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A regularization of Wasserstein barycenters for random measures supported on R d is introduced via convex penalization. The existence and uniqueness of such barycenters is proved for a large class of penalization functions. A stability result of regularized barycenters in terms of Bregman distance associated to the penalization term is also given. This allows to compare the case of data made of n probability measures with the more realistic setting where we have only access to a dataset of random variables sampled from unknown distributions. We also analyze the convergence of the regularized empirical barycenter of a set of n iid random probability measures towards its population counterpart, and we discuss its rate of convergence. This approach is shown to be appropriate for the statistical analysis of discrete or absolutely continuous random measures. In this setting, we propose efficient algorithms for the computation of penalized Wasserstein barycenters. This approach is finally illustrated with simulated and real data sets.

Introduction

This paper is concerned by the statistical analysis of data sets whose elements may be modeled as random probability measures supported on R d that are either discrete or absolutely continuous. In the one dimensional case (d = 1), examples can be found in neuroscience [WS11], biodemographic and genomics studies [ZM11], economics [KU01], as well as in biomedical imaging [PM15], while examples for the two dimensional case (d = 2) arise in spatial statistics for replicated point processes [Ger16].

In this paper, we focus on first-order statistics methods for the purpose of estimating, from such data, a population mean measure or density function.

The notion of averaging depends on the metric that is chosen to compare elements in a given data set. In this work, we consider the Wasserstein distance W 2 associated to the quadratic cost for the comparison of probability measures. Let Ω be a convex subset of R d and P 2 (Ω) be the set of probability measures supported on Ω with finite order second moment. As introduced in [AC11], an empirical Wasserstein barycenter νn of set of n probability measures ν 1 , . . . , ν n (not necessarily random) in P 2 (Ω) is defined as a minimizer of

µ → 1 n n i=1
W 2 2 (µ, ν i ), over µ ∈ P 2 (Ω).

(1.1)

However, depending on the data at hand, such a barycenter may be irregular (and not even uniquely defined) which is typically the case when the ν i 's are discrete measures. As an illustrative example, we consider a dataset of the locations of reported incidents of crime (with the exception of murders) in Chicago in 2014 which is publicly available 1 and that has been recently studied in [Ger16]. A sample from this dataset is displayed in Figure 1. For each month 1 ≤ i ≤ 12 of 2014, we let ν i = 1 p i p i j=1 δ X i,j be the discrete measure whose support is the set of locations of reported crimes for the i-th month. As argued in [Ger16], the locations of crimes X i,j may be considered as a sample from random intensity functions whose values change from one day to another as crime opportunities are not uniformly distributed in time.

In this setting, we show that a regularization of the Wasserstein barycenter of the ν i 's (as defined below) is a meaningful way to obtain a mean distribution of crimes locations which is absolutely continuous on the area of the city. 

µ → 1 n n i=1 W 2 2 (µ, ν i ) + γE(µ) over µ ∈ P 2 (Ω), (1.2) 
where E : P 2 (Ω) → R + is a smooth convex penalty function, and γ > 0 is a regularization parameter.

Related results in the literature

Statistical inference using optimal transport For d = 1, tools from optimal are used in [PZ16] for the registration of multiple point processes which model repeated observations organized in samples from independent subjects or experimental units. In [PZ16], a consistent estimator of the population Wasserstein barycenter of multiple point processes is proposed.

It is based on a smoothed empirical Wasserstein barycenter obtained by a preliminary kernel smoothing step of the observed point processes that is followed by quantile averaging. Therefore, the way of constructing a smoothed Wasserstein barycenter in [PZ16] differs from the approach followed in this paper where regularization of the empirical Wasserstein barycenter via a penalty function is considered.

The penalized problem (1.2) is motivated by the nonparametric method introduced in [BFS12] for the classical density estimation problem from discrete samples based on a variational regularization approach to optimal transport with the Wasserstein distance as a data fidelity term. However, the adaptation of this work for the regularization of Wasserstein barycenter has not been considered so far.

Generalized notions of Wasserstein barycenters

A detailed characterization of empirical Wasserstein barycenters in terms of existence, uniqueness and regularity is given in [AC11]. There exists also a link between Wasserstein barycenters and the multi-marginal problem in optimal transport as studied in [AC11] and [Pas13]. Recently, the notion of Wasserstein barycenter has been generalized in [LGL16] for random probability measures supported on a locally compact geodesic space. The main contributions in [LGL16] are the proofs of existence, uniqueness and consistency of such barycenters. The case of probability measures supported on a Riemannian manifolds is also studied in [KP14]. Trimmed barycenters in the Wasserstein space P 2 (R d ) have been introduced in [ÁEdBCAM15] for the purpose of combining informations from different experimental units in a parallelized or distributed estimation setting.

For applications in image processing, a fast approximation of the Wasserstein distance W 2 between probability measures supported on R d with d ≥ 2 has also been proposed in [BRPP15, PFR12] using a sliced framework based one dimensional Wasserstein distances along radial projections of the input measure.

However, in all these papers, incorporating regularization (through penalization) into the computation of Wasserstein barycenters has not been considered, which is of interest when the data are irregular probability measures.

Regularization of the transport map Alternatively, regularized barycenters may be obtained by adding a convex regularization on optimal transport plans when computing the Wasserstein distance between probability measures. This approach leads to the notion of regularized transportation problems [BCC + 15, CP16, DPR16, FPPA14], and it has recently gained popularity in the literature on image processing and machine learning. Recent contributions include the fast approach in [CD14] to compute smooth Wasserstein barycenters of discrete measures via entropic regularization of the transport plan, and the so-called Sinkhorn's algorithm. In these works, such a regularization is motivated by the need to accelerate the computation of the Wasserstein distance between probability measures supported on R d with d ≥ 2.

Contributions and structure of the paper

The presentation of the main results in this paper is organized as follows.

-In Section 2, we introduce various definitions and notation, and we prove a key result called subgradient's inequality on which a large part of the developments in the paper lean.

-In Section 3, we analyze the existence, uniqueness and stability of regularized Wasserstein barycenters that are solutions of (1.2) for various of penalty functions E and any regularization parameter γ > 0.

-In Section 4, for the Bregman distance associated to the penalization term, we derive convergence properties of empirical regularized barycenters toward their population counterpart in the asymptotic setting where n tends to infinity and γ = γ n is let going to zero. In this context, we demonstrate that the bias term (as classically referred to in nonparametric statistics) converges to zero when γ → 0 in R d . We also show (with additional regularity assumptions for d ≥ 2) that the variance term converges to 0 when lim n→∞ γ 2 n n = +∞. We mainly focus on penalization functions that enforce the Wasserstein barycenter to be an absolutely continuous (a.c.) measure with a smooth probability density function (pdf). In this case, it is natural to use the Bregman distance to asses the quality of estimation of the pdf of the population barycenter.

-To illustrate the benefits of regularized barycenters for data analysis, we propose to use in Section 5 efficient minimization algorithms for the computation of regularized barycenters as well as a selection strategy for the parameter γ. This approach is finally applied to the statistical analysis of simulated and real data sets in P 2 (R) and

P 2 (R 2 ).
Finally, a brief overview of the concepts of Bregman divergence and subgradient are gathered in the Appendix A, the proofs in a technical Appendix B and Appendix C contains algorithmic details.

Definitions, notation and first results

Wasserstein distance and Kantorovich's duality

For Ω a convex subset of R d , we denote by M(Ω) the space of bounded Radon measures on Ω. We recall that P 2 (Ω) is the set of probability measures over (Ω, B(Ω)) with finite second order moment, where B(Ω) is the σ-algebra of Borel subsets of Ω. In particular, P 2 (Ω) ⊂ M(Ω).

Definition 2.1. The Wasserstein distance W 2 (µ, ν) is defined for µ, ν ∈ P 2 (Ω) by W 2 2 (µ, ν) = inf π Ω Ω |x -y| 2 dπ(x, y) (2.1)
where the infimum is taken over all probability measures π on the product space Ω × Ω with respective marginals µ and ν.

The well known Kantorovich's duality theorem leads to another formulation of the Wasserstein distance.

Theorem 2.2 (Kantorovich's duality). For any µ, ν ∈ P 2 (Ω), one has that

W 2 2 (µ, ν) = sup (φ,ψ)∈C W Ω φ(x)dµ(x) + Ω ψ(y)dν(y) (2.2)
where C W is the set of all measurable functions (φ,

ψ) ∈ L 1 (µ) × L 1 (ν) satisfying φ(x) + ψ(y) ≤ |x -y| 2 , (2.3)
for µ-almost every x ∈ Ω and ν-almost every y ∈ Ω. A couple (φ, ψ) ∈ C W that attains the supremum is called an optimal couple for (µ, ν).

For a detailed presentation of the Wasserstein distance and Kantorovich's duality, we refer to [Vil03, Vil08]. For µ, ν ∈ P 2 (Ω), we denote by π µ,ν an optimal transport plan, that is a solution of (2.1) satisfying W 2 2 (µ, ν) = |x -y| 2 dπ µ,ν (x, y). Likewise a pair (φ µ,ν , ψ µ,ν ) ∈ L 1 (dµ)×L 1 (dν) achieving the supremum in (2.2) (under the constraint φ µ,ν (x)+ψ µ,ν (y) ≤ |x-y| 2 ) stands for the optimal couple in the Kantorovich duality formulation of the Wasserstein distance between µ and ν.

For the sake of completeness, we also introduce the functional space

Y := {g ∈ C(Ω) : x → g(x)/(1 + |x| 2 ) is bounded endowed with the norm g Y = sup x∈Ω |g(x)|/(1 + |x| 2 )
where C(Ω) is the space of continuous functions from Ω to R. We finally denote as Z the closed subspace of Y given by Z = g ∈ C(Ω) : lim |x|→∞ g(x)/(1 + |x| 2 ) = 0 . The space M(Ω) of bounded Radon measures is identified with the dual of C 0 (Ω) (space of continuous functions that vanish at infinity). Finally, we denote by L 1 (µ) the set of integrable functions g : Ω → R with respect to the measure µ.

