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Abstract. In this paper we present a modi�ed bidomain model, de-
rived with homogenization technique from assumption of existence of
di�usive inclusions in the cardiac tissue. The di�usive inclusions repre-
sent regions without electrically active myocytes, e.g. fat, �brosis etc.
We present the application of this model to a rat heart. Starting from
high resolution (HR) MRI, geometry is built and meshed using image
processing techniques. We perform a study on the e�ects of tissue het-
erogeneities induced with di�usive inclusions on the velocity and shape of
the depolarization wavefront. We study several test cases with di�erent
geometries for di�usive inclusions, and we �nd that the velocity might
be a�ected by 5% and up to 37% in some cases. Additionally, the shape
of the wavefront is a�ected.

Keywords: bidomain model, heterogeneous conductivities, �brosis, mul-
tiscale modelling, image-based modelling

1 Introduction

The standard macroscopic model for the electrophysiology of the heart is the
bidomain model [10]. This model is an anisotropic three-dimensional cable equa-
tion, that represents the averaged electric behavior of the myocardium. The
electrical conductivity tensors for the intracellular and extracellular spaces are
anisotropic, with the electrical conduction being the fastest in the �ber direction.
In the standard bidomain model the anisotropy ratio in the intracellular space
is about 10:1, while in the extracellular space about 2:1.

The bidomain model assumes the existence of uniformly spread myocytes,
organized into a dense network [11], [14]. It is a reasonable assumption for de-
scribing the propagation of the action potential in healthy tissues. In pathological
cases this assumption does not hold, as there are regions with large patches of
collagen or �brosis. This is observed in ischemic and rheumatic heart disease,
in�ammation, hypertrophy, and infarction [3]. In the current modeling of such
defects, usually the standard models for the healthy tissues are used, with the



2 An�ela Davidovi¢1,2,3, Yves Coudière1,2,3,4, Yves Bourgault5

model parameters tuned in an ad hoc way.
An explanatory model was proposed for more rigorous tuning of the param-

eters in such situations, in [5] and [6]. The main extension of this model w.r.t.
the standard bidomain model is the existence of relatively large regions of tis-
sue where there are no myocytes, nor other kind of cells, and these regions are
assumed to be passive electrical conductors. They are called di�usive inclu-

sions. The di�usive inclusions may represent electrically passive in�ltrations in
the cardiac tissue like fat, collagen, �brosis etc.

In this paper we apply the proposed model to a slab of rat heart. We start
from HR-MRI data of a rat heart. We perform the image analysis to obtain a
computational domain, to de�ne the di�usive inclusions and to �nd the local
volume fractions of the di�usive inclusions. These are then used in the simula-
tions of the modi�ed bidomain model. Finally, we make a study of how di�erent
di�usive inclusions might a�ect the shape and the velocity of depolarization
waves.

2 Modi�ed bidomain model for rat heart

In this section we give an overview of the model proposed in [5] and [6]. Full
derivation of the model is out of the scope of this paper, since we want to focus
on the application of this model on a real rat heart.

On the microscopic scale, periodic di�usive inclusions have been embedded
into the healthy cardiac tissue, i.e. the bidomain model. In order to observe the
e�ects of these inclusions on the macroscopic scale a homogenisation technique
has been applied. This approach gives rise to the following two sets of problems:

� homogenised problem - that is in fact the macroscopic model that we were
looking for. In our case it is a modi�ed bidomain model, where the e�ects of
inclusions are mainly contained in the conductivity tensors, as expected.

� cell problems - these are correction equations, used to calculate the modi�ed
conductivity tensors. They are set on the unit cube of R3 and represent a
rescaled typical volume of interest of cardiac tissue.

The general homogenisation approach is presented in [1], [2]. It is a well known
technique in mathematical modelling, and has been used for example in the
derivation of the bidomain model [11], [14].

