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Abstract—In this paper, a target detection procedure with
global error control is proposed. The novelty of this approach
consists in taking into account spatial structures of the target
while ensuring proper error control over pixelwise errors. A
generic framework is discussed and a method based on this
framework is implemented. Results on simulated data show
conclusive gains in detection power for a nominal control level.
The method is also applied on real data produced by the
astronomical instrument MUSE.

I. INTRODUCTION

In this paper we consider the problem of detecting spatial
extension of possible targets/sources in massive datasets based
on a proper statistical control of error rates. In this context
of multiple testing, the classical type I error control of each
individual test might not be appropriate; see e.g., [1], [2] for
applications in image processing. The number of wrongly
rejected null hypotheses can become important (i.e., even
larger than the number of true detections) due to the high
number of pixels to be tested. To address this issue, a global
error control approach, namely the False Discovery Rate
(FDR), was introduced in [3].

A simple and widely used approach to control FDR is
the Benjamini and Hochberg (BH) procedure developed in
[3]. This latter only requires knowledge of the test statistics
distribution for noise-only observations. However, for real-
word data, this distribution is unlikely to be known exactly.
For instance, when the noise exhibits a complex, possibly
heteroscedastic dependence structure, a robust estimator for
the distribution from noise-plus-target observations may be
difficult to obtain. In addition, applying BH procedure in a
pixelwise framework does not take into account any relation
between targeted samples. In many applications targeted sam-
ples exhibit some coherence, for instance, pixels of interest
are often organized in connected structures. Taking this kind
of prior into account can only improve detection power. Note
that some groupwise approaches were developed recently [4]
but require an a priori knowledge of the groups, in general
not available as the target shape is a priori unknown. Lastly, a
drawback of global error control is that detection power may
decrease as the number of tests increases. For instance, the
detection power of a single target, at a given nominal FDR,
depends of the size of the region into which it is sought.
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Thus, in order to 1) ensure a robust error control, 2) account
for target structure and 3) mitigate the influence of the number
of tests, a new simple framework is proposed called COn-
nection accounting Method for Extracting Target (COMET).
COMET elaborates on both a recent alternative class of FDR
controlling procedures [5], [6] and a recent method [7] that
yields robust control under weak assumptions on the noise. We
propose a relevant framework in the context of multiple-testing
problem where target exhibit connected structures. The control
is based on some feature statistics built from the data that are
designed to satisfy some symmetry properties. This context
covers a large number of applications. Hereinafter we focus
on detection problems where noise is assumed symmetrically
distributed and target have a positive contribution. Detection of
galactic halo in hyperspectral data satisfies these assumptions.
Using a simple and robust procedure [7], such feature statistics
are built and motivated the method presented in this paper.

Section II presents the proposed method for detecting a
multi-pixels target with strong connectivity while ensuring
global control. Section III illustrates the performance of
COMET on simulated data. In section IV this method is tested
on real data produced by MUSE instrument [8]. Finally some
conclusions and perspectives are drawn in section V.

Notations

In our context we use interchangeably the words “pixel”
or “sample”. Data vector associated with a pixel (a spectrum
in hyperspectral context) is represented by bold letters e.g. y.
a ∨ b denotes max(a, b).

II. METHOD

We address here the detection of a positive signal, from
noisy sample vector y ∈ Rl. Let H0 and H1 be the hypotheses
denoting respectively the absence or presence of the source
contribution. Thus we get the following one-sided testing
problem: {

H0 : y = ε,
H1 : y = αd+ ε, with α > 0,

(1)

ε ∈ Rl is a noise vector with unknown symmetrical distri-
bution. d is a known template or reference vector. y ∈ Rl
may be a spectrum in hyperspectral imaging, a time series in



fMRI imaging, or an intensity (l = 1 and d = 1 ∈ R) in
conventional imaging.

We now address the problem of solving (1) for a large
number n of data realizations {yi}1≤i≤n. As stressed earlier,
in the context of multiple testing, a classical type I error
control of each individual test might not be appropriate. Here
our purpose is to compute a data-dependent decision threshold
controlling the FDR introduced in [3]. FDR is the expected
proportion of true null hypotheses wrongly rejected, which are
referred to as the false discoveries, among all of the rejected
tests:

FDR = E
[

U

R ∨ 1

]
,

where R is the total number of tests for which the null hy-
pothesis is rejected, while U is the number of false discoveries
among the R discoveries. A new method for controlling FDR
was recently proposed by Barber and Candès in [5] based on
the construction of knockoffs. These knockoffs allow them to
build feature statistics {wi}1≤i≤n for each test which are, in
particular,
• symmetrical under H0, i.e.