Regularized barycenters of a random measure

A probability measure ν in P 2 (Ω) is said to be random if it is sampled from a distribution P on (P 2 (Ω), B (P 2 (Ω)), where B (P 2 (Ω)) is the Borel σ-algebra generated by the topology induced by the distance W 2 . Throughout the paper, we use bold symbols ν, X, f , . . . to denote random objects. Then, we introduce a Wasserstein distance between distributions of random measures (see [LGL16] and [ÁEdBCAM15] for similar concepts), and the notion of Wasserstein barycenter of a random probability measure ν. Definition 2.3. Let W 2 (P 2 (Ω)) be the space of distributions P on P 2 (Ω) (endowed with the Wasserstein distance W 2 ) such that for some (thus for every) µ ∈ P 2 (Ω)

W 2 2 (δ µ , P) := E P (W 2 2 (µ, ν)) = P 2 (Ω) W 2 2 (µ, ν)dP(ν) < +∞
where ν ∈ P 2 (Ω) is a random measure with distribution P. The Wasserstein barycenter of a random probability measure with distribution P ∈ W 2 (P 2 (Ω)) is defined as a minimizer of

µ ∈ P 2 (Ω) → W 2 2 (δ µ , P) = P 2 (Ω) W 2 2 (µ, ν)dP(ν) over µ ∈ P 2 (Ω) (2.4)
where δ µ denotes the Dirac measure at the point µ.

Thanks to the results in [LGL16], there exists a minimizer of (2.4), and thus the notion of Wasserstein barycenter of a random probability measure is well defined. Throughout the paper, the following assumptions are made on the regularizing function E. Assumption 2.1. Let E : P 2 (Ω) → R + be a proper, lower semicontinuous and differentiable function that is strictly convex on its domain

D(E) = {µ ∈ P 2 (Ω) such that E(µ) < +∞} . (2.5)
Regularized barycenters of a random measure are then defined as follows.

Definition 2.4. For a distribution P ∈ W 2 (P 2 (Ω)) and a regularization parameter γ ≥ 0, the functional J γ P : P 2 (Ω) → R + is defined as

J γ P (µ) = P 2 (Ω) W 2 2 (µ, ν)dP(ν) + γE(µ), µ ∈ P 2 (Ω). (2.6)
If it exists, a minimizer µ γ P of J γ P is called a regularized Wasserstein barycenter of the random measure ν with distribution P. In particular, if P is the discrete (or empirical) measure defined by 

P = P n = 1 n n i=1 δ ν i where ν i ∈ P 2 (Ω) for i = 1, . . . , n, then J γ P becomes J γ Pn (µ) = 1 n n i=1 W 2 2 (µ, ν i ) + γE(µ). ( 2 
E(µ) =      R d f (x) log(f (x))dx, if
µ admits a density f with respect to the Lebesgue measure on Ω, +∞ otherwise.

which enforces the barycenter to be a.c. with respect to the Lebesgue measure on R d .

Subgradient's inequality

In order to analyze the stability of the minimizers of J γ P with respect to the distribution P, the notion of Bregman divergence together with the concept of subgradient will be needed. An overview of these tools is presented in an C.

In our case, since E is supposed differentiable, for µ ∈ M(Ω) we have that ∂E(µ) = ∇E(µ). Then for µ, ν ∈ M(Ω), the (symmetric) Bregman distance is defined by

d E (µ, ν) = ∇E(µ) -∇E(ν), µ -ν (2.8)
where the linear form is understood as f, µ = Ω f (x)dµ(x), for µ ∈ M(Ω) and f ∈ C b (Ω) the space of continuous bounded function from Ω to R.

Theorem 2.5 (Subgradient's inequality). Let ν be a probability measure in P 2 (Ω), and define the functional J : µ ∈ P 2 (Ω) → W 2 2 (µ, ν) + γE(µ) where E : P 2 (Ω) → R is a proper, differentiable and convex function, and γ ≥ 0. If µ ∈ P 2 (Ω) minimizes J, then there exists φ µ,ν ∈ L 1 (µ) and ψ ∈ L 1 (ν) verifying φ µ,ν (x) + ψ(y) ≤ |x -y| 2 for all x, y in Ω such that (φ µ,ν , ψ) is an optimal couple of the Kantorovich's dual problem associated to µ, ν (Theorem 2.2). Moreover, for all η ∈ P 2 (Ω),

γ ∇E(µ), µ -η ≤ -φ µ,ν d(µ -η).
(2.9)

The proof of Theorem 2.5 is based on the two following lemmas whose proof can be found in the Appendix B.1.

Lemma 2.6. The two following assertions are equivalent:

1. µ ∈ P 2 (Ω) minimizes J over P 2 (Ω), 2. there exists a subgradient φ ∈ ∂J(µ) such that φ, η -µ ≥ 0 for all η ∈ P 2 (Ω).

Lemma 2.7. Let µ ∈ P 2 (Ω) and φ ∈ L 1 (µ), then φ ∈ ∂ 1 W 2 2 (µ, ν) ⇔ ∃ ψ ∈ L 1 (ν) / φ(x) + ψ(y) ≤ |x -y| 2 and W 2 2 (µ, ν) = φdµ + ψdν where ∂ 1 W 2 2 (µ, ν) denote the subdifferential of the function W 2 2 (•, ν) at µ.
Proof of Theorem 2.5. Let µ ∈ P 2 (Ω) be a minimizer of J. From Lemma 2.6, we know that there exists φ a subgradient of J in µ such that φ, η -µ ≥ 0 for all η ∈ P 2 (Ω).

Since

ζ → E(ζ) is convex differentiable, ζ → W 2 2 (ζ, ν
) is a continuous convex function and µ minimizes J, we have by the subdifferential of the sum (Theorem 4.10 in [Cla13]) that

∂J(µ) = ∂ 1 W 2 2 (µ, ν) + γ ∇E(µ).
This implies that all φ ∈ ∂J(µ) is written φ = φ 1 + φ 2 with φ 1 = φ µ,ν optimal for the couple (µ, ν) (by Lemma 2.7) and φ 2 = γ∇E(µ). Finally, we have that

φ µ,ν + γ∇E(µ), η -µ ≥ 0 for all η ∈ P 2 (Ω) that is γ ∇E(µ), µ -η ≤ -φ µ,ν d(µ -η), ∀η ∈ P 2 (Ω).

Existence, uniqueness and stability of regularized barycenters

In this section, we present some properties of the minimizers of the functional J γ P (see Definition 2.4) in terms of existence and stability.

Existence and uniqueness

In a first part, we state that the minimization problem (2.6) admits a unique minimum in the particular setting where P is a discrete distribution on P 2 (Ω) that is we study the problem min

µ∈P 2 (Ω) J γ Pn (µ) = W 2 2 (µ, ν)dP n (ν) + γE(µ) = 1 n n i=1 W 2 2 (µ, ν i ) + γE(µ) (3.1)
where

P n = 1 n n i=1 δ ν i ∈ W 2 (P 2 (Ω))
with ν 1 , . . . , ν n measures in P 2 (Ω). In a second part, we prove the existence and uniqueness of (2.6) in a general case. Theorem 3.1. Suppose that Assumption 2.1 holds and that γ > 0. Then, the functional J γ Pn defined by (3.1) admits a unique minimizer on P 2 (Ω) which belongs to the domain D(E) of the regularizing function E, as defined in (2.5).

The proof of Theorem 3.1 is given in the Appendix B.2. Thanks to this result, one may impose the regularized Wasserstein barycenter µ γ

Pn to be a.c. with respect to Lebesgue measure on Ω by choosing the negative entropy E(µ) = Ω log (dµ(x)) dµ(x) for the regularization function E. For this choice, (3.1) becomes a problem of minimization over a set of pdf with entropy regularization. Examples of the use of the negative entropy as a regularization term are given in Section 5 on numerical experiments.

From Theorem 3.1, it is possible to prove the general case (whose proof is also given in Appendix B.2). Theorem 3.2. Suppose that Assumption 2.1 holds and that γ > 0. Then, the functional J γ P defined by (2.6) admits a unique minimizer.

Stability

We now study the stability of the solution with respect to the symmetric Bregman distance d E (2.8) associated to the differentiable function E. Let ν 1 , . . . , ν n ∈ P 2 (Ω) and η 1 , . . . , η n ∈ P 2 (Ω) . We denote by P ν n (resp.

P η n ) the discrete measure 1 n n i=1 δ ν i (resp. 1 n n i=1 δ η i ) in W 2 (P 2 (Ω)). Theorem 3.3. Suppose that Ω is bounded. Let µ ν , µ η ∈ P 2 (Ω) with µ ν minimizing J γ P ν n and µ η minimizing J γ P η n defined by (3.

1). Then, the symmetric Bregman distance associated to E can be upper bounded as follows

d E (µ ν , µ η ) ≤ 2 γn inf σ∈Sn n i=1 W 2 (ν i , η σ(i) ), (3.2) 
where S n is the permutation group of the set {1, . . . , n}.

The proof of Theorem 3.3 is given in Appendix B.3. To better interpret the upper bound (3.2), we need the notion of Kantorovich transport distance T W 2 on the metric space (P 2 (Ω), W 2 ), see [Vil03]. For P, Q ∈ W 2 (P 2 (Ω)) endowed with the Wasserstein distance W 2 , we have that

T W 2 (P, Q) := inf Π P 2 (Ω)×P 2 (Ω) W 2 (µ, ν)dΠ(µ, ν),
where the minimum is taken over all probability measures Π on the product space P 2 (Ω) × P 2 (Ω) with marginals P and Q. Since P ν n and P η n are discrete probability measures supported on P 2 (Ω), it follows that the upper bound (3.2) in Theorem 3.3 can also be written as (by Birkhoff's theorem for bi-stochastic matrices, see e.g. [Vil03])

d E (µ ν , µ η ) ≤ 2 γ T W 2 (P ν n , P η n ).
The above upper bound means that the Bregman distance between the regularized Wasserstein barycenters µ ν and µ η is controlled by the Kantorovich transport distance between the distributions P ν n and P η n .

