

Image-based modeling of the heterogeneity of propagation of the cardiac action potential. Example of rat heart high resolution MRI.

Anđela Davidović, Yves Coudière and Yves Bourgault

Introduction

Q: What is the goal?

A: Understanding the AP propagation in the hearts with structural diseases.

Q: Which models exist?

- A: Bidomain and monodomain models. They have limitations. We propose a modifications to the bidomain model.
- Q: Can it be applied on a real heart? Which tools are used?
 - A: Yes. HR-MRI help in identifying useful informations about the structure of the tissue and to feed the model.

Mesoscale model

Influence of the diffusive inclusions in bidomain model

Bidomain with periodic diffusive inclusions

Bidomain with periodic diffusive inclusions

$$\begin{split} \partial_{t}\mathbf{h}_{\varepsilon} + g(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= 0, \quad \Omega_{\varepsilon}^{B} \\ \partial_{t}\mathbf{v}_{\varepsilon} + I_{lon}(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= \nabla \cdot (\sigma^{l}\nabla u_{\varepsilon}^{l}), \quad \Omega_{\varepsilon}^{B} \\ \partial_{t}\mathbf{v}_{\varepsilon} + I_{lon}(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= \nabla \cdot (\sigma^{e}\nabla u_{\varepsilon}^{e}), \quad \Omega_{\varepsilon}^{B} \\ 0 &= \nabla \cdot (\sigma^{d}\nabla u_{\varepsilon}^{d}), \quad \Omega_{\varepsilon}^{D} \\ (\sigma^{l}\nabla u_{\varepsilon}^{l}) \cdot n &= 0, \quad \Sigma_{\varepsilon} \\ (\sigma^{e}\nabla u_{\varepsilon}^{e}) \cdot n &= (\sigma^{d}\nabla u_{\varepsilon}^{d}) \cdot n, \quad \Sigma_{\varepsilon} \\ u_{\varepsilon}^{e} &= u_{\varepsilon}^{d}, \quad \Sigma_{\varepsilon} \end{split}$$

- lacktriangle Healthy tissue in $\Omega^{\it B}_{\it \epsilon}$
- Diffusive inclusion in Ω^D_{ε}
- Continuity of flux and potential on Σ_ε

 $egin{align*} \mathbf{v}_{\varepsilon} &= \mathbf{u}_{\varepsilon}^{l} - \mathbf{u}_{\varepsilon}^{\mathbf{e}} \text{ - transmembrane voltage} \\ \mathbf{h}_{\varepsilon} \text{ - state variables of ionic model} \\ \mathbf{\sigma}^{l}, \mathbf{\sigma}^{\mathbf{e}}, \mathbf{\sigma}^{d} \text{ - conductivities} \end{aligned}$

Bidomain with periodic diffusive inclusions

$$\begin{split} \partial_{t}\mathbf{h}_{\varepsilon} + g(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= 0, \quad \Omega_{\varepsilon}^{B} \\ \partial_{t}\mathbf{v}_{\varepsilon} + I_{lon}(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= \nabla \cdot (\sigma^{l}\nabla u_{\varepsilon}^{l}), \quad \Omega_{\varepsilon}^{B} \\ \partial_{t}\mathbf{v}_{\varepsilon} + I_{lon}(\mathbf{v}_{\varepsilon}, \mathbf{h}_{\varepsilon}) &= \nabla \cdot (\sigma^{e}\nabla u_{\varepsilon}^{e}), \quad \Omega_{\varepsilon}^{B} \\ 0 &= \nabla \cdot (\sigma^{d}\nabla u_{\varepsilon}^{d}), \quad \Omega_{\varepsilon}^{D} \\ (\sigma^{l}\nabla u_{\varepsilon}^{l}) \cdot n &= 0, \quad \Sigma_{\varepsilon} \\ (\sigma^{e}\nabla u_{\varepsilon}^{e}) \cdot n &= (\sigma^{d}\nabla u_{\varepsilon}^{d}) \cdot n, \quad \Sigma_{\varepsilon} \\ u_{\varepsilon}^{e} &= u_{\varepsilon}^{d}, \quad \Sigma_{\varepsilon} \end{split}$$

- lacktriangle Healthy tissue in $\Omega^{\it B}_{\it \epsilon}$
- Diffusive inclusion in Ω^D_{ε}
- Continuity of flux and potential on Σ_{ε}

 $v_{\varepsilon} = u_{\varepsilon}^{l} - u_{\varepsilon}^{e}$ - transmembrane voltage h_{ε} - state variables of ionic model σ^{l} , σ^{e} , σ^{d} - conductivities HOMOGENIZATION!