2.1 Equations

Homogenized problem. On the microscopic scale it is assumed that di�usive
inclusions are periodic with a period ε, such that l� ε� L, where L is the tissue
scale and l is the cardiac cell scale. Applying the mathematical homogenization
technique, assuming that ε goes to zero, an averaged non-dimensional model has
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been derived, and is given as follows

(∂tv + Iion(v, h)) ξB = N∇ ·
(
σi∗∇ui

)
, in [0, T ]×Ω, (1)

(∂tv + Iion(v, h)) ξB = −N∇ · (σe∗∇ue) , in [0, T ]×Ω, (2)

∂th+ g(v, h) = 0, in [0, T ]×Ω, (3)

where ui and ue are the intracellular and extracellular potentials, v = ui − ue is
the transmembrane voltage, Iion is the transmembrane current that is a function
of v and h, a state variable, ξB is the local volume fraction of the healthy tissue,
N is the adimensionalisation parameter that depends on time and space scales
and physical properties of the cell as given in [15], and σi∗ and σe∗ are the
modi�ed conductivity tensors.

Cell problems. The e�ective intracellular and extracellular conductivity ten-
sors σ∗

i and σ∗
e are obtained by solving the set of so-called cell problems that

are de�ned on the unit cell space, Y = [0, 1] × [0, 1] × [0, 1]. The unit cell is
in fact the rescaled periodic cell of tissue, where one can identify the healthy
tissue, YB , and the di�usive inclusion, YD, see Figure 1. Note that Y represents
a microscopic piece of tissue (of size ε), and the tissue is considered to be locally
periodic. On a large scale the shape and size of the di�usive inclusions may vary,
as illustrated in the following study.

ε

Ω

∂Ω

Y

YD

YB

Γ

1

Fig. 1: Left: the idealised full domain, Ω. Right: the unit cell, Y .

On the unit cell we de�ne the Y−periodic functions wj and wij , j = 1, 2, 3,
as solutions to the cell problems

∇ · (σi∇wij) = 0, in YB , σi(∇wij + ej) · n = 0, on Γ, (4)

∇ · (σ∇wj) = 0, in Y, (σe − σd)(∇wj + ej) · n = 0, on Γ, (5)

where σi and σe are the intracellular and extracellular conductivity tensors used
in the healthy tissue, i.e. in the standard bidomain model, and σd is the con-
ductivity assumed inside of the di�usive inclusion, n is an outer normal to the
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boundary Γ and ej , j = 1, 2, 3, are the unit vectors of the standard basis. The
conductivity tensor σ in (5) is de�ned as σ = σe, in YB , and σ = σd, in YD.

The periodic functions wij and wj are then used to de�ne the e�ective con-
ductivity tensors as:

σi∗kj =σi,kjξB

+

(
σi,k1

∫
YB

∂y1w
i
jdy + σi,k2

∫
YB

∂y2w
i
jdy + σi,k3

∫
YB

∂y3w
i
jdy

)
, (6)

σe∗kj =

∫
Y

σkjdy +

(∫
Y

σk1∂y1wjdy +

∫
Y

σk2∂y2wjdy +

∫
Y

σk3∂y3wjdy

)
, (7)

for j, k = 1, 2, 3, and ξB = |YB |.
As one may notice, σi∗ and σe∗ depend not only on the volume fraction of

the di�usive inclusion, but on their shape as well.

Ionic model for the rat heart. A reference ionic model that corresponds to
the action potential (AP) of the rat heart is given in [13]. In our simulations we
use the Mitchell Schae�er (MS) model [9], �tted to the reference ionic model for
the rat heart,

Iion(v, h) =
1

τin
hv2(v − 1) +

1

τout
v, (8)

g(v, h) =

{
1

τopen
(1− v), for v < vgate,

− 1
τclose

v, for v ≥ vgate,
(9)

where Iion, g, v and h have the same meaning as before, and τin, τout, τopen, τclose,
and vgate are the model parameters. The former four are normally given in units
of time and are related to the duration of AP phases: depolarisation, repolari-
sation, plateau phase and the total AP duration. The parameter vgate is related
to the threshold value of transmembrane voltage when the AP in cardiac cell is
triggered.