P(wi > 0|i ∈ H0) = P(wi < 0|i ∈ H0),
• stochastically larger under H1 than under H0, i.e.

P(wi > 0|i ∈ H1) > P(wi > 0|i ∈ H0).
Barber and Candès then established some FDR control proce-
dures that we reformulate here in our context.

Proposition II.1. If the {wj}1≤j≤n are symmetrically dis-
tributed under H0, and their signs are independent, then for
a nominal control level q, thresholding at level

t̂q = inf

{
t ≥ 0 :

1 + #{wj < −t}
1 ∨#{wj > t}

≤ q
}

(2)

ensures an exact control of the FDR at level q for the set of
detections D = {i : wi > t̂q}.

Proof. See Theorem 3 of [5], applied for binary p-values

pi =

{
1/2, if w(i) > 0,
1, if w(i) < 0,

where w(i) are the absolute ordered feature statistics such that
|w(1)| ≥ |w(2)| ≥ · · · ≥ |w(n)|.

A. Building of feature statistics

In [5], feature statistics are based on knockoffs, that are
artificial variables that mimic the correlation structure of the
original ones, in a context of linear regression problems with
white Gaussian noise. This construction may be challenging
in practice, especially in high dimension. We propose here a
simpler feature construction, adapted to the detection problem
exposed in (1), where noise is symmetrically distributed and
target has a positive (α > 0) contribution. For known d the
feature wi for the ith test, 1 ≤ i ≤ n, can be defined as:

wi = d
Tyi. (3)

which is the matched filter statistics for white noise. Thus a
high positive value of wi indicates most certainly a non-null

sample and under H0, the wi are symmetrically distributed (as
noise is assumed to be symmetrically distributed).

We now consider a multiple-testing detection problem
where target samples are expected to be structured (a natural
example is a multi-pixel object in an image). We propose a
generic framework accounting for spatial connexity to improve
the detection power of the test (2) while ensuring the same
FDR control.

B. Generic framework

The main idea is the following: as target is expected to
form connected areas, only pixels in the neighborhood of
already detected pixels are tested. This amounts to develop
a region growing approach. Reducing the number of tests
to the neighboring pixels allows to limit the loss in power
for a given FDR level. This is performed by the step-up
procedure described in Algorithm 1. At a given selection step,
let A ⊂ {1, . . . , n} be the set of “interesting” pixels1 obtained
for a given selection step. Ensuring FDR control with this
Algorithm 1 procedure is then equivalent to guaranty P1 for
the selection procedure:

P1 (Post-selection symmetry). For any pixel j ∈ A cor-
responding to a true null hypothesis, wj is symmetrically
distributed.

P1 means that the selection step preserves the symmetry under
H0. At iteration k, let Ak be the set of selected pixels and D
the final set of detected pixels at the end of the procedure. A
false discovery proportion (FDP) estimate (among the positive
features wi > 0 selected in Ak) is defined as

q̂k =
1 +#{i ∈ Ak, wi < 0}
1 ∨#{i ∈ Ak, wi > 0}

. (4)

Finally S denotes the operator associated with the selection
procedure. This operator promotes spatial connectivity in
newly selected pixels. The following lemma can easily be
established due to the noise distribution symmetry.

Lemma II.2. If the selection operator S depends on the data
only through the absolute values |wi| of the feature statistics,
for 1 ≤ i ≤ n, then property P1 is satisfied.

Note that this framework allows for numerous implemen-
tations of the selection procedure. This consists mainly of
finding a good (promoting true H1 samples) ordering of the
pixels to be tested. In the following we focus on a simple
selection procedure that gives satisfactory results in practice.

C. Proposed implementation

The following greedy approach is proposed: at each step
the greatest feature in absolute value is retained among the
neighboring pixels. At step k, let Nk = G(Ak) be the external
neighborhood of Ak, where G is the morphological external
gradient, i.e. a dilation (here for a 8-connectivity clique)

1For the sake of simplicity, each one of the n pixels is identified by an
index i ∈ {1, . . . , n} rather than by its spatial coordinates. Note however
that, hereinafter, connectivity has to be understood w.r.t. spatial coordinates.



Algorithm 1 Generic COMET step-up procedure

1: Inputs: feature statisticsw = {wj}1≤j≤n, nominal control
level q

2: k ← 0, A0 ← ∅, q̂0 ← 0 . loop initialization
3: while Ak 6= {1, . . . , n} do
4: Ak+1 ← S(Ak,w) . selection step satisfying P1
5: compute q̂k+1 using (4) . FDP estimate update
6: k ← k + 1

7: endWhile
8: k̂ ← max{k : q̂k ≤ q} . step-up stopping rule
9: Output: D ← {i ∈ Ak̂ : wi > 0} . list of detections

followed by a subtraction. Then the selection procedure is
defined as

S(Ak,w) ≡ Ak ∪ {j0}, where j0 = arg max
j∈Nk

|wj |.