The homogenised macroscale model

Modified bidomain model

$$\begin{aligned} |Y_B| \left(\partial_t v + I_{lon}(v, h) \right) &= \nabla \cdot \left(\begin{array}{c} \sigma^{l*} \end{array} \nabla u^l \right) & \text{in } \Omega \\ |Y_B| \left(\partial_t v + I_{lon}(v, h) \right) &= -\nabla \cdot \left(\begin{array}{c} \sigma^{e*} \end{array} \nabla u \right) & \text{in } \Omega \\ \partial_t h + g(v, h) &= 0 & \text{in } \Omega \end{aligned}$$

where: $v = u^i - u$.

Modified conductivity tensors take into account tissue microstructure:

$$\sigma_{kj}^{l*} = \sigma_{kj}^{l} |Y_{B}| + (\sigma_{k1}^{l} A_{1j}^{l} + \sigma_{k2}^{l} A_{2j}^{l} + \sigma_{k3}^{l} A_{3j}^{l}),$$

$$\sigma_{kj}^{e*} = \sigma_{kj}^{e} \frac{|Y_B|}{|Y_B|} + \left(\sigma_{k1}^e A_{1j}^e + \sigma_{k2}^e A_{2j}^e + \sigma_{k3}^e A_{3j}^e\right) + \sigma_{kj}^d \frac{|Y_D|}{|Y_D|} + \left(\sigma_{k1}^d A_{1j}^d + \sigma_{k2}^d A_{2j}^d + \sigma_{k3}^d A_{3j}^d\right).$$

 $A^i_{\nu i}, A^e_{\nu i}, A^d_{\nu i}$ - matrices obtained from the cell problems.

The cell problems

- ▶ Derived from the equations $u_1^i = W_i \cdot \nabla u_0^i$ and $u_1 = W \cdot \nabla u_0$.
- Static problems, solved only once on the unit cell Y.

Intracellular:

$$abla \cdot (\sigma_i \nabla w_j^l) = 0, \text{ in } Y_B, \\
\sigma_i (\nabla w_j^l + \Theta_j) \cdot n = 0, \text{ on } \Gamma, \\
w_j^l \text{ is } Y \text{ periodic.}$$

Extracellular:

$$abla \cdot (\sigma
abla w_j) = 0$$
, in Y, $(\sigma_e - \sigma_\sigma)(
abla w_j + e_j) \cdot n = 0$, on Γ , w_i is Y periodic.

$$A_{kj}^i = \int_{Y_B} \partial_k w_j^i, \quad A_{kj}^e = \int_{Y_B} \partial_k w_j, \quad A_{kj}^d = \int_{Y_D} \partial_k w_j.$$

Quantitative effects

depend on the shape, size and σ^d

Solving cell problems on different unit cells Y

Fibers orientation: \longleftrightarrow

- blue is Y_B , red is Y_D
- fibers orientation in Y_B domain is along x-axis
- o^{i*} and o^{e*} depend on shape of periodic cells, |Y_B| and o^d.

Solving cell problems on different unit cells Y

Fibers orientation: \longleftrightarrow

- blue is Y_B , red is Y_D
- fibers orientation in Y_B
 domain is along x-axis
- σ^{i*} and σ^{e*} depend on shape of periodic cells, |Y_B| and σ^d.

Solving cell problems on different unit cells Y

Fibers orientation: \longleftrightarrow

- blue is Y_B , red is Y_D
- fibers orientation in Y_B
 domain is along x-axis
- σ^{i*} and σ^{e*} depend on shape of periodic cells, |Y_B| and σ^a.

more details: PhD thesis A. Davidovic, 2016.

Change in speed and direction of the wavefront for fixed $|Y_B|$.

Standard bidomain simulation, i.e. $|Y_B| = 1$:

Fibers orientation: \longleftrightarrow

Shape of periodic cells:

20ms

50ms

100*ms*

Healthy tissue patch:

Healthy tissue patch:

Heterogeneous tissue patch with different periodic cells:

Healthy tissue patch:

Heterogeneous tissue patch with different periodic cells:

Healthy tissue patch:

Heterogeneous tissue patch with different periodic cells:

Rat heart application

From HR MR Imaging to Simulation

- 1. Fit MS ionic model to the rat heart model
 - Pongui Ngoma et al, Adjustment of Parameters in Ionic Models Using Optimal Control Problems. FIMH 2017.