Discussion

Theorem 3.3 is of particular interest in the setting where the ν i 's and η i 's are discrete probability measures on R d . If we assume that

ν i = 1 p p j=1 δ X i,j and η i = 1 p p j=1 δ Y i,j where (X i,j ) 1≤i≤n;1≤j≤p and (Y i,j ) 1≤i≤n;1≤j≤p are (possibly random) vectors in R d , then by (3.2), d E (µ ν , µ η ) ≤ 2 γn inf σ∈Sn n i=1   inf λ∈Sp    1 p p j=1 |X i,j -Y σ(i),λ(j) | 2      1/2 .
Theorem 3.3 is also useful to compare the computation of regularized Wasserstein barycenter between the case of data made of n a.c. probability measures ν 1 , . . . , ν n , with the more realistic setting where we have only access to random variables X = (X i,j ) 1≤i≤n; 1≤j≤p i organized in the form of n experimental units, such that X i,1 , . . . , X i,p i are iid observations in R d sampled from the measure ν i for each 1 ≤ i ≤ n. If we denote by

ν p i = 1 p i p i j=1 δ X i,j the usual empirical measure associated to ν i , it follows from inequality (3.2) that E d 2 E µ γ P ν n , µ γ X ≤ 4 γ 2 n n i=1 E W 2 2 (ν i , ν p i ) ,
where µ γ X is the random density satisfying

µ γ X = argmin µ∈P 2 (Ω) 1 n n i=1 W 2 2   µ, 1 p i p i j=1 δ X i,j   + γE(µ).
This result allows to discuss the rate of convergence (for the symmetric squared Bregman distance) of µ γ X to µ γ P ν n as a function of the rate of convergence (for the squared Wasserstein distance) of the empirical measure ν p i to ν i for each 1 ≤ i ≤ n (in the asymptotic setting where p = min 1≤i≤n p i is let going to infinity).

As an illustrative example, in the one-dimensional case (that is d = 1), one may use Theorem 5.1 in [BL14], to obtain that

E W 2 2 (ν i , ν p i ) ≤ 2 p i + 1 J 2 (ν i ), with J 2 (ν i ) = Ω F i (x)(1 -F i (x)) f i (x) dx,
where f i is the pdf of ν i , and F i denotes its cumulative distribution function. Therefore, provided that J 2 (ν i ) is finite for each 1 ≤ i ≤ n, one obtains the following rate of convergence of µ γ X to µ γ

P ν n (for d = 1) E d 2 E µ γ P ν n , µ γ X ≤ 8 γ 2 n n i=1 J 2 (ν i ) p i + 1 ≤ 8 γ 2 1 n n i=1 J 2 (ν i ) p -1 . (3.3)
When the measures ν 1 , . . . , ν n are supported on R d with d ≥ 2, we refer to [FG15] for further results on the rate of convergence of an empirical measure in Wasserstein distance that may be used to derive rates of convergence for

d E µ γ P ν n , µ γ X .

Convergence properties of regularized empirical barycenters

In this section, when Ω is a compact of R d , we study the convergence of the regularized Wasserstein barycenter of a set ν 1 , . . . , ν n of independent random measures sampled from a distribution P towards a minimizer of J 0 P , that is a population Wasserstein barycenter of the probability distribution P ∈ W 2 (P 2 (Ω)). To this end, we first introduce and recall some notation. Definition 4.1. For ν 1 , . . . , ν n iid random measures in P 2 (Ω) sampled from a distribution P ∈ W 2 (P 2 (Ω)), we let P n = 1 n n i=1 δ ν i . Moreover, we use the notation

µ γ Pn ∈ argmin µ∈P 2 (Ω) J γ Pn (µ) = W 2 2 (µ, ν)dP n (ν) + γE(µ) (4.1)
µ γ P ∈ argmin µ∈P 2 (Ω) J γ P (µ) = W 2 2 (µ, ν)dP(ν) + γE(µ) (4.2)
µ 0 P ∈ argmin µ∈P 2 (Ω) J 0 P (µ) = W 2 2 (µ, ν)dP(ν), ( 4.3) 
that will be respectively referred as to the empirical Wasserstein barycenter (4. 

Rate of convergence of µ γ Pn towards µ γ P in symmetrized Bregman distance

To compute a rate of convergence between µ γ Pn and µ γ P , we will need results from the empirical process theory. Thus, we first introduce some notions borrowed from [VDVW96]. 

I(δ, F) = sup Q δ 0 1 + log N ( F L 2 (Q) , F, • L 2 (Q) )d (4.4)
where the supremum is taken over all discrete probability measures Q supported on U with

F L 2 (Q) = |F (u)| 2 dQ(u) 1/2 > 0. Theorem 4.3. If Ω is a compact of R d , then one has that E(d 2 E (µ γ Pn , µ γ P )) ≤ CI(1, H) H L 2 (P) γ 2 n (4.5)
where C is a positive constant, and

H = {h µ : ν ∈ P 2 (Ω) → W 2 2 (µ, ν) ∈ R; µ ∈ P 2 (Ω)} (4.6)
is a class of functions defined on P 2 (Ω) with envelope H.

The proof of Theorem 4.3 is given in the Appendix B.4. To complete this result, one needs to prove that I(1, H) < ∞, which depends on the rate of of convergence of the metric entropy towards infinity as tends to zero.

The one-dimensional case

For probability measures ν 1 , . . . , ν n supported in the real line, we can prove that the righthand side of (4.5) is finite by using existing results on the notion of bracketing number defined below. Definition 4.4. Given two real-valued functions l and r, the bracket [l, r] is the set of all functions f with l ≤ f ≤ r. An -bracket is a bracket [l, r] with l -r < . The bracketing number N [] ( , F, • ) is the minimum number of -brackets needed to cover F.

Theorem 4.5. If Ω is a compact of R, then there exists a finite constant C > 0 such that E(d 2 E µ γ Pn , µ γ P ) ≤ C γ 2 n . Proof.
In what follows, C denotes a universal constant whose value may change from line to line. We define the envelope function

H : ν ∈ P 2 (Ω) → sup µ∈P 2 (Ω) {W 2 (µ, ν); W 2 2 (µ, ν)}. Since for h µ ∈ H we have |h µ (ν)| ≤ 2 |x| 2 dµ(x) + 2 |y| 2 dν(y) ≤ 4δ(Ω) for all ν ∈ P 2 (Ω)
where

δ(Ω) = sup x∈Ω |x| 2 , then for all Q ∈ W 2 (P 2 (Ω)), H L 2 (Q) = H(ν) 2 dQ(ν) 1/2 ≤ 16δ(Ω) 2 dQ(ν) 1/2 ≤ 4δ(Ω).
Now, it remains to control the term I(1, H) in the upper bound (4.5). By the triangle reverse inequality, we have

|h µ (ν) -h µ (ν)| = |W 2 (ν, µ) -W 2 (ν, µ )| (W 2 (ν, µ) + W 2 (ν, µ )) ≤ W 2 (µ, µ ) 2H(ν).
Then, from Theorem 2.7.11 in [VDVW96], and since Theorem 4 in [KT59] allows us to bound the metric entropy by the bracket entropy, we get

log N ( H L 2 (Q) , H, • L 2 (Q) ) ≤ log N [] ( H L 2 (Q) , H, • L 2 (Q) ) ≤ log N ( , P 2 (Ω), W 2 ) ≤ log N [] ( , P 2 (Ω), W 2 ). (4.7) 
Also, for d = 1, we have

W 2 (µ, µ ) = 1 0 |F - µ (t) -F - µ (t)| 2 dt 1/2 = F - µ -F - µ L 2 ([0,1]) (4.8)
where F - µ is the quantile function of the cumulative distribution function F µ of µ. We denote by G = {F - µ , µ ∈ P 2 (Ω)} the class of quantile functions of probability measures µ in P 2 (Ω), which are monotonic functions. Moreover, we can observe that

F - µ : [0, 1] → [F - µ (0), F - µ (1)] ⊆ Ω,
where Ω is a compact included in R. Hence, G is uniformly bounded, say by a constant M > 0. Finally, by Theorem 2.7.5. of [VDVW96] concerning the bracket entropy of the class of monotonic functions, we obtain that log

N [] ( , G, L 2 [0, 1]) ≤ CM , for some constant C > 0.
Finally, from relations (4.7) and (4.8), we can deduce that

I(1, H) =sup Q 1 0 1 + log N ( H L 2 (Q) , H, L 2 (Q))d ≤ 1 0 1 + CM d < ∞.
Therefore, when ν 1 , . . . , ν n are iid random measures with support included in a compact interval Ω, it follows from Theorem 4.

5 that if γ = γ n is such that lim n→∞ γ 2 n n = +∞ then lim n→∞ E(d 2 E µ γ P ν n , µ 0 P ) = 0.

The R d case with additional regularization

In the case d ≥ 2, the class of functions H defined in (4.6) is too large to control the metric entropy so that I(1, H) is finite. To solve this issue, we impose more smoothness on the regularized Wasserstein barycenter as follows.

We assume that Ω is a smooth and uniformly convex set, and we choose

E(µ) = R d f (x) log(f (x))dx + f 2 H k (Ω) , if f = dµ dx and f > α, +∞ otherwise. (4.9)
where • H k (Ω) denotes the Sobolev norm associated to the L 2 (Ω) space and α > 0 is arbitrarily small. Then, the following result holds.

Theorem 4.6. Suppose that Ω is a compact and uniformly convex set with a C 1 boundary.

Assume that the penalty function E is given by (4.9) for some α > 0 and k > d -1. Then, there exists a finite contant

C > 0 such that E(d 2 E µ γ Pn , µ γ P ) ≤ C γ 2 n .
Proof. Supposing that Ω has a C 1 boundary, we have by the Sobolev embedding theorem that H k (Ω) is included in the Hölder space C m,β ( Ω) for any integer m and

β ∈]0, 1] satisfying m + β = k -d/2.
Hence, the densities of µ γ Pn and µ γ P given by (4.1) and (4.2) belong to C m,β ( Ω).