The symmetry property P1 is ensured by lemma II.2. In
practice, to improve computation times, the inner loop of the
step-up procedure can be stopped when both the number of
selected pixels is large and q̂k is significantly greater than q
(e.g. q̂k ≥ 1.2× q).

D. Control under independent noise

Proposition II.3 (FDR control of COMET). Assume that the
noise vectors ε1, . . . , εn are symmetrically distributed and
independent. Then Algorithm 1, where the feature statistics
w are built using (3), ensures an exact control of the FDR:
E
[
U
R∨1

]
≤ q.

Proof. According to property P1, for all i ∈ Ak̂ corresponding
to a true H0, wi is symmetrically distributed. Moreover the
signs of {wi}1≤i≤n are independent as are the {εi}1≤i≤n.
Thus we can apply proposition II.1 where the threshold
reduces to t̂q = 0. This concludes the proof.

We stress that this is quite a strong result as neither station-
arity nor full knowledge (i.e. aside its symmetry property) of
the noise distribution are required.

E. Control under correlated noise

In presence of noise correlations, independence of the {wi}
signs is in general not satisfied. Consequently we can no
longer rely on proposition II.3. Nevertheless we observe that
an asymptotic control is attained. This can be proved using
the following assumptions.
A1 (Weak dependence). For any set of H0 pixels S,

#{i ∈ S : wi > 0}
#S

a.s.→
#S→∞

P(wi > 0)

To simplify notation, Sn now denotes the final selection set
Ak̂ given by Algorithm 1 for a size n set of pixels.
A2 (Region growth). For a given q > 0, Sn increases with the
number of samples n and #Sn →

n→+∞
+∞

TABLE I: Comparison of power between COMET and a
similar procedure without taking connectivity into account.

Noise is Gaussian correlated. Nominal FDR is 5%. Target is
250 pixels wide, total number of pixels is 2601 (51× 51) for

the first two areas and 71× 71 for the larger area. Results
are averaged on 400 Monte-Carlo runs.

COMET Non-connected procedure
Source + noise

False discovery rate (%) 4.85 4.74
Power (%) 76.1 35.4

Source + noise on larger area
False discovery rate (%) 4.84 4.65

Power (%) 76.0 25.5

Proposition II.4 (Asymptotic control of COMET). Assume
A1, A2 and symmetrical distribution of feature statistics under
H0. Then Algorithm 1 ensures an asymptotic control of the
FDR of the test (1).

Sketch of the proof. For a given control q and a set of n
samples, let F̂DPq = 1+#{i∈Sn,wi<0}

#{i∈Sn,wi>0} . Based on the above

assumptions, it can be shown that lim inf
n→∞

(F̂DPq − FDP) ≥ 0.

Since F̂DPq ≤ q due to the stopping rule, it comes from
Fatou’s lemma that lim sup

n→∞
E[FDP] = FDR ≤ q

F. Generalization to sparse non-negative representation

COMET can be exploited in the framework of sparse non-
negative representation such as developed in [7]. Each feature
is now defined as

wi = w+
i ∨ w

−
i ×

{
+1 if w+

i > w−i ,
−1 if w+

i < w−i ,
(5)

where for 1 ≤ i ≤ n, w+
i = max

j
{dTj yi} and w−i =

−min
j
{dTj yi}. D = [d1, · · · ,dk] is a dictionary of templates

designed to account for possible variability of the target.
For a symmetrically distributed noise, these features are also
symmetrical under H0 and high positive values are expected
for target pixels (see [7]).

III. SIMULATION AND RESULTS

In this section, COMET procedure is compared with the
method described in proposition II.1, that does not take
connectivity into account. For sake of illustration, we consider
datacubes of dimension 31×51×51 that mimic hyperspectral
data (one spectral dimension, 2 spatial dimensions). Additive
Gaussian noise is convolved by a 3 × 3 kernel to introduce
spatial correlations. A target is composed of 250 connected
pixels with associated spectra. Each spectrum is a truncated
(±6 spectral bands around the mode) Gaussian shaped density
(with σ ≈ 2.1) centered on the median band j = 15. D
contains 3 spectral templates obtained by shifting the mode
by ±1 spectral band. Data peak signal-to-noise ratio pSNR is
around 5dB (pSNR is defined as pSNR = 20 log um

σ where
um is the maximal value of target data and σ is the noise
standard deviation).



