1
pi

∑pi
j=1 δXij .

To illustrate the benefits of regularizing the Wasserstein barycenter of the νi’s, we compare
our estimator with the one obtained by the following procedure which we refer to as the kernel
method. In a preliminary step, each measure νi is smoothed using a standard kernel density
estimator whose bandwidth hi is chosen by cross-validation. An alternative estimator is
then defined as the Wasserstein barycenter of these smoothed measures which can be easily
computed thanks to the quantile averaging formula for measures supported on R (see e.g.
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Figure 2: Simulated Gaussian data from Section 5.2. Smooth balancing functional BΛ,σ(λ)
(times 10−6) in solid lines for three different regularizations (with σ = 3). For these simulated
data, we have access to µP, and the dotted lines represent dE(µP, µ1/λ

Pn )/minλ dE(µP, µ1/λ
Pn ) as

functions of λ.

Section 6.1 in [AC11]). This estimator corresponds to the notion of smoothed Wasserstein
barycenter of multiple point processes as considered in [PZ16]. The density of this smoothed
Wasserstein barycenter is displayed in Figure 3. For this example, it appears a preliminary
smoothing of the νi followed by quantile averaging is not sufficient to recover a satisfactory
Gaussian shape when the number pi of observations per unit is small.
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(a) Dirichlet regularization
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(b) Entropy regularization

Figure 3: Simulated data from Gaussian distributions with random means and variances. In
all the figures, the black curve is the density of the true Wasserstein barycenter. The blue
and dotted curve represents the pdf of the smoothed Wasserstein barycenter obtained by a
preliminary kernel smoothing step. Pdf of the regularized Wasserstein barycenter µγPn (a) for
20 ≤ γ ≤ 50 with E(f) = ||f ′||2 (Dirichlet), and (b) for 0.08 ≤ γ ≤ 14 with E(f) =

∫
f log(f)

(negative entropy).

Alternatively, we have applied the algorithm described Section 3.1 of the C directly on
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the (non-smoothed) discrete measures νi to obtain a numerical approximation of regularized
barycenter µγPn with two different choices for the penalty function E. The results are displayed
in Figure 3 for different values of γ around the data-driven choice 1/λ̂Λ,σ from Section 5.1. For
both penalty functions and despite a small number of observations per experimental units,
the shape of these densities better reflects the fact that the population Wasserstein barycenter
is a Gaussian distribution.

Finally, we provide Monte-Carlo simulations to illustrate the influence of the number n
of observed measures on the convergence of these estimators. For a given 10 ≤ n0 ≤ n,
we randomly draw n0 measures νi from the whole sample, and we compute the following
estimators: a smoothed barycenter via the kernel method, a regularized barycenter using a
data-driven choice for γ, and an ideal regularized barycenter obtained by the Lepskii method
if we had access to the true population barycenter by setting γ as the minimizer of γ 7→
dE(µP, µγPn). For given value of n0, this procedure is repeated 200 times, which allows to
obtain an approximation of the expected error E (d(µ̂, µP)) of each estimator µ̂, where d is
either the Bregman or the Wasserstein distance. The penalty used is a linear combinaison
of Dirichlet and negative entropy functions. The results are displayed in Figure 4. It can be
observed that our approach yields better results than the kernel method for both types of
error (using either the Bregman or Wasserstein distance).
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(a) Error with Bregman distance
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(b) Error with Wasserstein distance

Figure 4: Errors in terms of expected Bregman and Wasserstein distances between the pop-
ulation barycenter and the estimated barycenters (kernel method in dashed blue, regularized
barycenter in full red and ideal regularized barycenter in dashed red) for a sample of size
n0 = 10, 25, 50 and 75 (the whole sample is made of n = 100 discrete measures).

A real data set We consider now a real data set of neural spike trains which is publicly
available from the MBI website2. During a squared-path task, the spiking activity of a
movement-encoded neuron of a monkey has been recorded during 5 seconds over n = 60
repeated trials. Each spike train is then smoothed using a Gaussian kernel (further details
on the data collection can be found in [WS11]). For each trial 1 ≤ i ≤ n, we let νi be the
measure with pdf proportional to the sum of these Gaussian kernels centered at the times of
spikes, see Figure 5(a). This is an example of a dataset made of a.c. measures (histograms).

2http://mbi.osu.edu/2012/stwdescription.html
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The pdf of the Wasserstein barycenter ν̄n of these measures is displayed in Figure 5(b). This
approach leads to a an irregular mean density of spiking activity.
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Figure 5: Neural spike trains data. (a) A subset of 3 smoothed spikes out of n = 60 of the
neural activity of a monkey during 5 seconds. Each row represents one trial and the pdf
obtained by smoothing each spike train with a Gaussian kernel of width 50 milliseconds. (b)
Pdf of the empirical Wasserstein barycenter ν̄n for this data set.

To compute a regularizedWasserstein barycenter from this dataset, we apply the algorithm
described in Section 3.1 of the C. In Figure 6(a), we display the densities of the regularized
Wasserstein barycenters with a Dirichlet regularization obtained for 6 ≤ γ ≤ 10, where this
range of values is chosen by the adaptative Lepskii balancing principle described in Section 5.1.
In Figure 6(b), we display the results obtained with a negative entropy regularization for the
data-driven range of values 0.08 ≤ γ ≤ 0.12. Comparing Figures 5 and 6, this approach allows
to clearly smooth the result obtained by quantile averaging of the νi’s (which corresponds to
γ = 0).