Arguing as in the proof of Theorem 4.5, we have 

|h µ (ν) -h µ (ν)| ≤ W 2 (µ, µ ) 2H(ν) and H L 2 (Q) < ∞,
[] ( , C m+1,β ( Ω), L 2 (Ω)) since |T (x) -T (x)| 2 = d j=1 |T j (x j ) -T j (x j )| 2 where T j , T j : Ω → R. Now, by Corollary 2.7.4 in [VDVW96], log N [] ( , C m+1,β ( Ω), L 2 (Ω)) ≤ K 1 V
for any V ≥ d/(m + 1). Hence, as soon as V /2 < 1 (for which the condition k > d -1 is sufficient if V = d/(m + 1)), the upper bound in (4.5) is finite for where D E denotes the Bregman divergence between two measures µ and ν defined as

H = {h µ : ν ∈ P 2 (Ω) → W 2 2 (µ, ν) ∈ R; µ ∈ D(E)},
D E (µ, ν) = E(µ) -E(ν) -∇E(ν), µ -ν .
Proof. By definition (4.2) of µ γ P , we get that 

W 2 2 (µ γ P , ν)dP(ν) -W 2 2 (µ 0 P , ν)dP(ν) + γ(E(µ γ P ) -E(µ 0 P )) ≤ 0. ( 4 
J 0 P (µ) ≤ lim inf γ→0 J γ P (µ γ )
by lower semicontinuity of J γ P in W 2 . Moreover, there exists a sequence (µ γ ) γ converging to µ (for instance take (µ γ ) γ constant equals to µ) such that lim γ→0 J γ P (µ γ ) = lim γ→0 J γ P (µ) = J 0 P (µ). One can also notice that J γ P : P 2 (Ω) → R is equi-coercive: for all t ∈ R, the set {ν ∈ P 2 (Ω) such that J γ P (ν) ≤ t} is included in a compact K t since it is closed in the compact set P 2 (Ω) (by compactness of Ω). Therefore, we can apply the fundamental theorem of Γ-convergence (Theorem 2.10 in [Bra06]) to the bounded Lipschitz metric to obtain that d BL * (µ 0 P , µ γ P ) -→ γ→0 0.

Algorithmic approach and numerical experiments

In this section, we first present a method to automatically choose the parameter γ. Then, we present numerical experiments on simulated and real data sets in R and R 2 . A discretization of the minimization problem (1.2) is used to compute a numerical approximation of a regularized Wasserstein barycenter µ γ Pn . It consists of using a fixed grid {x k } N k=1 of equally spaced points x k ∈ R d , and to approximate µ γ Pn by the discrete measure N k=1 f k δ x k where the f k are positive weights summing to one which minimize a discrete version of the optimisation problem (1.2). Further algorithmic details are given in an C. In these numerical experiments, we focus on the case where E(µ) = +∞ if µ is not a.c. to enforce the regularized Wasserstein barycenter to have a smooth pdf (we write E(f ) = E(µ f ) if µ has a density f ). In this setting, if the grid of points is of sufficiently large size, then the weights f k yield a good approximation of this pdf.

Choice of the parameter γ

By analogy with the work in [BM07] based on the Lepskii balancing principle, we use an automatic selection of the regularization parameter γ. The method proposed in [BM07] requires the knowledge of an upper bound on the decay to zero of the variance term E(d 2 E (µ γ Pn , µ γ P )) as γ → 0 which is given by (4.5). To match their notation, we set λ = 1/γ. Hence λ → +∞ corresponds to γ → 0.

Without the knowledge of µ P , the Lepskii balancing principle described in [BM07] to select an appropriate λ works as follows:

-For σ > 1 and a threshold Λ > 0, the Look-Ahead function is defined as l Λ,σ (λ) = min{min{κ|ρ(λ) > σρ(κ)}, Λ} where the choice ρ : λ → 1 λ comes from the upper bound (4.5).

-For δ > 0, the balancing functional reads

b Λ,σ (λ) = max λ<κ≤l Λ,σ (λ) { 1 4δ d E (µ 1/λ Pn , µ 1/κ Pn )ρ(κ)} -The data-driven choice is given by λ Λ,σ, = min{λ ≤ Λ ; B Λ,σ (λ) ≤ } where B Λ,σ (λ) = max λ<κ≤Λ {b Λ,σ (κ) 
} is the smooth balancing functional, and > 0 is a parameter to control the stability of regularized barycenters for successive choices of λ = 1/γ.

We display in Figure 2 an example of the smooth balancing functional B Λ,σ (λ) associated to the simulated Gaussian data from Section 5.2 for three different choices for the penalty function E.

In this paper, instead of choosing a value for , we use the fact that B Λ,σ is a decreasing function, and that it has the shape of a L-curve. Hence, a data-driven value λΛ,σ is chosen by determining the location where the curve B Λ,σ has an "elbow" (change of curvature). In Figure 2, this strategy leads to a data-driven value for λ that is close to the ideal choice given by the minimizer of λ → d E (µ P , µ

1/λ Pn )/ min λ d E (µ P , µ 1/λ Pn ).

Numerical experiments for d = 1

Simulated data We consider a simulated example where the measures ν i are discrete and supported on a small number p i of data points. To this end, for each i = 1, . . . , n, we simulate a sequence (X ij ) 1≤j≤p i of iid random variables sampled from a Gaussian distribution N (µ i , σ 2 i ) where the p i 's are ranging from 5 to 10, and the µ i 's (resp. σ i ) are iid random variables such that -2 ≤ µ i ≤ 2 and 0 ≤ σ i ≤ 1 with E(µ i ) = 0 and E(σ i ) = 1/2. The target measure that we wish to estimate in these simulations is the population (or true) Wasserstein barycenter of the random distribution N (µ 1 , σ 2 1 ) which is N (0, 1/4) thanks to the assumptions E(µ 1 ) = 0 and E(σ 1 ) = 1/2. Then, we define the random discrete measure ν i = 1

p i p i j=1 δ X ij .
To illustrate the benefits of regularizing the Wasserstein barycenter of the ν i 's, we compare our estimator with the one obtained by the following procedure which we refer to as the kernel method. In a preliminary step, each measure ν i is smoothed using a standard kernel density estimator whose bandwidth h i is chosen by cross-validation. An alternative estimator is then defined as the Wasserstein barycenter of these smoothed measures which can be easily computed thanks to the quantile averaging formula for measures supported on R (see e.g. ) in solid lines for three different regularizations (with σ = 3). For these simulated data, we have access to µ P , and the dotted lines represent d E (µ P , µ

1/λ Pn )/ min λ d E (µ P , µ 1/λ
Pn ) as functions of λ.

Section 6.1 in [AC11]). This estimator corresponds to the notion of smoothed Wasserstein barycenter of multiple point processes as considered in [PZ16]. The density of this smoothed

Wasserstein barycenter is displayed in Figure 3. For this example, it appears a preliminary smoothing of the ν i followed by quantile averaging is not sufficient to recover a satisfactory Gaussian shape when the number p i of observations per unit is small. Alternatively, we have applied the algorithm described Section 3.1 of the C directly on the (non-smoothed) discrete measures ν i to obtain a numerical approximation of regularized barycenter µ γ Pn with two different choices for the penalty function E. The results are displayed in Figure 3 for different values of γ around the data-driven choice 1/ λΛ,σ from Section 5.1. For both penalty functions and despite a small number of observations per experimental units, the shape of these densities better reflects the fact that the population Wasserstein barycenter is a Gaussian distribution.

Finally, we provide Monte-Carlo simulations to illustrate the influence of the number n of observed measures on the convergence of these estimators. For a given 10 ≤ n 0 ≤ n, we randomly draw n 0 measures ν i from the whole sample, and we compute the following estimators: a smoothed barycenter via the kernel method, a regularized barycenter using a data-driven choice for γ, and an ideal regularized barycenter obtained by the Lepskii method if we had access to the true population barycenter by setting γ as the minimizer of γ → d E (µ P , µ γ Pn ). For given value of n 0 , this procedure is repeated 200 times, which allows to obtain an approximation of the expected error E (d(μ, µ P )) of each estimator μ, where d is either the Bregman or the Wasserstein distance. The penalty used is a linear combinaison of Dirichlet and negative entropy functions. The results are displayed in Figure 4. It can be observed that our approach yields better results than the kernel method for both types of error (using either the Bregman or Wasserstein distance). 

A real data set

We consider now a real data set of neural spike trains which is publicly available from the MBI website2 . During a squared-path task, the spiking activity of a movement-encoded neuron of a monkey has been recorded during 5 seconds over n = 60 repeated trials. Each spike train is then smoothed using a Gaussian kernel (further details on the data collection can be found in [WS11]). For each trial 1 ≤ i ≤ n, we let ν i be the measure with pdf proportional to the sum of these Gaussian kernels centered at the times of spikes, see Figure 5(a). This is an example of a dataset made of a.c. measures (histograms).

The pdf of the Wasserstein barycenter νn of these measures is displayed in Figure 5(b). This approach leads to a an irregular mean density of spiking activity. To compute a regularized Wasserstein barycenter from this dataset, we apply the algorithm described in Section 3.1 of the C. In Figure 6(a), we display the densities of the regularized Wasserstein barycenters with a Dirichlet regularization obtained for 6 ≤ γ ≤ 10, where this range of values is chosen by the adaptative Lepskii balancing principle described in Section 5.1. In Figure 6(b), we display the results obtained with a negative entropy regularization for the data-driven range of values 0.08 ≤ γ ≤ 0.12. Comparing Figures 5 and6, this approach allows to clearly smooth the result obtained by quantile averaging of the ν i 's (which corresponds to γ = 0).