As shown in table I, taking connectivity into account drasti-
cally improves the detection power while preserving FDR con-
trol. Let us emphasize that both FDR procedures adapt to the
data (contrary to a control based on PFA level): in the absence
of target, detection almost never occurs, thus ensuring the con-
trol of the expected FDP (note that in the case of occurrence
of a false detection, the FDP rises to 100%). Moreover our
results illustrate the robustness of COMET against the size of
the region to be tested: detection power remains approximately
constant. Figure 1 illustrates the detection procedure: figure
1(a) represents a noisy realization of tested data, summed
over the spectral channels (“white image”); figures 1(b) and
1(c) show the detection rate over 100 Monte-Carlo runs for
respectively the non-connected approach and COMET. Color
coding emphasizes the gain of power obtained with COMET.
The region explored by COMET (white contour) stays in the
vicinity of the target; on the contrary the method without
connectivity prior leads to largely spread false discoveries
(almost all pixels are detected at least once in fig. 1b), due to
spurious noise peaks. Figure 1(d) illustrates the performance
of COMET when the connectivity assumption is violated: a
disconnected “blob” can still be detected and overall detection
power is still in favor of COMET (around 66,4% vs 54.5%
without connectivity prior for shown example). Figure 2 de-
picts the procedure performances for several FDR level: figure
2(a) underlines that asymptotic control is indeed obtained in
presence of correlated noise, for both approaches; figure 2(b)
again emphasizes the significant gain in power due to taking
connectivity into account.

IV. APPLICATION TO MUSE DATA

In [7], a detection method for galactic halos in hyperspectral
data produced by the MUSE instrument [8], [9] was developed.
This method was based on BH procedure which did not
take connectivity into account, whereas halos are expected
to exhibit strong connectivity. Using the feature construction
described in II-F, the COMET procedure can be applied for
this halo detection problem. Initialization of the detection
process (design of the dictionary, choice of the region to
explore) benefits from the pre-detection of the galactic core
by specifically designed method such as [10].

Figure 3 illustrates the results obtained on an object of
the Hubble Deep Field South (HDFS) MUSE observation [9]:
figure 3(a) depicts the feature statistics map of the explored
region; figure 3(b) and 3(c) show the detection map for a
10% FDR level for respectively the non-connected approach
and COMET; figure 3(d) underlines the difference between
the two detection maps. Adding connectivity prior for halo
detection in MUSE data increases detection power: twice more
pixels are detected for the studied object. The precise gain in
detection power is difficult to evaluate as there is of course no
ground truth available. As expected, COMET favors connected
pixels detection so sometimes isolated pixels are detected only
by the classical approach. Nonetheless halos are expected to
be connected so these tiny ”blobs” are likely to be spurious

(a) Data realization (b) Non-connected procedure detection

(c) COMET detection on connected
target

(d) COMET detection on non-connected
target

Fig. 1: (a) example of a noisy datacube realization (summed
over the spectral dimension); (b) map of detection rate for an

10% FDR procedure without connectivity prior (1 means
always detected, 0 means never detected); (c) map of

detection rate at same 10% FDR level for COMET; (d) map
of detection rate for COMET on non-connected target.

Results averaged on 100 Monte-Carlo runs of simulated data.
Black line indicates ground-truth target, white line indicates

pixels detected at least once among all Monte-Carlo runs
with COMET.

detections. It is thus obvious that COMET improves here
detection power while preserving from spurious noise peaks.

V. CONCLUSION

In this paper a generic framework for improving detection
power of FDR methods on connected multi-pixels targets is
proposed. This framework is based on selecting pixels to be
tested using connectivity constraints. An implementation of
a simple procedure for this framework, named COMET, is
described; it only requires symmetry of the noise distribution
and positivity of the targets. Exact FDR control of the proce-
dure is proven for independent samples. When noise is weakly
dependent, asymptotic FDR control is proven. Compared to
a state of the art FDR procedure without connectivity prior,
COMET exhibits conclusive results on simulated data: we
obtain both a substantive gain in detection power for a same
nominal FDR level and a good robustness to the size of the
region to be tested. This procedure is applied on real data from
the MUSE instrument with promising results. This method is
non-parametric, thus robust to model mis-specification. Finally



(a) FDR control

(b) Detection power

Fig. 2: (a) Empirical FDR vs nominal FDR ; (b): power vs
nominal FDR. Proposed method is in blue (∗),

non-connected approach is in orange ( ). Results averaged
on 2000 Monte-Carlo runs of simulated data, with a

Gaussian noise correlated by a 3× 3 kernel. pSNR is 5dB.

it has a low computational cost (around 1s to process a
31× 51× 51 datacube).
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