The original MS model is given so that the transmembrane voltage, v, is
non-dimensional and is scaled to [0, 1]. Here we went a step further and used
the approach given in [15] to work with a fully non-dimensional model, using
the time scale T = 10−3s and the length scale L = 10−3m. We have used the
algorithm given in [12], that enables us to automatically determine new parame-
ters of the MS model, given in Table 1. Note that in the non-dimensional model
the conductivities are also scaled with the parameter σ = 0.1Sm−1, and the
non-dimensional values for the anisotropic tensors σi and σe are given in Table
1.

The MS model is chosen for its mathematical simplicity and easy numerical
implementation. It has been shown that it is convenient as well for patient-
speci�c modeling in [16].
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Table 1: Non-dimensional bidomain model parameters of the rat heart, as in [15].
τin τout τopen τclose vgate σi,l σi,t σe,l σe,t N
0.073 8.369 25.743 15.438 0.02 1.741 0.1934 3.906 1.97 0.0125

2.2 Computing e�ective conductivities

To compute the e�ective conductivities σi∗ and σe∗, �rst we have to solve the
equations (4)-(5) on the unit cell Y . Hence, we need values for the conductivities
σi, σe and σd. The values for the anisotropic tensors σi and σe corresponding to
the non-dimensional model are given in Table 1. We assume that the �bers are
aligned with the x-axis, so σi and σe are diagonal matrices. In that sense, we
have σi,11 = σi,l and σi,22 = σi,33 = σi,t, with non-diagonal terms being equal
to zero. Similarly, σe,11 = σe,l and σe,22 = σe,33 = σe,t, with non-diagonal terms
being equal to zero.

The conductivity tensor σd is scaled with the same parameter σ = 0.1Sm−1.
We chose to test isotropic values σd = 0.2, 1.5 and 3.0, where the former one
corresponds to the conductivity of fatty tissue and the latter to isotropic ex-
tracellular space. Several shapes of the di�usive inclusions have been tested, as
shown in the Figure 2.

The cell problems were solved using the �nite element approach and FreeFem++1.
To illustrate results we plot the conductivity tensors and the anisotropy ratios
for one case (see Figure 3). In this case we obtain diagonal conductivity tensors
with σi∗22 = σi∗33 and σe∗22 = σe∗33. We observe changes in the anisotropy ratios for
both intra and extra-cellular conductivities. It is consistent with [6] where the
shape of di�usive inclusions induces signi�cant changes in anisotropy ratios.

Additionally to that, the main direction of propagation might be changed
as well. This implies that in certain situations, depending on the tissue struc-
ture, one needs to know more than just the �ber direction to recover the correct
wavefront of depolarization.

3 Application to a slab of rat heart

3.1 Data on the rat heart

HR-MRI. Data were provided by the IHU-Liryc, Bordeaux. The MR Imag-
ing has been performed on the heart of a male Wistar rat. After the proper
preparation of the heart, the heart was perfused with MRI contrast agent and
�xative, and then stored in contrast/�xative solution until imaging. The heart
was imaged using a T1 weighted FLASH (Fast Low Angle SHot) MRI sequence
in a Bruker (Ettlingen, Germany) 9.4T spectroscope with 20 averages and echo
time (TE) = 7.9ms, repetition time (TR) = 50ms, and �ip angle 40 degrees, at
a resolution of 50 × 50 × 50µm, a matrix size of 256 × 256 × 512 for a �eld of
view of 12.8× 12.8× 25.6mm. For further details see [8].