- 1. Fit MS ionic model to the rat heart model
 - Pongui Ngoma et al, Adjustment of Parameters in Ionic Models Using Optimal Control Problems. FIMH 2017.
- 2. Solve the cell problems on 3D unit cell for given σ^d , and varying $|Y_B| \in [0.02, 1]$

- Fit MS ionic model to the rat heart model
 - Pongui Ngoma et al, Adjustment of Parameters in Ionic Models Using Optimal Control Problems. FIMH 2017.
- 2. Solve the cell problems on 3D unit cell for given σ^d , and varying $|Y_B| \in [0.02, 1]$
- 3. Image processing
 - segmentation
 - mesh generation
 - define diffusive inclusions
 - compute |Y_B|
 - ightharpoonup map $|Y_{B}|$ and fibers on the mesh

- 1. Fit MS ionic model to the rat heart model
 - Pongui Ngoma et al, Adjustment of Parameters in Ionic Models Using Optimal Control Problems. FIMH 2017.
- 2. Solve the cell problems on 3D unit cell for given σ^d , and varying $|Y_B| \in [0.02, 1]$
- 3. Image processing
 - segmentation
 - mesh generation
 - define diffusive inclusions
 - compute |Y_B|
 - ▶ map $|Y_B|$ and fibers on the mesh
- 4. Define σ^{i*} and σ^{e*} using Step 2 and $|Y_B|$.
- 5. Run simulation.

HR MRI data and DT MRI fibers orientation

- Data provided by Stephen Gilbert and IHU-Liryc, Bordeaux.
 - Gilbert SH, et al. American Journal of Physiology-Heart and Circulatory Physiology. 2012; 302(1):H287-98.
- male Wistar rat heart, imaged using a T1 weighted FLASH (Fast Low Angle SHot) MRI sequence in a 9.4T spectroscope.
- ► HR MR images:
 - resolution of $50 \times 50 \times 50 \mu m$
 - matrix of 256 × 256 × 512 voxels
 - view field of 12.8 × 12.8 × 25.6mm
- \blacktriangleright DT MR images: $64 \times 64 \times 128$ voxels on the same view field

segmentation

segmentation

volume fraction $|Y_D|$

- ▶ On the mask use a moving window $[5 \times 5 \times 5]$ to compute local volume fraction $|Y_D|$. Note: $|Y_D|$ depends on
 - 1. threshold used to determine Y_D
 - 2. size of the moving window

Mesh size: 351 706 nodes, 1 924 747 tetrahedra

Project volume fraction $|Y_D|$ and fibers orientations on the mesh.

Effective conductivities

- ▶ Use volume fraction $1 |Y_D| = |Y_B| \in [0, 1]$
- Assume same shape of inclusions everywhere (smooth box)

volume fraction $|Y_B|$

Effective conductivities

- Use volume fraction $1 |Y_D| = |Y_B| \in [0, 1]$
- Assume same shape of inclusions everywhere (smooth box)
- For $\sigma^d = 0.2$

volume fraction $|Y_B|$

Intracellular

- $\sigma_i^{i*} \in [0, 1.74]$
- $\sigma_n^{i*} \in [0, 0.19]$

- $\sigma_l^{e*} \in [0.2, 3.9]$
- $\sigma_n^{e*} \in [0.2, 1.97]$

Simulation of the modified bidomain model, isochrones.

Simulation of the modified bidomain model, isochrones.

Table: Various test cases and total depolarization time, T_D .

		ref	Volume fraction from HR-MRI								
	shapes	-	sticks ()		plates ()		plates (⊥)		cubes		
C	σ_d [Sm $^{-1}$]	-	0.02	0.3	0.02	0.3	0.02	0.3	0.02	0.15	0.3
	T_D [ms]	32.66	33.02	31.75	32.26	30.99	44.89	44.07	34.31	32.49	33.3
	%	-	1,1%	2,7%	1,2 %	5,1%	37,4%	34,9%	5%	0,5%	1,9%

Simulation of the modified bidomain model, isochrones.

Table: Various test cases and total depolarization time, T_D .

	ref	Volume fraction from HR-MRI								
shapes	-	sticks ()		plates ()		plates (⊥)		cubes		
σ_d [Sm ⁻¹]	-	0.02	0.3	0.02	0.3	0.02	0.3	0.02	0.15	0.3
T _D [ms]	32.66	33.02	31.75	32.26	30.99	44.89	44.07	34.31	32.49	33.3
%	-	1,1%	2,7%	1,2 %	5,1%	37,4%	34,9%	5%	0,5%	1,9%

Conclusions

- Proposed extension of the bidomain model
- Studied the quantitative effects: changes due to the size, shape and conductivity of diffusive inclusions
- Applied on a slab of the rat heart

On going:

- Use whole heart with realistic activation times
- Simplification of the process using MUSIC and CEPS

To do:

- Realistic shapes of inclusions
- Use data with fibrosis, scars etc..
- Validation: missing electrical data
- 4. Add other kinds of cells in inclusion, e.g. fibroblasts
 - Non-periodic homogenisation (stochastic approach)

Thank you. Merci.

Anđela Davidović FIMH, Toronto, Canada 12 June 2017