5.3 Numerical experiments for d = 2
We consider the real dataset described previously on the locations of reported incidents of
crime in Chicago. The city of Chicago is represented as an image of size 92 × 59, and a
crime is considered as a Dirac located at some pixel (see Figure 1). To compute a regularized
Wasserstein barycenter from this dataset, we apply the algorithm described in Section 3.2
of the C for d = 2. For a Dirichlet regularization, the adaptative Lepskii’s strategy from
Section 5.1 leads us to choose λ = 2.10−3 as it can be observed from Figure 7(a). We com-
pare our approach with the one in [CP16] which consists in using a regularized barycenter
associated to an entropically regularized transportation cost. The computation of such regu-
larized barycenters is obtained via the so-called Sinkhorn’s algorithm, see [CP16] for further
details. The parameter which controls the amount of transportation plan regularization is
fixed to ε = 1 (following the notation in [CP16]). The parameter γ controlling the amount of
regularization of such Wasserstein barycenter is again chosen in a data-driven way using the
Lepskii’s strategy. Using transportation plan regularization, it follows than the best choice is

17



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.005

0.01

0.015

0.02

(a) E(f) = ||f ′||2 Dirichlet
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.005

0.01

0.015

0.02

(b) E(f) =
∫

f log(f) Entropy

Figure 6: Neural spike trains data. (a) Pdf of the regularized empirical Wasserstein barycenter
with a Dirichlet regularization for 6 ≤ γ ≤ 10. (b) Pdf of the regularized empirical Wasserstein
barycenter with negative entropy regularization and 0.08 ≤ γ ≤ 0.12

λ = 10−2, as it can be seen from Figure 7(b).
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Figure 7: Real dataset of reported incidents of crime in Chicago. Smooth balancing functional
BΛ,σ(λ) associated to regularized Wasserstein barycenters for different values of λ.

These two choices for γ lead to the regularized Wasserstein barycenters whose pdf are
displayed in Figure (8)(a) and Figure (8)(b). The main differences between the estimator
is the spreading of the mass in Figure (8)(b) due to the use of an entropically regularized
transportation cost. Finally, we present in Figure (8)(c) a comparison with a standard kernel
density estimator using the whole dataset (over all the year 2014) obtained from an implemen-
tation in Matlab3 of a bivariate Gaussian kernel density estimator which uses a data-driven
choice for the bandwidth suggested in [BA97]. The method of kernel density yields a much

3https://www.mathworks.com/examples/matlab/community/20312-bivariate-kernel-density-estimation
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smoothed estimator than those obtained with regularized Wasserstein barycenters.

(a) Our approach: pdf of regularized Wasserstein
barycenter with unregularized transport cost.

(b) The approach in [CP16]: regularized Wasser-
stein barycenter with regularized transport cost and
Sinkhorn’s algorithm.

(c) Standard Kernel density estimator of the whole
dataset with a data-driven bandwidth.

Figure 8: (a) Barycenter and (b) kernel density estimator associated to the location of crimes
in the city of Chicago during the year 2014 are represented in color scale. The red points
represent locations of all crimes during this month.
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A Bregman divergence and symmetric distance
Definition A.1 (Subdifferential). Let X be a vector space and let X ′ its dual. For a convex
functional G : X → R, we say that q ∈ X ′ is a subgradient of G at u if it satisfies the
inequality

G(v) ≥ G(u) + 〈q, v − u〉 for every v ∈ X (A.1)

where 〈·, ·〉 is the duality pairing (or linear form) of X and X ′. The set of subgradients at u
is the subdifferential of G, denoted ∂G(u).

Definition A.2 (Bregman divergence). The (generalized) Bregman divergence related to a
convex functional G : X → R is defined by

Dq
G(u, v) = G(u)−G(v)− 〈q, u− v〉 for u, v ∈ X,

where q ∈ ∂G(v). The symmetric Bregman distance is defined by

dp,qG (u, v) = Dq
G(u, v) +Dp

G(v, u) = 〈p− q, u− v〉

where p ∈ ∂G(u) and q ∈ ∂G(v).

B Proofs of main Theorems

B.1 Proof of the subgradient’s inequality

Proof of Lemma 2.6. 2⇒1. Let φ ∈ ∂J(µ) such that 〈φ, η − µ〉 ≥ 0 for all η ∈ P2(Ω). By
definition of the subgradient, ∀ η ∈ P2(Ω), we have J(η) ≥ J(µ) + 〈φ, η− µ〉 which is greater
than J(µ) by assertion. Hence µ minimizes J .
1⇒2. Take µ ∈ int(dom J) (that is J(µ) < +∞) such that µ is a minimum of J over P2(Ω).
Then the directional derivative of J at the point µ along (η − µ) exists (Proposition 2.22 in
[Cla13]) and satisfies

J ′(µ; η − µ) := lim
t→0
t>0

J(µ+ t(η − µ))− J(µ)
t

≥ 0. (B.1)

Remark that P2(Ω) is a convex set. By Proposition 4.3 of [Cla13], since J is a proper convex
function and µ ∈ dom(J), we obtain the equivalence

φ ∈ ∂J(µ) ⇔ 〈φ,∆〉 ≤ J ′(µ; ∆) for all ∆ ∈ P2(Ω).

Moreover, since J is proper convex and lower semi-continuous, so is J ′(f ; ·). Given that
P2(Ω) is a Hausdorff convex space, we get by Theorem 7.6 of [AB06], that for all (η − µ) ∈
P2(Ω), J ′(µ; η − µ) = sup{〈φ, η − µ〉 where φ is such that 〈φ,∆〉 ≤ J ′(µ; ∆), ∀∆ in P2(Ω)}.
Hence by (B.1) we get sup

φ∈∂J(µ)
〈φ, η − µ〉 ≥ 0. We then define the ball Bε = {η + µ ∈

M(Ω) such that ‖η‖TV ≤ ε}, where ‖ · ‖TV is the norm of total variation. We still have

inf
η∈Bε∩P2(Ω)

sup
φ∈∂J(µ)

〈φ, η − µ〉 ≥ 0.

Note that ∂J(µ) in a convex set. Moreover Bε ∩ P2(Ω) is compact, and (φ, η) 7→ 〈φ, η − µ〉
is bilinear. Thus we can switch the infimum and the supremum by the Ky Fan’s theorem
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(4.36 in [Cla13]). In that way, there exists φ ∈ ∂J(f) such that inf
η∈Bε∩P2(Ω)

〈φ, η − µ〉 ≥ 0.

By convexity of P2(Ω), any ζ ∈ P2(Ω) can be written as t(η − µ) + µ for some t ≥ 0 and
η ∈ Bε ∩ P2(Ω). This concludes the proof of the lemma.