1 http://www.freefem.org/

http://www.freefem.org/
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Fig. 2: Test cases for the unit cells in 3D. The shapes of the inclusions are:
sticks aligned with �ber direction (here x-axis), plates parallel to �bers, plates
perpendicular to �bers, and nearly cubic superellipsoids. For each case we used
superellipsoids, with di�erent semi-axes.
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Fig. 3: E�ective conductivities and anisotropy ratios for inclusions in the shape
of cubes (see Figure 2 at the bottom right), ranging in volume fraction from 0
to 98%, with �bers aligned with the x-axis.
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DT-MRI �ber directions. The �ber structure in the cardiac tissue leads to
anisotropy in the bidomain model. For the simulation of both bidomain and
modi�ed model it is important to assess the �ber orientation in the tissue. The
di�usion tensor (DT) MRI technique is used for this purpose. The data from
DT-MRI are given on an image that is four times coarser than the original HR-
MRI data, i.e. 64 × 64 × 128 for the same view �eld. This results in a spacing
between voxels that is four times larger, i.e. 0.2× 0.2× 0.2mm.

3.2 Image processing

Segmentation. The semi-manual segmentation of the images has been per-
formed with the software Seg3D2. The median �lter and thresholding on the
gray scale were used to de�ne roughly the boundaries of cardiac tissue. Follow-
ing thresholding, bad pixels have been �xed manually, layer by layer. Cropping
tools have been used to de�ne the computational domain, i.e. a part of the left-
ventricular wall. This is done solely for performance reasons, in order to reduce
the computing cost of the simulations.

Di�usive inclusion detection and local volume fraction. Using the soft-
ware Seg3D we were able to de�ne the di�usive inclusions in the computational
domain. For this we used only a threshold on gray scale, without additional
processing, see Figure 4. The mask of computational domain with �agged sub-
domain of di�usive inclusions has been exported in .mat �le, and Matlab was
used for the computation of the local volume fraction of the inclusions. Around
each voxel, X, we de�ne a 5× 5× 5 window, and count the number n of voxels
inside of this window that belong to the di�usive inclusions, n ∈ [0, 125]. The
local volume fraction of voxel X is then given as ξD(X) = n

125 .

Mesh generation. For the mesh generation we used the software SCIRun3,
which integrates the call function to tetgen. We have set a minimum radius-edge
ratio and imposed a maximum volume constraint on tetrahedra. The result is a
�ne mesh, that has 351706 nodes and 1924747 tetrahedra, see Figure 4.

Mapping data on the mesh. To be able to use the imaging data in our
simulations we have to map them on the mesh nodes. For this purpose, we use
the software SCIRun. Both, local volume fraction ξD and the �ber orientations
were mapped on nodes of the mesh.

2 http://www.sci.utah.edu/cibc-software/seg3d.html
3 http://www.sci.utah.edu/cibc-software/scirun.html

http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.sci.utah.edu/cibc-software/scirun.html
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Fig. 4: Up left: segmentation from the HR-MRI data and di�usive inclusions
detection. Bottom: �ne mesh of the selected domain. Up right: details of the
mesh.

3.3 Simulations

Settings. Here we set the parameters for the bidomain and modi�ed model
(1)-(3). The computational mesh and ξB = 1− ξD are set. The non-dimensional
parameterN is set to 0.0125, as in the Table 1. The e�ective conductivity tensors,
σ∗
i and σ∗

e , have been computed for several test cases, as in Figure 2, with the
�ber direction assumed to be aligned with the x-axis and for the range of di�usive
inclusions volume fractions ξD ∈ (0, 1). Now, for each node in the mesh we assign
one of these values depending on the corresponding local value of ξD, obtained
from the image processing. Finally, we recompute the e�ective conductivities for
each node based on the �ber direction, obtained from DT-MRI images.