Numerical experiments for d = 2

We consider the real dataset described previously on the locations of reported incidents of crime in Chicago. The city of Chicago is represented as an image of size 92 × 59, and a crime is considered as a Dirac located at some pixel (see Figure 1). To compute a regularized Wasserstein barycenter from this dataset, we apply the algorithm described in Section 3.2 of the C for d = 2. For a Dirichlet regularization, the adaptative Lepskii's strategy from Section 5.1 leads us to choose λ = 2.10 -3 as it can be observed from Figure 7(a). We compare our approach with the one in [CP16] which consists in using a regularized barycenter associated to an entropically regularized transportation cost. The computation of such regularized barycenters is obtained via the so-called Sinkhorn's algorithm, see [CP16] for further details. The parameter which controls the amount of transportation plan regularization is fixed to = 1 (following the notation in [CP16]). The parameter γ controlling the amount of regularization of such Wasserstein barycenter is again chosen in a data-driven way using the Lepskii's strategy. Using transportation plan regularization, it follows than the best choice is 

A Bregman divergence and symmetric distance

Definition A.1 (Subdifferential). Let X be a vector space and let X its dual. For a convex functional G : X → R, we say that q ∈ X is a subgradient of G at u if it satisfies the inequality

G(v) ≥ G(u) + q, v -u for every v ∈ X (A.1)
where •, • is the duality pairing (or linear form) of X and X . The set of subgradients at u is the subdifferential of G, denoted ∂G(u).

Definition A.2 (Bregman divergence). The (generalized) Bregman divergence related to a convex functional G : X → R is defined by

D q G (u, v) = G(u) -G(v) -q, u -v for u, v ∈ X,
where q ∈ ∂G(v). The symmetric Bregman distance is defined by

d p,q G (u, v) = D q G (u, v) + D p G (v, u) = p -q, u -v
where p ∈ ∂G(u) and q ∈ ∂G(v).

B Proofs of main Theorems B.1 Proof of the subgradient's inequality

Proof of Lemma 2.6. 2 ⇒1. Let φ ∈ ∂J(µ) such that φ, η -µ ≥ 0 for all η ∈ P 2 (Ω). By definition of the subgradient, ∀ η ∈ P 2 (Ω), we have J(η) ≥ J(µ) + φ, η -µ which is greater than J(µ) by assertion. Hence µ minimizes J. 1 ⇒2. Take µ ∈ int(dom J) (that is J(µ) < +∞) such that µ is a minimum of J over P 2 (Ω).

Then the directional derivative of J at the point µ along (η -µ) exists (Proposition 2.22 in [Cla13]) and satisfies

J (µ; η -µ) := lim t→0 t>0 J(µ + t(η -µ)) -J(µ) t ≥ 0. (B.1)
Remark that P 2 (Ω) is a convex set. By Proposition 4.3 of [Cla13], since J is a proper convex function and µ ∈ dom(J), we obtain the equivalence

φ ∈ ∂J(µ) ⇔ φ, ∆ ≤ J (µ; ∆) for all ∆ ∈ P 2 (Ω).
Moreover, since J is proper convex and lower semi-continuous, so is J (f ; •). Given that P 2 (Ω) is a Hausdorff convex space, we get by Theorem 7.6 of [AB06], that for all (η -µ) ∈ P 2 (Ω), J (µ; η -µ) = sup{ φ, η -µ where φ is such that φ, ∆ ≤ J (µ; ∆), ∀∆ in P 2 (Ω)}.

Hence by (B.1) we get sup

φ∈∂J(µ)
φ, η -µ ≥ 0. We then define the ball B = {η + µ ∈ M(Ω) such that η T V ≤ }, where • T V is the norm of total variation. We still have inf

η∈B ∩P 2 (Ω) sup φ∈∂J(µ) φ, η -µ ≥ 0.
Note that ∂J(µ) in a convex set. Moreover B ∩ P 2 (Ω) is compact, and (φ, η) → φ, η -µ is bilinear. Thus we can switch the infimum and the supremum by the Ky Fan's theorem (4.36 in [Cla13]). In that way, there exists φ ∈ ∂J(f ) such that inf

η∈B ∩P 2 (Ω) φ, η -µ ≥ 0.
By convexity of P 2 (Ω), any ζ ∈ P 2 (Ω) can be written as t(η -µ) + µ for some t ≥ 0 and η ∈ B ∩ P 2 (Ω). This concludes the proof of the lemma.

Proof of Lemma 2.7. (⇐). We first assume that for φ µ,ν ∈ L 1 (µ), there exists ψ µ,ν ∈ L 1 (ν) such that W 2 2 (µ, ν) = φ µ,ν dµ + ψ µ,ν dν and φ µ,ν (x) + ψ µ,ν (y) ≤ |x -y| 2 . Then for all η ∈ P 2 (Ω), denoting (φ η,ν , ψ η,ν ) an optimal couple for η and ν, we get

W 2 2 (η, ν) = sup φ(x)+ψ(y)≤|x-y| 2 φdη + ψdν = φ η,ν dη + ψ η,ν dν ≥ W 2 2 (µ, ν) + φ µ,ν d(η -µ).
Hence, from the definition of a subgradient,

φ µ,ν ∈ ∂ 1 W 2 2 (µ, ν). (⇒). We denote by F the function µ ∈ P 2 (Ω) → W 2 2 (µ, ν). Let φ * ∈ ∂F (µ)
, then by the Legendre-Fenchel theory, we have that F * (φ * ) + F (µ) = φ * dµ, where F * denote the Fenchel conjugate of F . Recall we want to show that there exists

ψ ∈ L 1 (ν) verifying φ * (x) + ψ(y) ≤ |x -y| 2 such that φ * dµ -W 2 2 (µ, ν) = -ψdν, which is equivalent to F * (φ * ) = -ψdν. In that purpose, we first define ψ φ (•) := inf y∈Ω {| • -y| 2 -φ(y)} and H(φ) := -ψ φ dν. By definition, H * (µ) = sup φ∈Y { φdµ -H(φ)}.
Observing that H is convex, l.s.c. on Y and proper as :

H(φ) = -ψ φ dν = sup y∈Ω {φ(y) -|x -y| 2 } dν(x) ≥ (φ(y 0 ) -2|y 0 | -2|x| 2 )dν(x) > -∞ by definition of ν,
where y 0 ∈ Ω is such that φ(y 0 ) is finite. We get

H * * (φ) = H(φ) by Theorem 2.3.3. in [Zal02].
Moreover, for µ ∈ P 2 (Ω), we have by the duality formulation of Kantorovich (e.g Lemma 2.1. of [AC11]) that

W 2 2 (µ, ν) = sup Ω φdµ + Ω ψdν; φ, ψ ∈ C b , φ(x) + ψ(y) ≤ |x -y| 2 = sup Ω φdµ + Ω ψdν; φ, ψ ∈ C b , ψ(y) ≤ inf x {|x -y| 2 -φ(x)} = sup φ Ω φdµ + Ω ψ φ = H * (µ).
We deduce that H * * (φ) = sup

f ∈P 2 (Ω) { φdµ-W 2 2 (µ, ν)} = F * (φ), which implies F * (φ * ) = H(φ * ).
Thus we end up with the equality F (µ) = φ * dµ -F * (φ * ) = φ * dµ + ψ φ * dν. This exactly means that for φ * ∈ ∂ 1 W 2 2 (µ, ν), there exists ψ φ * such that φ * (x) + ψ φ * (y) ≤ |x -y| 2 and W 2 2 (µ, ν) = φ * dµ + ψ φ * dν, which concludes the proof.

B.2 Proof of existence, uniqueness and stability of regularized barycenters

Proof of Theorem 3.1. Let (µ k ) k ⊂ P 2 (Ω) a minimizing sequence of probability measures of J γ Pn . Hence, there exists a constant M ≥ 0 such that ∀k, J γ Pn (µ k ) ≤ M . It follows that for all k,

1 n n i=1 W 2 2 (µ k , ν i ) ≤ M . By Lemma 2.1 of [AC11] we thus have 1 n n i=1 W 2 2 (ν i , µ k ) = 2 n i=1 sup f ∈Z R d f dµ k + R d Sf (x)dν i (x) ≤ M,
where

Sf (x) = inf y∈Ω { 1 2n |x -y| 2 -f (y)}.
Since the function x → |x| α (with 1 < α < 2) belongs to Z, we have that R d |x| α dµ k (x) is bounded by a constant L ≥ 0 for all k. We deduce that (µ k ) k is tight (for instance, take the compact K c = {x ∈ Ω such that |x| α > L }). Since (µ k ) k is tight, by Prokhorov's theorem, there exists a subsequence of (µ k ) k (still denoted (µ k )) which weakly converges to a probability measure µ. Moreover, one can prove that µ ∈ P 2 (Ω). Indeed for all lower semicontinuous functions bounded from below by f , we have that lim inf k→∞ Ω f (x)dµ k (x) ≥ R d f (x)dµ(x) by weak convergence. Hence for f : x → |x| 2 , we get Ω |x| 2 dµ(x) ≤ lim inf k→∞ Ω |x| 2 dµ k (x) < +∞, and thus µ ∈ P 2 (Ω). Let (π k i ) 1≤i≤n,1≤k be a sequence of optimal transport plans where π k i is an optimal transport plan between µ k and ν i . Since sup k W 2 2 (µ k , ν i ) = sup k Ω×Ω |x -y| 2 dπ k i (x, y) < +∞, we may apply Proposition 7.1.3 of [AGS08]: (π k i ) k is weakly relatively compact on the probability space over Ω × Ω and every weak limit π i is an optimal transport plan between µ and ν i with, for all 1

≤ i ≤ n, W 2 2 (µ, ν i ) ≤ lim inf k→∞ R d ×R d |x -y| 2 dπ k i (x, y) < +∞. Since E is lower semicontinuous, we get that lim inf k→∞ J γ Pn (µ k ) = lim inf k→∞ 1 n n i=1 W 2 2 (µ k , ν i ) + γE(µ k ) ≥ 1 n n i=1 W 2 2 (µ, ν i ) + γE(µ) = J γ Pn (µ).
Hence J γ Pn admits at least µ ∈ P 2 (Ω) as a minimizer. Finally, by the strict convexity of J γ Pn on its domain, the minimizer is unique and it belongs to D(E) as defined in (2.5), which completes the proof.