Proof of Lemma 2.7. (⇐). We first assume that for φµ,ν ∈ L1(µ), there exists ψµ,ν ∈ L1(ν)
such that W 2

2 (µ, ν) =
∫
φµ,νdµ +

∫
ψµ,νdν and φµ,ν(x) + ψµ,ν(y) ≤ |x − y|2 . Then for all

η ∈ P2(Ω), denoting (φη,ν , ψη,ν) an optimal couple for η and ν, we get

W 2
2 (η, ν) = sup

φ(x)+ψ(y)≤|x−y|2

∫
φdη +

∫
ψdν =

∫
φη,νdη +

∫
ψη,νdν

≥W 2
2 (µ, ν) +

∫
φµ,νd(η − µ).

Hence, from the definition of a subgradient, φµ,ν ∈ ∂1W
2
2 (µ, ν).

(⇒). We denote by F the function µ ∈ P2(Ω) 7→ W 2
2 (µ, ν). Let φ∗ ∈ ∂F (µ), then by the

Legendre-Fenchel theory, we have that F ∗(φ∗)+F (µ) =
∫
φ∗dµ, where F ∗ denote the Fenchel

conjugate of F . Recall we want to show that there exists ψ ∈ L1(ν) verifying φ∗(x) +ψ(y) ≤
|x− y|2 such that ∫

φ∗dµ−W 2
2 (µ, ν) = −

∫
ψdν,

which is equivalent to F ∗(φ∗) = −
∫
ψdν. In that purpose, we first define ψφ(·) := inf

y∈Ω
{| ·

−y|2 − φ(y)} and H(φ) := −
∫
ψφdν.

By definition, H∗(µ) = sup
φ∈Y
{
∫
φdµ−H(φ)}. Observing that H is convex, l.s.c. on Y and

proper as :

H(φ) = −
∫
ψφdν =

∫
sup
y∈Ω
{φ(y)− |x− y|2} dν(x)

≥
∫

(φ(y0)− 2|y0| − 2|x|2)dν(x) > −∞ by definition of ν,

where y0 ∈ Ω is such that φ(y0) is finite. We get H∗∗(φ) = H(φ) by Theorem 2.3.3. in [Zal02].
Moreover, for µ ∈ P2(Ω), we have by the duality formulation of Kantorovich (e.g Lemma 2.1.
of [AC11]) that

W 2
2 (µ, ν) = sup

{∫
Ω
φdµ+

∫
Ω
ψdν; φ, ψ ∈ Cb, φ(x) + ψ(y) ≤ |x− y|2

}
= sup

{∫
Ω
φdµ+

∫
Ω
ψdν; φ, ψ ∈ Cb, ψ(y) ≤ inf

x
{|x− y|2 − φ(x)}

}
= sup

φ

{∫
Ω
φdµ+

∫
Ω
ψφ
}

= H∗(µ).

We deduce thatH∗∗(φ) = sup
f∈P2(Ω)

{
∫
φdµ−W 2

2 (µ, ν)} = F ∗(φ), which implies F ∗(φ∗) = H(φ∗).

Thus we end up with the equality F (µ) =
∫
φ∗dµ−F ∗(φ∗) =

∫
φ∗dµ+

∫
ψφ
∗
dν. This exactly

means that for φ∗ ∈ ∂1W
2
2 (µ, ν), there exists ψφ∗ such that φ∗(x) + ψφ

∗(y) ≤ |x − y|2 and
W 2

2 (µ, ν) =
∫
φ∗dµ+

∫
ψφ
∗
dν, which concludes the proof.
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B.2 Proof of existence, uniqueness and stability of regularized barycenters

Proof of Theorem 3.1. Let (µk)k ⊂ P2(Ω) a minimizing sequence of probability measures of
JγPn . Hence, there exists a constant M ≥ 0 such that ∀k, JγPn(µk) ≤ M . It follows that for
all k, 1

n

∑n
i=1W

2
2 (µk, νi) ≤M . By Lemma 2.1 of [AC11] we thus have

1
n

n∑
i=1

W 2
2 (νi, µk) = 2

n∑
i=1

sup
f∈Z

{∫
Rd
fdµk +

∫
Rd
Sf(x)dνi(x)

}
≤M,

where Sf(x) = inf
y∈Ω
{ 1

2n |x− y|
2− f(y)}. Since the function x 7→ |x|α (with 1 < α < 2) belongs

to Z, we have that
∫
Rd |x|αdµk(x) is bounded by a constant L ≥ 0 for all k. We deduce that

(µk)k is tight (for instance, take the compact Kc = {x ∈ Ω such that |x|α > L
ε }). Since

(µk)k is tight, by Prokhorov’s theorem, there exists a subsequence of (µk)k (still denoted
(µk)) which weakly converges to a probability measure µ. Moreover, one can prove that
µ ∈ P2(Ω). Indeed for all lower semicontinuous functions bounded from below by f , we have
that lim inf

k→∞

∫
Ω f(x)dµk(x) ≥

∫
Rd f(x)dµ(x) by weak convergence. Hence for f : x 7→ |x|2, we

get
∫

Ω |x|2dµ(x) ≤ lim inf
k→∞

∫
Ω |x|2dµk(x) < +∞, and thus µ ∈ P2(Ω).

Let (πki )1≤i≤n,1≤k be a sequence of optimal transport plans where πki is an optimal trans-
port plan between µk and νi. Since supkW 2

2 (µk, νi) = supk
∫∫

Ω×Ω |x − y|2dπki (x, y) < +∞,
we may apply Proposition 7.1.3 of [AGS08]: (πki )k is weakly relatively compact on the prob-
ability space over Ω×Ω and every weak limit πi is an optimal transport plan between µ and
νi with, for all 1 ≤ i ≤ n, W 2

2 (µ, νi) ≤ lim inf
k→∞

∫
Rd×Rd |x− y|2dπki (x, y) < +∞. Since E is lower

semicontinuous, we get that

lim inf
k→∞

JγPn(µk) = lim inf
k→∞

1
n

n∑
i=1

W 2
2 (µk, νi) + γE(µk)

≥ 1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) = JγPn(µ).