We use linear �nite elements as implemented in FreeFem++ to solve the the
bidomain and modi�ed model (1)-(3). For the time discretization we use the
semi-explicit SBDF2 numerical scheme, as proposed in [7], with the time step
dt = 0.05ms. The resulting linear system was solved using the conjugate gradient
method, to avoid excessive memory usage.
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Results. We run simulations for several test cases as given in Table 2. The
reference case consists in solving the standard bidomain model without any
di�usive inclusions. In the table we report the total depolarization duration of
the computational domain, TD, calculated as the �rst time t > 0 for which all
nodes have a value v > vgate. From this one we conclude that the velocity is
a�ected by 5− 7% in most of the cases, and 35% and 37% in the case of plates
perpendicular to the �ber direction.

On Figure 5 we plot the isochrones of depolarization on the boundary of the
computational domain. We compare the reference case to the case of inclusions
with the shapes of plates parallel to the �ber directions. We can observe a change
in the shape of the wavefront. The same isochrones plotted on a cut through the
domain are shown in Figure 6, where contours are separated by 2ms. As can be
seen the shape of the wavefront far from the boundary is more a�ected by the
di�usive inclusions than on the boundary of the domain.

Table 2: Various test cases and total depolarization time, TD.
ref Volume fraction from HR-MRI Arti�cial scars

shapes - sticks (‖) plates (‖) plates (⊥) cubes cubes

σd [Sm
−1] - 0.02 0.3 0.02 0.3 0.02 0.3 0.02 0.15 0.3 0.02 0.3

TD [ms] 32.66 33.02 31.75 32.26 30.99 44.89 44.07 34.31 32.49 33.3 34.91 34

Fig. 5: Depolarization isochrones. From left to right, reference case and parallel
plates, σd = 0.02Sm−1. Time between consecutive isochrones is 2.5ms.
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Fig. 6: Depolarization isochrones. From left to right: reference case, parallel plates
and perpendicular plates, σd = 0.02Sm−1. Time between consecutive isochrones
is 2ms.

4 Conclusions and Discussion

In some pathological cases the microscopic structure of the cardiac tissue is
a�ected and there is an increase in collagen, fatty or �brous tissue. These mi-
croscopic changes a�ect the propagation of electrical signals through the heart
walls. In models, these changes are usually accounted for through the tuning of
model parameters in an ad hoc way.

We have presented a modi�ed bidomain model that has been derived in a
rigorous way from the microscopic model of heterogeneous tissue. The modelling
assumption is that the �brous in�ltrations are electrically passive, and are or-
ganized in a locally periodic way. Then, using the homogenisation technique the
modi�ed bidomain model has been derived, where the di�usive inclusions give
rise to modi�ed conductivity tensors in the bidomain model. We obtain a direct
relation between the modi�ed conductivity tensors and the local size and shape
of the di�usive inclusions.

Further, we described a framework to obtain image based distribution of the
parameters for the modi�ed bidomain model. We worked on high resolution MRI
of the rat heart. Using thresholding we detected the di�usive inclusions in the
images and determined their local volume fractions. We used several test cases
for the shapes of the inclusions, and computed the modi�ed conductivity tensors
for each test case, based on the local volume fractions of the di�usive inclusions.
Finally, we ran simulations for all test cases and compared the results to the
reference case, without di�usive inclusions.

The results are interesting as we could observe changes in the velocity of
propagation, from 5% in some test cases to 37% in others. The largest impact
on the velocity and shape of the depolarization wavefront occurred for di�usive
inclusions perpendicular to the �ber directions. This is in agreement with previ-
ous 2D test cases in [6], where it has been observed that the principal direction of
propagation might change depending on the shape and the large volume fraction
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of di�usive inclusions.
Since we do not have an a priori knowledge on the actual shapes of the dif-

fusive inclusions, we have tested several simple geometries. To our knowledge,
there has not been any studies performed that would give us a more precise idea
on the shape of passive inclusions in the cardiac tissue.

In this paper we aimed to demonstrate the possibility to rigorously determine
model parameters form HR-MRI of the rat heart with a pathological heteroge-
neous structure. It has a great deal of possible applications to �brotic disease,
ischemic heart disease, infarct scars etc.
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