Proof of Theorem 3.2. First, let us prove the existence of a minimizer. For that purpose, we decide to follow the sketch of the proof of the existence of a Wasserstein barycenter given by Theorem 1 in [LGL16]. We suppose that (P n ) n≥0 ⊆ W 2 (P 2 (Ω)) is a sequence of measures, such that µ n ∈ P 2 (Ω) is a probability measure minimizing J γ Pn , for all n. Furthermore, we suppose that there exists P ∈ W 2 (P 2 (Ω)) such that W 2 (P, P n ) -→ n→+∞ 0. We then have to prove that (µ n ) n≥1 is precompact and that all limits minimize J γ P . We denote μ a random measure with distribution P and μn a random measure with distribution P n . Hence

W 2 (µ n , δ x ) = W 2 (δ µ n , δ δx ) ≤ W 2 (δ µ n , P n ) + W 2 (P n , δ δx ) = E(W 2 2 (µ n , μn )) 1/2 + E(W 2 2 ( μn , δ x )) 1/2 . Moreover, E(W 2 2 (µ n , μn )) 1/2 ≤ M for a constant M ≥ 0 since µ n minimizes J γ
Pn and μn is of law P n . Then W 2 (µ n , δ x ) ≤ M + W 2 (P n , δ δx ) ≤ M + W 2 (P n , P) + W 2 (P, δ δx ) ≤ L since W 2 (P n , P) -→ n→+∞ 0 and P ∈ W 2 (P 2 (Ω)) by hypothesis. By Markov inequality, we have for r > 0

µ n (B(x, r) c ) = P µ n (|X -x| 2 ≤ r 2 ) ≤ E µ n (|X -x| 2 ) r 2 = W 2 2 (µ n , δ x ) r 2
and µ n (B(x, r) c ) ≤ L 2 r 2 . Hence (µ n ) n is tight: it is possible to extract a subsequence (still denoted (µ n )) which converges weakly to a measure µ by Prokhorov's theorem. Let us show that µ minimizes J γ P . Let η ∈ P 2 (Ω) and ν ∈ P 2 (Ω) with distribution P.

J γ P (η) = E P (W 2 2 (η, ν)) + γE(η) = W 2 2 (δ η , P) + γE(η) = lim n→+∞ W 2 2 (δ η , P n ) + γE(η) since by hypothesis W 2 (P n , P) → 0 ≥ lim inf n→+∞ W 2 2 (δ µ n , P n ) + γE(µ n ) since µ n minimizes J γ Pn (B.2)
Moreover, we have by the inverse triangle inequality that

lim inf n→+∞ W 2 (δ µ n , P n ) ≥ lim inf n→+∞ (W 2 (δ µ , P n ) -W 2 (δ µ , δ µ n )) = W 2 (δ µ , P).
The last inequality comes from the two convergences W 2 (P n , P) → 0 and W 2 (δ µ , δ µ n ) → 0. From (B.2) and by lower semicontinuity of E, we get J γ P (η) ≥ W 2 2 (δ µ , P) + γE(µ) = J γ P (µ). Hence µ minimizes J γ P . To finish the proof of the existence of a minimizer, we need the following result whose proof can be found in [LGL16].

Theorem B.1. For all P ∈ W 2 (P 2 (Ω)), there is a sequence of finitely supported distributions P n (that is

P n = K k=1 λ k δ κ k where K k=1 λ k = 1) such that W 2 2 (P n , P) -→ n→+∞ 0.
Now, by Theorem B.1 it follows that for a given distribution P, one can find a sequence of finitely supported distributions P n such that for all n there exists a unique measure µ n ∈ P 2 (Ω) minimizing J γ Pn using Theorem 3.1 and such that W 2 2 (P n , P) -→ n→+∞ 0 thanks to Theorem B.1.

Therefore there is a probability measure µ which minimizes J γ P . Let us make sure that µ is indeed in the space P 2 (Ω). From Theorem 3.1, we also have that µ n ∈ P 2 (Ω) for all n. Thus by weak convergence, Ω |x| 2 dµ(x) ≤ lim inf n→+∞ Ω |x| 2 dµ n (x) < +∞. Finally, the uniqueness of the minimum is obtained by the strict convexity of the functional µ → E P (W 2 2 (µ, ν)) + γE(µ) on the domain D(E), which completes the proof.

B.3 Proof of the stability's Theorem 3.3

Proof. We denote by µ, ζ ∈ P 2 (Ω) the probability measures such that µ minimizes J γ 

P ν n and ζ minimizes J γ P η n . For each 1 ≤ i ≤ n, one has that θ → 1 n W 2 2 (θ, ν i ) is a convex
(µ) = 1 n n i=1 ∂ 1 W 2 2 (µ, ν i ) + γ∇E(µ). Hence by Lemma 2.7, any φ ∈ ∂J P ν n (µ) is of the form φ = 1 n n i=1 φ i + γ ∇E(µ)
where for all i = 1, . . . , n, φ i = φ µ,ν i is optimal in the sense that (φ µ,ν i , ψ µ,ν i ) is an optimal couple associated to (µ, ν i ) in the Kantorovich formulation of the Wasserstein distance (see Theorem 2.2). Therefore by Lemma 2.6, there exists φ = 1 n n i=1 φ µ,ν i + γ∇E(µ) such that φ, θ -µ ≥ 0 for all θ ∈ P 2 (Ω). Likewise, there exists φ

= 1 n n i=1 φ ζ,η i + γ∇E(ζ) such that φ, θ -ζ ≥ 0 for all θ ∈ P 2 (Ω). Finally, we obtain that γ ∇E(µ) -∇E(ζ), µ -ζ ≤ - Ω 1 n n i=1 (φ µ,νi -φ ζ,ηi ) d(µ -ζ).
Following the proof of Kantorovich duality's theorem in [Vil03], we can restrict the supremum over (φ, ψ) ∈ C W in Kantorovich's duality Theorem 2.2 to the admissible pairs (φ cc , φ c ) where φ c (y) = inf x {|x -y| 2 -φ(x)} and φ cc (x) = inf y {|x -y| 2 -φ c (y)}. Then, we replace φ µ,ν i by (φ µ,ν i ) cc (resp. φ ζ,η i by (φ ζ,η i ) cc ) and ψ µ,ν i by (φ µ,ν i ) c (resp. ψ ζ,η i by (φ ζ,η i ) c ) and obtain that

γ ∇E(µ) -∇E(ζ), µ -ζ ≤ - 1 n n i=1 Ω (φ µ,νi ) cc (x) -(φ ζ,ηi ) cc (x) d(µ -ζ)(x) = - 1 n n i=1 Ω×Ω (φ µ,νi ) cc (x) -(φ ζ,ηi ) cc (x) d(π µ,νi -π ζ,ηi )(x, y),
where π µ,ν i is an optimal transport plan on Ω × Ω with marginals µ and ν i for i ∈ {1, . . . , n} (and π ζ,η i optimal with marginals ζ and η i ). Developing the right-hand size expression in the above inequality, we get

γ ∇E(µ) -∇E(ζ), µ -ζ ≤ 1 n n i=1 - (φ µ,νi ) cc (x)dπ µ,νi (x, y) - (φ ζ,ηi ) cc (x)dπ ζ,ηi (x, y) + 1 n n i=1 (φ µ,νi ) cc (x)dπ ζ,ηi (x, y) + (φ ζ,ηi ) cc (x)dπ µ,νi (x, y) .
From the condition (2.3) in the Kantorovich's dual problem, we have that (φ µ,ν i ) cc (x) ≤ |x -y| 2 -(φ µ,ν i ) c (y) and (φ ζ,η i ) cc (x) ≤ |x -y| 2 -(φ ζ,η i ) c (y) for all i ∈ {1, . . . , n}. Moreover, we have that (φ µ,ν i ) cc (x)dπ µ,ν i (x, y) = -(φ µ,ν i ) c (y) + |x -y| 2 dπ µ,ν i (x, y) and likewise

(φ ζ,η i ) cc (x)dπ ζ,η i (x, y) = -(φ ζ,η i ) c (y) + |x -y| 2 dπ ζ,η i (x, y). We therefore deduce that γ ∇E(µ) -∇E(ζ), µ -ζ ≤ - 1 n n i=1 -(φ µ,νi ) c (y) + |x -y| 2 dπ µ,νi (x, y) - 1 n n i=1 -(φ ζ,ηi ) c (y) + |x -y| 2 dπ ζ,ηi (x, y) + 1 n n i=1 -(φ µ,νi ) c (y) + |x -y| 2 dπ ζ,ηi (x, y) + 1 n n i=1 -(φ ζ,ηi ) c (y) + |x -y| 2 dπ µ,νi (x, y) = 1 n n i=1 Ω (φ µ,νi ) c (y) -(φ ζ,ηi ) c (y) d(ν i -η i )(y).
For all 1 ≤ i ≤ n, and y, y ∈ Ω, we have

(φ µ,νi ) c (y) -(φ µ,νi ) c (y ) =sup x {φ µ,νi (x) -|x -y | 2 } + inf x {|x -y| 2 -φ µ,νi (x)} ≤sup x {|x -y| 2 -|x -y | 2 } ≤ 4c Ω |y -y |
In the sequel, to simplify the notation, we use µ := µ γ Pn and η := µ γ P . Therefore thanks to (B.3) and (B.4)

d E (µ, η) = ∇E(µ) -∇E(η), µ -η ≤ - 1 γ 1 n n i=1 φ µ,ν i -φ η,ν dP(ν), µ -η = 1 γ - 1 n n i=1 φ µ,ν i (x)dµ(x) + 1 n n i=1 φ µ,ν i (x)dη(x) + φ η,ν dP(ν)dµ(x) - φ η,ν dP(ν)dη(x) . (B.5)
We would like to switch integrals of the two last terms. In that purpose, we use that

W 2 2 (η, ν)dP(ν) ≤ C + 2 sup ν∈P 2 (Ω) Ω |y| 2 dν(y) < +∞.
As 0 ≤ W 2 2 (η, ν)dP(ν) = ( φ η,ν (x)dη(x) + ψ η,ν (x)dν(y)) dP(ν), we also have that φ η,ν (x)dη(x)dP(ν) < +∞. Since x → φ η,ν (x) and ν → φ η,ν (x) are measurables, we obtain by Fubini's theorem