Hence JγPn admits at least µ ∈ P2(Ω) as a minimizer. Finally, by the strict convexity of JγPn
on its domain, the minimizer is unique and it belongs to D(E) as defined in (2.5), which
completes the proof.

Proof of Theorem 3.2. First, let us prove the existence of a minimizer. For that purpose, we
decide to follow the sketch of the proof of the existence of a Wasserstein barycenter given by
Theorem 1 in [LGL16]. We suppose that (Pn)n≥0 ⊆ W2(P2(Ω)) is a sequence of measures,
such that µn ∈ P2(Ω) is a probability measure minimizing JγPn , for all n. Furthermore, we
suppose that there exists P ∈ W2(P2(Ω)) such that W2(P,Pn) −→

n→+∞
0. We then have to

prove that (µn)n≥1 is precompact and that all limits minimize JγP . We denote µ̃ a random
measure with distribution P and µ̃n a random measure with distribution Pn. Hence

W2(µn, δx) =W2(δµn , δδx) ≤ W2(δµn ,Pn) +W2(Pn, δδx)
= E(W 2

2 (µn, µ̃n))1/2 + E(W 2
2 (µ̃n, δx))1/2.

Moreover, E(W 2
2 (µn, µ̃n))1/2 ≤M for a constant M ≥ 0 since µn minimizes JγPn and µ̃n is of

law Pn. Then

W2(µn, δx) ≤M +W2(Pn, δδx) ≤M +W2(Pn,P) +W2(P, δδx) ≤ L
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since W2(Pn,P) −→
n→+∞

0 and P ∈ W2(P2(Ω)) by hypothesis. By Markov inequality, we have
for r > 0

µn(B(x, r)c) = Pµn(|X − x|2 ≤ r2) ≤ Eµn(|X − x|2)
r2 = W 2

2 (µn, δx)
r2

and µn(B(x, r)c) ≤ L2

r2 . Hence (µn)n is tight: it is possible to extract a subsequence (still
denoted (µn)) which converges weakly to a measure µ by Prokhorov’s theorem. Let us show
that µ minimizes JγP . Let η ∈ P2(Ω) and ν ∈ P2(Ω) with distribution P.

JγP (η) = EP(W 2
2 (η, ν)) + γE(η) =W2

2 (δη,P) + γE(η)
= lim

n→+∞
W2

2 (δη,Pn) + γE(η) since by hypothesis W2(Pn,P)→ 0

≥ lim inf
n→+∞

W2
2 (δµn ,Pn) + γE(µn) since µn minimizes JγPn (B.2)

Moreover, we have by the inverse triangle inequality that

lim inf
n→+∞

W2(δµn ,Pn) ≥ lim inf
n→+∞

(W2(δµ,Pn)−W2(δµ, δµn)) =W2(δµ,P).

The last inequality comes from the two convergences W2(Pn,P) → 0 and W2(δµ, δµn) → 0.
From (B.2) and by lower semicontinuity of E, we get JγP (η) ≥ W2

2 (δµ,P) + γE(µ) = JγP (µ).
Hence µ minimizes JγP . To finish the proof of the existence of a minimizer, we need the
following result whose proof can be found in [LGL16].

Theorem B.1. For all P ∈W2(P2(Ω)), there is a sequence of finitely supported distributions
Pn (that is Pn =

∑K
k=1 λkδκk where

∑K
k=1 λk = 1) such that W2

2 (Pn,P) −→
n→+∞

0.

Now, by Theorem B.1 it follows that for a given distribution P, one can find a sequence of
finitely supported distributions Pn such that for all n there exists a unique measure µn ∈ P2(Ω)
minimizing JγPn using Theorem 3.1 and such that W 2

2 (Pn,P) −→
n→+∞

0 thanks to Theorem B.1.
Therefore there is a probability measure µ which minimizes JγP . Let us make sure that µ is
indeed in the space P2(Ω). From Theorem 3.1, we also have that µn ∈ P2(Ω) for all n. Thus
by weak convergence,

∫
Ω |x|2dµ(x) ≤ lim inf

n→+∞

∫
Ω |x|2dµn(x) < +∞. Finally, the uniqueness of

the minimum is obtained by the strict convexity of the functional µ 7→ EP(W 2
2 (µ, ν)) +γE(µ)

on the domain D(E), which completes the proof.

B.3 Proof of the stability’s Theorem 3.3
Proof. We denote by µ, ζ ∈ P2(Ω) the probability measures such that µ minimizes JγPνn and
ζ minimizes JγPηn . For each 1 ≤ i ≤ n, one has that θ 7→ 1

nW
2
2 (θ, νi) is a convex, proper

and continuous function. Therefore, Theorem 4.10 in [Cla13], we have that ∂JPνn(µ) =
1
n

∑n
i=1 ∂1W

2
2 (µ, νi) + γ∇E(µ). Hence by Lemma 2.7, any φ ∈ ∂JPνn(µ) is of the form

φ = 1
n

∑n
i=1 φi + γ ∇E(µ) where for all i = 1, . . . , n, φi = φµ,νi is optimal in the sense

that (φµ,νi , ψµ,νi) is an optimal couple associated to (µ, νi) in the Kantorovich formula-
tion of the Wasserstein distance (see Theorem 2.2). Therefore by Lemma 2.6, there exists
φ = 1

n

∑n
i=1 φ

µ,νi + γ∇E(µ) such that 〈φ, θ − µ〉 ≥ 0 for all θ ∈ P2(Ω). Likewise, there exists
φ̆ = 1

n

∑n
i=1 φ

ζ,ηi + γ∇E(ζ) such that 〈φ̆, θ− ζ〉 ≥ 0 for all θ ∈ P2(Ω). Finally, we obtain that
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γ〈∇E(µ)−∇E(ζ), µ− ζ〉 ≤ −
∫

Ω

(
1
n

n∑
i=1

(φµ,νi − φζ,ηi)
)
d(µ− ζ).

Following the proof of Kantorovich duality’s theorem in [Vil03], we can restrict the supremum
over (φ, ψ) ∈ CW in Kantorovich’s duality Theorem 2.2 to the admissible pairs (φcc, φc) where
φc(y) = infx{|x− y|2 − φ(x)} and φcc(x) = infy{|x− y|2 − φc(y)}. Then, we replace φµ,νi by
(φµ,νi)cc (resp. φζ,ηi by (φζ,ηi)cc ) and ψµ,νi by (φµ,νi)c (resp. ψζ,ηi by (φζ,ηi)c ) and obtain
that

γ〈∇E(µ)−∇E(ζ), µ− ζ〉 ≤ − 1
n

n∑
i=1

∫
Ω

[
(φµ,νi)cc(x)− (φζ,ηi)cc(x)

]
d(µ− ζ)(x)

= − 1
n

n∑
i=1

∫∫
Ω×Ω

[
(φµ,νi)cc(x)− (φζ,ηi)cc(x)

]
d(πµ,νi − πζ,ηi)(x, y),

where πµ,νi is an optimal transport plan on Ω×Ω with marginals µ and νi for i ∈ {1, . . . , n}
(and πζ,ηi optimal with marginals ζ and ηi). Developing the right-hand size expression in the
above inequality, we get

γ〈∇E(µ)−∇E(ζ), µ− ζ〉

≤ 1
n

n∑
i=1

[
−
∫∫

(φµ,νi)cc(x)dπµ,νi(x, y)−
∫∫

(φζ,ηi)cc(x)dπζ,ηi(x, y)
]

+ 1
n

n∑
i=1

[∫∫
(φµ,νi)cc(x)dπζ,ηi(x, y) +

∫∫
(φζ,ηi)cc(x)dπµ,νi(x, y)

]
.

From the condition (2.3) in the Kantorovich’s dual problem, we have that (φµ,νi)cc(x) ≤
|x − y|2 − (φµ,νi)c(y) and (φζ,ηi)cc(x) ≤ |x − y|2 − (φζ,ηi)c(y) for all i ∈ {1, . . . , n}. More-
over, we have that (φµ,νi)cc(x)dπµ,νi(x, y) =

[
−(φµ,νi)c(y) + |x− y|2

]
dπµ,νi(x, y) and likewise

(φζ,ηi)cc(x)dπζ,ηi(x, y) =
[
−(φζ,ηi)c(y) + |x− y|2

]
dπζ,ηi(x, y). We therefore deduce that

γ〈∇E(µ)−∇E(ζ), µ− ζ〉 ≤ − 1
n

n∑
i=1

∫∫ [
−(φµ,νi)c(y) + |x− y|2

]
dπµ,νi(x, y)

− 1
n

n∑
i=1

∫∫ [
−(φζ,ηi)c(y) + |x− y|2

]
dπζ,ηi(x, y)

+ 1
n

n∑
i=1

∫∫ [
−(φµ,νi)c(y) + |x− y|2

]
dπζ,ηi(x, y)

+ 1
n

n∑
i=1

∫∫ [
−(φζ,ηi)c(y) + |x− y|2

]
dπµ,νi(x, y)

= 1
n

n∑
i=1

∫
Ω

[
(φµ,νi)c(y)− (φζ,ηi)c(y)

]
d(νi − ηi)(y).

For all 1 ≤ i ≤ n, and y, y′ ∈ Ω, we have

(φµ,νi)c(y)− (φµ,νi)c(y′) =sup
x
{φµ,νi(x)− |x− y′|2}+ inf

x
{|x− y|2 − φµ,νi(x)}

≤sup
x
{|x− y|2 − |x− y′|2} ≤ 4cΩ|y − y′|
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where cΩ = sup
x
|x|. As a consequence, 1

4cΩ (φµ,νi)c is 1-Lipschitz and so is 1
4cΩ (φζ,ηi)c, which

implies that 1
8cΩ

[
(φµ,νi)c − (φζ,ηi)c

]
is 1-Lipschitz for all 1 ≤ i ≤ n.

We then conclude

γ〈∇E(µ)−∇E(ζ), µ− ζ〉 ≤8cΩ
n

n∑
i=1

sup
{∫

φ d(νi − ηi); φ ∈ ∩L1(|νi − ηi|), ‖φ‖Lip ≤ 1
}

=8cΩ
n

n∑
i=1

W1(νi, ηi) ≤
8cΩ
n

n∑
i=1

W2(νi, ηi),

by the Kantorovich-Rubinstein theorem presented in [Vil03], while the last inequality above
comes from Hölder inequality between the distance W2 and the distance W1 defined for θ1, θ2
(probability measures on Ω with moment of order 1) as

W1(θ1, θ2) = inf
π

∫
Ω

∫
Ω
|x− y|dπ(x, y)

where π is a probability measures on Ω × Ω with respective marginals θ1 and θ2. Since µ
and ζ are independent, we can assign to νi any ησ(i) for σ ∈ Sn the permutation group of
{1, . . . , n} and hence we obtain γ〈∇E(µ) −∇E(ζ), µ − ζ〉 ≤ 2

n inf
σ∈Sn

∑n
i=1W2(νi, ησ(i)), which

completes the proof.

B.4 Proof of convergence properties

Proof of Theorem 4.3. We denote by C a universal constant whose value may change from
line to line. From the subgradient’s inequality (2.9) and following the same process used in the
proof of Theorem 3.3, we have that, for each νi, i = 1, . . . , n, there exists φµ

γ
Pn ,νi integrable

with respect to µγPn(x)dx such that for all η ∈ P2(Ω):〈
1
n

n∑
i=1

φµ
γ
Pn ,νi + γ∇E(µγPn), η − µγPn

〉
≥ 0. (B.3)

By applying once again the subgradient’s inequality, we get

µγP minimizes JγP ⇔ ∃φ ∈ ∂J
γ
P (µγP) s. t. 〈φ, η − µγP〉 ≥ 0 for all η ∈ P2(Ω).