Ω P 2 (Ω) φ η,ν dP(ν)dη(x) = P 2 (Ω) Ω φ η,ν dη(x)dP(ν). By the same tools, since W 2 2 (µ, ν)dP(ν) = φ µ,ν (x)dµ(x) + ψ µ,ν (x)dν(y) dP(ν) ≥ φ η,ν (x)dµ(x) + ψ η,ν (x)dν(y) dP(ν),
we get that ( φ η,ν (x)dµ(x)) dP(ν) < +∞, so Ω P 2 (Ω) φ η,ν dP(ν)dµ(x) = P 2 (Ω) Ω φ η,ν dµ(x)dP(ν). Therefore, by the dual formulation of Kantorovich, we have that

-φ µ,ν i dµ(x) = ψ µ,ν i (y)dν i (y) - |x -y| 2 dπ µ,ν i (x, y) (B.6) -φ η,ν dη(x) = ψ η,ν (y)dν(y) - |x -y| 2 dπ η,ν (x, y) (B.7)
where π µ,ν i and π η,ν are optimal transport plans for the Wasserstein distance. Also, φ µ,ν i and φ η,ν verify the Kantorovich condition, that is

φ µ,ν i (x) ≤ -ψ µ,ν i (y) + |x -y| 2 (B.8) φ η,ν (x) ≤ -ψ η,ν (y) + |x -y| 2 . (B.9)
Next, the trick is to write φ µ,ν i (x)dη(x) = φ µ,ν i (x)dπ η,ν i (x, y) and φ η,ν (x)dµ(x) = φ η,ν (x)dπ µ,ν (x, y). Thus, by using the equalities (B.6), (B.7) and the inequalities (B.8), (B.9), the result (B.5) becomes

γd E (µ, η) ≤- 1 n n i=1 |x -y| 2 dπ µ,ν i (x, y) + 1 n n i=1 |x -y| 2 dπ η,ν i (x, y) + |x -y| 2 dπ µ,ν (x, y)dP(ν) - |x -y| 2 dπ η,ν (x, y)dP(ν).
where

xm = x k if R g (x k-1 ) < R f (x m ) < R ν (x k ) xm ∈ [x k-1 , x k ] if R f (x m ) = R ν (x k )
Even if subgradient descent is only shown to converge with diminishing time steps [BM07], we observed that using a small fixed step time (of order 10 -5 ) is sufficient to obtain in practice a convergence of the iterates (f ( ) ) ≥1 . Moreover, we have noticed that the principles of FISTA (Fast Iterative Soft Thresholding, see e.g. [BT09]) accelerate the speed of convergence of the above described algorithm.

C.2 Discrete algorithm for d ≥ 1 in the general case

We assume that data ν 1 , . . . , ν n are given in the form of n discrete probability measures (histograms) supported on R d (with d ≥ 1) that are not necessarily defined on the same grid. More precisely, we assume that

ν i = p i j=1 ν j i δ y j i
for 1 ≤ i ≤ n where the y j i 's are arbitrary locations in Ω ⊂ R d , and the ν j i 's are positive weights (summing up to one for each i).

The estimation of the regularized barycenter onto a given grid {x k } N k=1 of R d can then be formulated as the following minimization problem: 

p i j=1 S j,k i = f k , N k=1
S j,k i = ν j i , and S j,k i ≥ 0.

However, optimizing over the p i × N transport matrices S i for 1 ≤ i ≤ n involves memory issues when using an accurate discretization grid {x k } N k=1 with a large value of N . For this reason, we consider subgradient descent algorithms that allow dealing directly with problem (C.5).

To this end, we rely on the dual approach introduced in [COO15] and the numerical optimisation scheme proposed in [CP16]. Following these works, one can show that the dual problem of (C.5) with a regularization of the form E(Kf ) and K a discrete linear operator reads as min where the φ i 's are dual variables (vectors in R N ) defined on the discrete grid {x k } N k=1 , E * γ is the Legendre transform of γE and H ν i (.) is the Legendre transform of W 2 2 (., ν i ) that reads:

H ν i (φ i ) = p i j=1 ν j i min k=1•••N 1 2 ||y j i -x k || 2 -φ k i .
Barycenter estimations f i can finally be recovered from the optimal dual variables φ i solution of (C.7) as:

f i ∈ ∂H ν i (φ i ), for i = 1 • • • n. (C.8)
Following [COO15], one value of the above subgradient can be obtained at point x k as:

∂H ν i (φ i ) k = p i j=1 ν j i S j,k i , (C.9)
where S j,k i is any row stochastic matrix of size p i × N checking:

S j,k i = 0 iff k ∈ argmin k=1•••N 1 2 ||y j i -x k || 2 -φ k i .
From the previous expressions, we see that f k i = p i j=1 ν j i S j,k i corresponds to the discrete pushforward of data ν i with the transport matrix S i with the associated cost:

H ν i (φ i ) = p i j=1 N k=1 1 2 ||y j i -x k || 2 -φ k i S j,k i ν j i .
Numerical optimization Following [CP16], the dual problem (C.7), can be simplified by removing one variable and thus discarding the linear constraint K T φ 0 + n i=1 φ i = 0. In order to inject the regularity given by φ 0 in all the reconstructed barycenters obtained by φ i , i = 1 • • • n, we modified the change of variables of [CP16] by setting ψ i = φ i + K T φ 0 /n for i = 1 • • • n and ψ 0 = φ 0 , leading to n i=1 ψ i = 0. One variable, say ψ n , can then be directly obtained from the other ones. Observing that φ n = -K T ψ 0 -n-1 i=1 ψ i /n, we thus obtain:

min ψ 0 ,•••ψ n-1 n-1 i=1 H ν i (ψ i -K T ψ 0 /n) + H νn (-K T ψ 0 - n-1 i=1 ψ i /n) + E * γ (ψ 0 ). (C.10)
The subgradient (C.9) can then be used in a descent algorithm over the dual problem (C.10).

For differentiable penalizers E, we consider the L-BFGS algorithm [ZBLN97, Bec11] that integrates a line search method (see e.g. [BV04]) to select the best time step τ ( ) at each iteration of the subgradient descent: [START_REF] Bowman | Applied smoothing techniques for data analysis : the kernel approach with S-Plus illustrations[END_REF] where:

ψ ( +1) 0 = ψ ( ) 0 -τ ( ) (∇E * γ (ψ ( ) 0 ) + d 0 ) ψ ( +1) i = ψ ( ) i -τ ( ) d i i = 1 • • • n -1, (C.
d 0 = K ∂H νn -K T ψ ( ) 0 /n - n-1 i=1 ψ ( ) i - n-1 i=1 ∂H νi ψ ( ) i -K T ψ ( ) 0 /n d i = ∂H νi ψ ( ) i -K T ψ ( ) 0 /n -∂H νn -K T ψ ( ) 0 /n - n-1 i=1 ψ ( ) i .
The barycenter is finally given by (C.8), taking φ i = ψ i -K T ψ 0 /n. Even if we only treated differentiable functions E in the theoretical part of this paper, we can numerically consider non differentiable penalizers E, such as Total Variation (K = ∇, E = |.| 1 ). In this case, we make use of the Fista algorithm. This just modifies the update of ψ 0 in (C.11), by changing the explicit scheme involving ∇E * γ onto an implicit one through the proximity operator of E * γ : 

Algorithmic issues and stabilization

As detailed in [COO15], the computation of one subgradient in (C.9) relies on the look for Euclidean nearest neighbors between vectors (y j i , 0) and (x k , c -φ k i ), with c = max k φ k i . Selecting only one nearest neighbor leads to bad numerical results in practice as subgradient descent may not be stable. For this reason, we considered the K = 10 nearest neighbors for each j to build the row stochastic matrices S i at each iteration as: S j,k i = w jk i / k w jk i , with w jk i = exp(-( 1 2 y j i -x k 2 -φ k i )/ ) if k is within the K nearest neighbors for j and data i and w jk i = 0 otherwise.
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 111 Figure 1: Spatial locations of reported incidents of crime in Chicago for 2 months of 2014. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified.
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 42 Let F = {f : U → R} be a class of real-valued functions defined on a given set U , endowed with a norm • . An envelope function of F is any function u → F (u) such that |f (u)| ≤ F (u) for every u ∈ U and f ∈ F. The minimal envelope function is u → sup f |f (u)|. The covering number N ( , F, • ) is the minimum number of balls { g -f < } of radius and center g needed to cover the set F. The metric entropy is the logarithm of the covering number. Finally, we define

  where H(ν) = sup µ∈D(E) {W 2 (µ, ν); W 2 2 (µ, ν)} where D(E) is defined by (2.5). Thus, instead of controlling the metric entropy N ( H L 2 (Q) , H, • L 2 (Q) ), it is enough to bound the metric entropy N ( , D(E), W 2 ) thanks to Theorem 2.7.11 in [VDVW96]. To this end, since µ, µ ∈ D(E) are a.c. measures, one has that W 2 (µ, µ ) ≤ Ω |T (x) -T (x)| 2 dx 1/2 where T #λ d = µ and T #λ d = µ , with λ d denoting the Lebesgue measure on Ω. Thanks to Theorem 3.3 in [DPF14] on the regularity of optimal maps (results initally due to Caffarelli, [Caf92] and [Caf96]), the coordinates of T and T are C m+1,β ( Ω) functions λ d -a.e.. Thus, we can bound N ( , D(E), W 2 ) by the bracket entropy N

  which yields the result of Theorem 4.6 by finally following the arguments in the proof of Theorem 4.5.
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 447 Convergence of µ γ P towards µ 0 P in Bregman divergence If Ω is a compact of R d and ∇E(µ 0 P ) is a bounded function on Ω then lim γ→0 D E (µ γ P , µ 0 P ) = 0,
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 2 Figure2: Simulated Gaussian data from Section 5.2. Smooth balancing functional B Λ,σ (λ) (times 10 -6 ) in solid lines for three different regularizations (with σ = 3). For these simulated data, we have access to µ P , and the dotted lines represent d E (µ P , µ

Figure 3 :

 3 Figure 3: Simulated data from Gaussian distributions with random means and variances. In all the figures, the black curve is the density of the true Wasserstein barycenter. The blue and dotted curve represents the pdf of the smoothed Wasserstein barycenter obtained by a preliminary kernel smoothing step. Pdf of the regularized Wasserstein barycenter µ γ Pn (a) for 20 ≤ γ ≤ 50 with E(f ) = ||f || 2 (Dirichlet), and (b) for 0.08 ≤ γ ≤ 14 with E(f ) = f log(f ) (negative entropy).
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 4 Figure 4: Errors in terms of expected Bregman and Wasserstein distances between the population barycenter and the estimated barycenters (kernel method in dashed blue, regularized barycenter in full red and ideal regularized barycenter in dashed red) for a sample of size n 0 = 10, 25, 50 and 75 (the whole sample is made of n = 100 discrete measures).
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 5 Figure 5: Neural spike trains data. (a) A subset of 3 smoothed spikes out of n = 60 of the neural activity of a monkey during 5 seconds. Each row represents one trial and the pdf obtained by smoothing each spike train with a Gaussian kernel of width 50 milliseconds. (b) Pdf of the empirical Wasserstein barycenter νn for this data set.