Let us explicit the form of a subgradient φ ∈ ∂JγP (µγP) using again the Theorem of the
subdifferential of a sum. We have that µ 7→ W 2

2 (µ, ν) is continuous for all ν ∈ P2(Ω).
Moreover by symmetry, ν 7→ W 2

2 (µ, ν) is measurable for all µ ∈ P2(Ω) and W 2
2 (µ, ν) ≤∫∫

|x− y|2dµ(x)dν(y) ≤ 2
∫
|x|2dµ(x) + 2

∫
|y|2dν(y) ≤ C is integrable with respect to dP(ν)

(by compactness of Ω). Hence, by Theorem of continuity under integral sign, we deduce that
µ 7→ E[W 2

2 (µ,ν)] is continuous. Thus we can manage the subdifferential of the following
sum and one has that ∂JγP (µγP) = ∂1[E(W 2

2 (µγP,ν))] + γ∇E(µγP), where ν is still a random
measure with distribution P. Also the Theorem 23 in [Roc74] implies ∂1E[W 2

2 (µγP,ν)] =
E[∂1W

2
2 (µγP,ν)]. Hence, we can sum up

µγP minimizes JγP ⇔
〈∫

φµ
γ
P ,νdP(ν) + γ∇E(µγP), η − µγP

〉
≥ 0, ∀ η ∈ P2(Ω). (B.4)
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In the sequel, to simplify the notation, we use µ := µγPn and η := µγP. Therefore thanks to
(B.3) and (B.4)

dE(µ, η) = 〈∇E(µ)−∇E(η),µ− η〉

≤ −1
γ

〈
1
n

n∑
i=1

φµ,νi −
∫
φη,νdP(ν),µ− η

〉

= 1
γ

(
− 1
n

n∑
i=1

∫
φµ,νi(x)dµ(x) + 1

n

n∑
i=1

∫
φµ,νi(x)dη(x)

+
∫∫

φη,νdP(ν)dµ(x)−
∫∫

φη,νdP(ν)dη(x)
)
. (B.5)

We would like to switch integrals of the two last terms. In that purpose, we use that∫
W 2

2 (η, ν)dP(ν) ≤ C + 2 sup
ν∈P2(Ω)

[∫
Ω
|y|2dν(y)

]
< +∞.

As 0 ≤
∫
W 2

2 (η, ν)dP(ν) =
∫

(
∫
φη,ν(x)dη(x) +

∫
ψη,ν(x)dν(y)) dP(ν), we also have that

∫∫
φη,ν(x)dη(x)dP(ν) <

+∞. Since x 7→ φη,ν(x) and ν 7→ φη,ν(x) are measurables, we obtain by Fubini’s theorem∫
Ω
∫
P2(Ω) φ

η,νdP(ν)dη(x) =
∫
P2(Ω)

∫
Ω φ

η,νdη(x)dP(ν). By the same tools, since∫
W 2

2 (µ, ν)dP(ν) =
∫ (∫

φµ,ν(x)dµ(x) +
∫
ψµ,ν(x)dν(y)

)
dP(ν)

≥
∫ (∫

φη,ν(x)dµ(x) +
∫
ψη,ν(x)dν(y)

)
dP(ν),

we get that
∫

(
∫
φη,ν(x)dµ(x)) dP(ν) < +∞, so

∫
Ω
∫
P2(Ω) φ

η,νdP(ν)dµ(x) =
∫
P2(Ω)

∫
Ω φ

η,νdµ(x)dP(ν).
Therefore, by the dual formulation of Kantorovich, we have that

−
∫
φµ,νidµ(x) =

∫
ψµ,νi(y)dνi(y)−

∫∫
|x− y|2dπµ,νi(x, y) (B.6)

−
∫
φη,νdη(x) =

∫
ψη,ν(y)dν(y)−

∫∫
|x− y|2dπη,ν(x, y) (B.7)

where πµ,νi and πη,ν are optimal transport plans for the Wasserstein distance. Also, φµ,νi
and φη,ν verify the Kantorovich condition, that is

φµ,νi(x) ≤ −ψµ,νi(y) + |x− y|2 (B.8)
φη,ν(x) ≤ −ψη,ν(y) + |x− y|2. (B.9)

Next, the trick is to write
∫
φµ,νi(x)dη(x) =

∫∫
φµ,νi(x)dπη,νi(x, y) and

∫
φη,ν(x)dµ(x) =∫∫

φη,ν(x)dπµ,ν(x, y). Thus, by using the equalities (B.6), (B.7) and the inequalities (B.8),
(B.9), the result (B.5) becomes

γdE(µ, η) ≤− 1
n

n∑
i=1

∫∫
|x− y|2dπµ,νi(x, y) + 1

n

n∑
i=1

∫∫
|x− y|2dπη,νi(x, y)

+
∫ ∫∫

|x− y|2dπµ,ν(x, y)dP(ν)−
∫ ∫∫

|x− y|2dπη,ν(x, y)dP(ν).
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We denote

SnµγPn
:=
∫ ∫∫

|x− y|2dπµ
γ
Pn ,ν(x, y)dP(ν) −1

n

n∑
i=1

∫∫
|x− y|2dπµ

γ
Pn ,νi(x, y)

SnµγP
:= 1

n

n∑
i=1

∫∫
|x− y|2dπµ

γ
P ,νi(x, y)− E

(∫∫
|x− y|2dπµ

γ
P ,ν(x, y)

)
,

and finally the last inequality writes

γdE(µγPn , µ
γ
P) ≤ SnµγPn

+ SnµγP
. (B.10)

Remark. Since for i = 1, . . . , n the random variables
∫∫
|x−y|2dπµ

γ
P ,νi(x, y) are independent

and identically distributed. From the law of large numbers, we can notice that Sn
µγP
−→ 0

almost surely when n→ +∞.

Taking the expectation with respect to the random measures, (B.10) implies

γ2E(d2
E(µγPn , µ

γ
P)) ≤ 2E(|SnµγPn

|2) + 2E(|SnµγP |
2). (B.11)

• Study of E
(
|Sn
µγP
|2
)
. Using again the fact that

∫∫
|x− y|2dπµ

γ
P ,νi(x, y) are iid, we get

E
(
|SnµγP |

2
)

= 1
n
Var

(∫∫
|x− y|2dπµ

γ
P ,ν(x, y)

)
= C

n
. (B.12)

Note that since Ω is compact, the above variance term is finite.

• Study of E
(
|Sn
µγPn
|2
)
. This term can be controlled thanks to the empirical process theory.

Define the norm associated to the class of functions H (4.6) by ‖G‖H := sup
h∈H
|G(h)| where

G : H → R. Recall that hµ ∈ H is the function hµ : ν ∈ P2(Ω) 7→W 2
2 (µ, ν), hence

SnµγPn
=
∫
P2(Ω)

hµγPn
(ν)dP(ν)−

∫
P2(Ω)

hµγPn
(ν)dPn(ν) := (P− Pn)(hµγPn )

≤ sup
h∈H
|(P− Pn) (h) | = 1√

n
‖Gn‖H

where Gn(h) =
√
n(Pn − P)(h). We then obtain

E
(
|SnµγPn

|2
)
≤ 1
n
E
(
‖Gn‖2H

)
= 1
n
‖ ‖Gn‖H‖2L2(P). (B.13)

We finally use the following Theorem 2.14.1. of [VDVW96] to control this last expression:

Theorem B.2. Let H be a Q-measurable class of measurable functions with measurable en-
velope function H. Then for p ≥ 1,

‖ ‖Gn‖H‖Lp(Q) ≤ CI(1,H)‖H‖L2∨p(Q) (B.14)

with C a constant, I(1,H) defined in (4.4) and H an envelope function.

Gathering the results of (B.11), (B.12), (B.13) and (B.14), we get

E(d2
E

(
µγPn , µ

γ
P)
)
≤ 1
γ2n

(
C + CI(1,H)‖H‖L2(P)

)
which concludes the proof.
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C Algorithmic details
In this section, we describe how the minimization problem

min
µ

1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) over µ ∈ P2(Ω), (C.1)

can be solved numerically by using an appropriate discretization to compute a numerical
approximation of a regularized Wasserstein barycenter.

More precisely, given a fixed grid {xk}Nk=1 of equally spaced points xk ∈ Rd, we ap-
proximate µγPn by the discrete measure µf =

∑N
k=1 f

kδxk where the fk are positive weights
summing up to one which minimize a discrete version of the optimisation problem (C.1). In
what follows, we first describe an algorithm that is specific to the one-dimensional case, and
then we propose another algorithm that is valid for any d ≥ 1.

C.1 Discrete algorithm for d = 1 and data defined on the same grid

We first propose to compute a regularized empirical Wasserstein barycenter for a dataset
made of discrete measures ν1, . . . , νn (or one-dimensional histograms) defined on the same
grid of reals {xk}Nk=1 that the one chosen to approximate µγPn . Since the grid is fixed, we
identify a discrete measure ν with the vector of weights ν = (ν(x1), . . . , ν(xN )) in RN+ (with
entries that sum up to one) of its values on this grid.

The estimation of the regularized barycenter onto this grid can be formulated as:

min
f

1
n

n∑
i=1

W 2
2 (f, νi) + γE(f) s.t

∑
k

fk = 1, and fk = f(xk) ≥ 0, (C.2)

with the obvious abuse of notation W 2
2 (f, νi) = W 2

2 (µf , νi) and E(f) = E(µf ).
Then, to compute a minimizer of the convex optimization problem (C.2), we perform a

subgradient descent. We denote by (f (`))`≥1 the resulting sequence of discretized regularized
barycenters in RN along the descent. Hence, given an initial value f (1) ∈ RN+ and for ` ≥ 1,
we thus have

f (`+1) = ΠS

(
f (`) − τ (`)

[
γ∇E(f (`)) + 1

n

n∑
i=1
∇1W

2
2 (f (`), νi)

])
(C.3)

where τ (`) is the `-th step time, and ΠS stands for the projection on the simplex S = {y ∈
RN+ such that

∑N
j=1 y

j = 1}. Thanks to Proposition 5 in [PFR12], we are able to compute a
sub-gradient of the squared Wasserstein distanceW 2

2 (f (`), νi) with respect to its first argument
(for discrete distributions). For that purpose, we denote by Rf (s) =

∑
xj≤s f(xj) the cdf of

µf =
∑N
k=1 f(xk)δxk and by R−f (t) = inf{s ∈ R : Rf (s) ≥ t} its pseudo-inverse.

Proposition C.1 ([PFR12]). Let f = (f(x1), f(x2), . . . , f(xN )) and ν = (ν(x1), ν(x2), . . . , ν(xN ))
be two discrete distributions defined on the same grid of values x1, . . . , xN in R. For p ≥ 1,
the subgradients of f 7→W p

p (f, ν) can be written as

∇1W
p
p (f, ν) : xj 7→

∑
m≥j
|xm − x̃m|p − |xm+1 − x̃m|p (C.4)
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where {
x̃m = xk if Rg(xk−1) < Rf (xm) < Rν(xk)
x̃m ∈ [xk−1, xk] if Rf (xm) = Rν(xk)

Even if subgradient descent is only shown to converge with diminishing time steps [BM07],
we observed that using a small fixed step time (of order 10−5) is sufficient to obtain in practice
a convergence of the iterates (f (`))`≥1. Moreover, we have noticed that the principles of FISTA
(Fast Iterative Soft Thresholding, see e.g. [BT09]) accelerate the speed of convergence of the
above described algorithm.

C.2 Discrete algorithm for d ≥ 1 in the general case

We assume that data ν1, . . . , νn are given in the form of n discrete probability measures
(histograms) supported on Rd (with d ≥ 1) that are not necessarily defined on the same grid.
More precisely, we assume that

νi =
pi∑
j=1

νji δyji

for 1 ≤ i ≤ n where the yji ’s are arbitrary locations in Ω ⊂ Rd, and the νji ’s are positive
weights (summing up to one for each i).