  E(f ) = ||f || 2 Dirichlet E(f ) = f log(f ) Entropy
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 6 Figure 6: Neural spike trains data. (a) Pdf of the regularized empirical Wasserstein barycenter with a Dirichlet regularization for 6 ≤ γ ≤ 10. (b) Pdf of the regularized empirical Wasserstein barycenter with negative entropy regularization and 0.08 ≤ γ ≤ 0.12

  The approach in [CP16]: regularized Wasserstein barycenter with regularized transport cost and Sinkhorn's algorithm.
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 7 Figure 7: Real dataset of reported incidents of crime in Chicago. Smooth balancing functional B Λ,σ (λ) associated to regularized Wasserstein barycenters for different values of λ.

  (a) Our approach: pdf of regularized Wasserstein barycenter with unregularized transport cost. (b) The approach in [CP16]: regularized Wasserstein barycenter with regularized transport cost and Sinkhorn's algorithm. (c) Standard Kernel density estimator of the whole dataset with a data-driven bandwidth.

Figure 8 :

 8 Figure 8: (a) Barycenter and (b) kernel density estimator associated to the location of crimes in the city of Chicago during the year 2014 are represented in color scale. The red points represent locations of all crimes during this month.

  , ν i ) + γE(f ) s.t k f k = 1, and f k ≥ 0, (C.5)with the notation f = (f 1 , f 2 , . . . , f N ) and the convention that W 2 2 (f, ν i ) denotes the squared Wasserstein distance between µ f = N k=1 f k δ x k and ν i . Problem (C.5) could be exactly solved by considering the discrete p i ×N transport matrices S i between the barycenter µ f to estimate and the data ν i . Indeed, problem (C.5) is equivalent to the convex problem min-x k || 2 S j,k i + γE(f ) (C.6)under the linear constraints ∀i = 1, . . . , n,

  φ 0 ,•••φn n i=1 H ν i (φ i ) + E * γ (φ 0 ) s.t K T φ 0 + n i=1 φ i = 0, (C.7)

  τ ( ) d 0 -ψ|| 2 + E * γ (ψ).

  Pn and µ γ P which depends on n and γ. A general result is first stated in Section 4.1. Complementary results are given in Section 4.2 for d = 1 and in Section 4.3 for d ≥ 2. Then, in Section 4.4, we prove the convergence in Bregman divergence (as γ → 0) of the regularized population Wasserstein barycenter µ γ P towards µ 0 P .

	1), the regu-
	larized population Wasserstein barycenter (4.2) and the population Wasserstein barycenter
	(4.3).
	In what follows, we obtain a rate of convergence in expected squared Bregman distance
	between µ γ

  BL * is the bounded Lipschitz distance and φ BL := φ ∞ + φ Lip . We denote by • Lip the norm define on the space of all Lipschitz functions on (Ω, d) with d(x, y) = 1 x =y . By hypothesis, ∇E(µ 0 P ) BL is finite. For sequence of probability measures, convergence in distance d BL * is equivalent to weak convergence (e.g. Section 1.2.1 of [Vil03]). Hence, by Theorem 2.1.(d) in [Bra06], J γ

		.10)
	By definition (4.3) of µ 0 P , one has W 2 2 (µ γ P , ν)dP(ν) -W 2 2 (µ 0 P , ν)dP(ν) ≥ 0. Therefore, by
	definition of the Bregman divergence, inequality (4.10) gives
	D E (µ γ P , µ 0 P ) ≤ ∇E(µ 0 P ), µ 0 P -µ γ P ≤ C sup φ BL ≤1	φ, µ 0 P -µ γ P ≤ Cd BL * (µ 0 P , µ γ P ),
	where d	

P Γ-converges to J 0 P . Indeed for every sequence (µ γ ) γ ⊂ P 2 (Ω) converging to µ ∈ P 2 (Ω) in bounded Lipchitz distance,

  , proper and continuous function. Therefore, Theorem 4.10 in [Cla13], we have that ∂J P ν n
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where c Ω = sup x |x|. As a consequence, 1 4c Ω (φ µ,ν i ) c is 1-Lipschitz and so is 1 4c Ω (φ ζ,η i ) c , which implies that 1 8c Ω (φ µ,ν i ) c -(φ ζ,η i ) c is 1-Lipschitz for all 1 ≤ i ≤ n. We then conclude

by the Kantorovich-Rubinstein theorem presented in [Vil03], while the last inequality above comes from Hölder inequality between the distance W 2 and the distance W 1 defined for θ 1 , θ 2 (probability measures on Ω with moment of order 1) as

where π is a probability measures on Ω × Ω with respective marginals θ 1 and θ 2 . Since µ and ζ are independent, we can assign to ν i any η σ(i) for σ ∈ S n the permutation group of {1, . . . , n} and hence we obtain

, which completes the proof.

B.4 Proof of convergence properties

Proof of Theorem 4.3. We denote by C a universal constant whose value may change from line to line. From the subgradient's inequality (2.9) and following the same process used in the proof of Theorem 3.3, we have that, for each ν i , i = 1, . . . , n, there exists φ µ γ Pn ,ν i integrable with respect to µ γ Pn (x)dx such that for all η ∈ P 2 (Ω):

By applying once again the subgradient's inequality, we get

Let us explicit the form of a subgradient φ ∈ ∂J γ P (µ γ P ) using again the Theorem of the subdifferential of a sum. We have that µ → W 2 2 (µ, ν) is continuous for all ν ∈ P 2 (Ω). Moreover by symmetry,

(by compactness of Ω). Hence, by Theorem of continuity under integral sign, we deduce that µ → E[W 2 2 (µ, ν)] is continuous. Thus we can manage the subdifferential of the following sum and one has that

, where ν is still a random measure with distribution P. Also the Theorem 23 in

Hence, we can sum up

We denote Taking the expectation with respect to the random measures, (B.10) implies

Using again the fact that |x -y| 2 dπ µ γ P ,ν i (x, y) are iid, we get

Note that since Ω is compact, the above variance term is finite.

. This term can be controlled thanks to the empirical process theory. 

where G n (h) = √ n(P n -P)(h). We then obtain 

with C a constant, I(1, H) defined in (4.4) and H an envelope function.

Gathering the results of (B.11), (B.12), (B.13) and (B.14), we get

which concludes the proof.

C Algorithmic details

In this section, we describe how the minimization problem

can be solved numerically by using an appropriate discretization to compute a numerical approximation of a regularized Wasserstein barycenter. More precisely, given a fixed grid {x k } N k=1 of equally spaced points

Pn by the discrete measure µ f = N k=1 f k δ x k where the f k are positive weights summing up to one which minimize a discrete version of the optimisation problem (C.1). In what follows, we first describe an algorithm that is specific to the one-dimensional case, and then we propose another algorithm that is valid for any d ≥ 1.

C.1 Discrete algorithm for d = 1 and data defined on the same grid

We first propose to compute a regularized empirical Wasserstein barycenter for a dataset made of discrete measures ν 1 , . . . , ν n (or one-dimensional histograms) defined on the same grid of reals {x k } N k=1 that the one chosen to approximate µ γ Pn . Since the grid is fixed, we identify a discrete measure ν with the vector of weights ν = (ν(x 1 ), . . . , ν(x N )) in R N + (with entries that sum up to one) of its values on this grid.

The estimation of the regularized barycenter onto this grid can be formulated as:

with the obvious abuse of notation W 2 2 (f, ν i ) = W 2 2 (µ f , ν i ) and E(f ) = E(µ f ). Then, to compute a minimizer of the convex optimization problem (C.2), we perform a subgradient descent. We denote by (f ( ) ) ≥1 the resulting sequence of discretized regularized barycenters in R N along the descent. Hence, given an initial value f (1) ∈ R N + and for ≥ 1, we thus have

where τ ( ) is the -th step time, and Π S stands for the projection on the simplex S = {y ∈ R N + such that N j=1 y j = 1}. Thanks to Proposition 5 in [PFR12], we are able to compute a sub-gradient of the squared Wasserstein distance W 2 2 (f ( ) , ν i ) with respect to its first argument (for discrete distributions). For that purpose, we denote by R f (s) = x j ≤s f (x j ) the cdf of µ f = N k=1 f (x k )δ x k and by R - f (t) = inf{s ∈ R : R f (s) ≥ t} its pseudo-inverse.

Proposition C.1 ([PFR12]

). Let f = (f (x 1 ), f (x 2 ), . . . , f (x N )) and ν = (ν(x 1 ), ν(x 2 ), . . . , ν(x N )) be two discrete distributions defined on the same grid of values x 1 , . . . , x N in R. For p ≥ 1, the subgradients of f → W p p (f, ν) can be written as