The estimation of the regularized barycenter onto a given grid {xk}Nk=1 of Rd can then be
formulated as the following minimization problem:

min
f

1
n

n∑
i=1

W 2
2 (f, νi) + γE(f) s.t

∑
k

fk = 1, and fk ≥ 0, (C.5)

with the notation f = (f1, f2, . . . , fN ) and the convention thatW 2
2 (f, νi) denotes the squared

Wasserstein distance between µf =
∑N
k=1 f

kδxk and νi.
Problem (C.5) could be exactly solved by considering the discrete pi×N transport matrices

Si between the barycenter µf to estimate and the data νi. Indeed, problem (C.5) is equivalent
to the convex problem

min
f

min
S1···Sn

1
n

n∑
i=1

pi∑
j=1

N∑
k=1
||yji − x

k||2Sj,ki + γE(f) (C.6)

under the linear constraints

∀i = 1, . . . , n,
pi∑
j=1

Sj,ki = fk,
N∑
k=1

Sj,ki = νji , and S
j,k
i ≥ 0.

However, optimizing over the pi × N transport matrices Si for 1 ≤ i ≤ n involves memory
issues when using an accurate discretization grid {xk}Nk=1 with a large value of N . For this
reason, we consider subgradient descent algorithms that allow dealing directly with problem
(C.5).

To this end, we rely on the dual approach introduced in [COO15] and the numerical
optimisation scheme proposed in [CP16]. Following these works, one can show that the dual
problem of (C.5) with a regularization of the form E(Kf) and K a discrete linear operator
reads as

min
φ0,···φn

n∑
i=1

Hνi(φi) + E∗γ(φ0) s.t KTφ0 +
n∑
i=1

φi = 0, (C.7)
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where the φi’s are dual variables (vectors in RN ) defined on the discrete grid {xk}Nk=1, E∗γ is
the Legendre transform of γE and Hνi(.) is the Legendre transform of W 2

2 (., νi) that reads:

Hνi(φi) =
pi∑
j=1

νji min
k=1···N

(1
2 ||y

j
i − x

k||2 − φki
)
.

Barycenter estimations fi can finally be recovered from the optimal dual variables φi solution
of (C.7) as:

fi ∈ ∂Hνi(φi), for i = 1 · · ·n. (C.8)

Following [COO15], one value of the above subgradient can be obtained at point xk as:

∂Hνi(φi)k =
pi∑
j=1

νji S
j,k
i , (C.9)

where Sj,ki is any row stochastic matrix of size pi ×N checking:

Sj,ki 6= 0 iff k ∈ argmin
k=1···N

(1
2 ||y

j
i − x

k||2 − φki
)
.

From the previous expressions, we see that fki =
∑pi
j=1 ν

j
i S

j,k
i corresponds to the discrete

pushforward of data νi with the transport matrix Si with the associated cost:

Hνi(φi) =
pi∑
j=1

N∑
k=1

(1
2 ||y

j
i − x

k||2 − φki
)
Sj,ki νji .

Numerical optimization Following [CP16], the dual problem (C.7), can be simplified by
removing one variable and thus discarding the linear constraint KTφ0 +

∑n
i=1 φi = 0. In

order to inject the regularity given by φ0 in all the reconstructed barycenters obtained by φi,
i = 1 · · ·n, we modified the change of variables of [CP16] by setting ψi = φi + KTφ0/n for
i = 1 · · ·n and ψ0 = φ0, leading to

∑n
i=1 ψi = 0. One variable, say ψn, can then be directly

obtained from the other ones. Observing that φn = −KTψ0 −
∑n−1
i=1 ψi/n, we thus obtain:

min
ψ0,···ψn−1

n−1∑
i=1

Hνi(ψi −KTψ0/n) +Hνn(−KTψ0 −
n−1∑
i=1

ψi/n) + E∗γ(ψ0). (C.10)

The subgradient (C.9) can then be used in a descent algorithm over the dual problem (C.10).
For differentiable penalizers E, we consider the L-BFGS algorithm [ZBLN97, Bec11] that
integrates a line search method (see e.g. [BV04]) to select the best time step τ (`) at each
iteration ` of the subgradient descent:{

ψ
(`+1)
0 = ψ

(`)
0 − τ (`)(∇E∗γ(ψ(`)

0 ) + d`0)
ψ

(`+1)
i = ψ

(`)
i − τ (`)d`i i = 1 · · ·n− 1,

(C.11)

where:

d`0 = K
(
∂Hνn

(
−KTψ

(`)
0 /n−

∑n−1
i=1 ψ

(`)
i

)
−
∑n−1
i=1 ∂Hνi

(
ψ

(`)
i −KTψ

(`)
0 /n

))
d`i = ∂Hνi

(
ψ

(`)
i −KTψ

(`)
0 /n

)
− ∂Hνn

(
−KTψ

(`)
0 /n−

∑n−1
i=1 ψ

(`)
i

)
.
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The barycenter is finally given by (C.8), taking φi = ψi −KTψ0/n. Even if we only treated
differentiable functions E in the theoretical part of this paper, we can numerically consider
non differentiable penalizers E, such as Total Variation (K = ∇, E = |.|1). In this case, we
make use of the Fista algorithm. This just modifies the update of ψ0 in (C.11), by changing
the explicit scheme involving ∇E∗γ onto an implicit one through the proximity operator of E∗γ :

ψ
(`+1)
0 = Proxτ(`)E∗

γ

(
ψ

(`)
0 − τ (`)d`0

)
= argmin

ψ

1
2τ (`) ||ψ

(`)
0 − τ (`)d`0 − ψ||2 + E∗γ(ψ).

Algorithmic issues and stabilization As detailed in [COO15], the computation of one
subgradient in (C.9) relies on the look for Euclidean nearest neighbors between vectors (yji , 0)
and (xk,

√
c− φki ), with c = maxk φki . Selecting only one nearest neighbor leads to bad

numerical results in practice as subgradient descent may not be stable. For this reason, we
considered the K = 10 nearest neighbors for each j to build the row stochastic matrices Si at
each iteration as: Sj,ki = wjki /

∑
k′ w

jk′

i , with wjki = exp(−(1
2‖y

j
i − xk‖2 − φki )/ε) if k is within

the K nearest neighbors for j and data i and wjki = 0 otherwise.
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