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Introduction

The standard macroscopic model for the electrophysiology of the heart is the bidomain model [START_REF] Keener | Mathematical physiology[END_REF]. This model is an anisotropic three-dimensional cable equation, that represents the averaged electric behavior of the myocardium. The electrical conductivity tensors for the intracellular and extracellular spaces are anisotropic, with the electrical conduction being the fastest in the ber direction.

In the standard bidomain model the anisotropy ratio in the intracellular space is about 10:1, while in the extracellular space about 2:1.

The bidomain model assumes the existence of uniformly spread myocytes, organized into a dense network [START_REF] Neu | Homogenization of syncytial tissues[END_REF], [START_REF] Pennacchio | Multiscale modeling for the bioelectric activity of the heart[END_REF]. It is a reasonable assumption for describing the propagation of the action potential in healthy tissues. In pathological cases this assumption does not hold, as there are regions with large patches of collagen or brosis. This is observed in ischemic and rheumatic heart disease, inammation, hypertrophy, and infarction [START_REF] Camelliti | Structural and functional characterisation of cardiac broblasts[END_REF]. In the current modeling of such defects, usually the standard models for the healthy tissues are used, with the model parameters tuned in an ad hoc way.

An explanatory model was proposed for more rigorous tuning of the parameters in such situations, in [START_REF] Coudiere | The modied bidomain model with periodic diusive inclusions[END_REF] and [START_REF] Davidovic | Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology[END_REF]. The main extension of this model w.r.t. the standard bidomain model is the existence of relatively large regions of tissue where there are no myocytes, nor other kind of cells, and these regions are assumed to be passive electrical conductors. They are called diusive inclusions. The diusive inclusions may represent electrically passive inltrations in the cardiac tissue like fat, collagen, brosis etc.

In this paper we apply the proposed model to a slab of rat heart. We start from HR-MRI data of a rat heart. We perform the image analysis to obtain a computational domain, to dene the diusive inclusions and to nd the local volume fractions of the diusive inclusions. These are then used in the simulations of the modied bidomain model. Finally, we make a study of how dierent diusive inclusions might aect the shape and the velocity of depolarization waves.

Modied bidomain model for rat heart

In this section we give an overview of the model proposed in [START_REF] Coudiere | The modied bidomain model with periodic diusive inclusions[END_REF] and [START_REF] Davidovic | Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology[END_REF]. Full derivation of the model is out of the scope of this paper, since we want to focus on the application of this model on a real rat heart.

On the microscopic scale, periodic diusive inclusions have been embedded

into the healthy cardiac tissue, i.e. the bidomain model. In order to observe the eects of these inclusions on the macroscopic scale a homogenisation technique has been applied. This approach gives rise to the following two sets of problems:

homogenised problem -that is in fact the macroscopic model that we were looking for. In our case it is a modied bidomain model, where the eects of inclusions are mainly contained in the conductivity tensors, as expected. cell problems -these are correction equations, used to calculate the modied conductivity tensors. They are set on the unit cube of R 3 and represent a rescaled typical volume of interest of cardiac tissue.

The general homogenisation approach is presented in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. It is a well known technique in mathematical modelling, and has been used for example in the derivation of the bidomain model [START_REF] Neu | Homogenization of syncytial tissues[END_REF], [START_REF] Pennacchio | Multiscale modeling for the bioelectric activity of the heart[END_REF].

Equations

Homogenized problem. On the microscopic scale it is assumed that diusive inclusions are periodic with a period , such that l L, where L is the tissue scale and l is the cardiac cell scale. Applying the mathematical homogenization technique, assuming that goes to zero, an averaged non-dimensional model has been derived, and is given as follows

(∂ t v + I ion (v, h)) ξ B = N ∇ • σ i * ∇u i , in [0, T ] × Ω, (1) 
(∂ t v + I ion (v, h)) ξ B = -N ∇ • (σ e * ∇u e ) , in [0, T ] × Ω, (2) 
∂ t h + g(v, h) = 0, in [0, T ] × Ω, (3) 
where u i and u e are the intracellular and extracellular potentials, v = u i -u e is the transmembrane voltage, I ion is the transmembrane current that is a function of v and h, a state variable, ξ B is the local volume fraction of the healthy tissue, N is the adimensionalisation parameter that depends on time and space scales and physical properties of the cell as given in [START_REF] Rioux | A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology[END_REF], and σ i * and σ e * are the modied conductivity tensors.

Cell problems. The eective intracellular and extracellular conductivity tensors σ * i and σ * e are obtained by solving the set of so-called cell problems that are dened on the unit cell space,

Y = [0, 1] × [0, 1] × [0, 1].
The unit cell is in fact the rescaled periodic cell of tissue, where one can identify the healthy tissue, Y B , and the diusive inclusion, Y D , see Figure 1. Note that Y represents a microscopic piece of tissue (of size ), and the tissue is considered to be locally periodic. On a large scale the shape and size of the diusive inclusions may vary, as illustrated in the following study. On the unit cell we dene the Y -periodic functions w j and w i j , j = 1, 2, 3, as solutions to the cell problems

∇ • (σ i ∇w i j ) = 0, in Y B , σ i (∇w i j + e j ) • n = 0, on Γ, (4) 
∇ • (σ∇w j ) = 0, in Y, (σ e -σ d )(∇w j + e j ) • n = 0, on Γ, (5) 
where σ i and σ e are the intracellular and extracellular conductivity tensors used in the healthy tissue, i.e. in the standard bidomain model, and σ d is the conductivity assumed inside of the diusive inclusion, n is an outer normal to the boundary Γ and e j , j = 1, 2, 3, are the unit vectors of the standard basis. The conductivity tensor σ in ( 5) is dened as σ = σ e , in Y B , and

σ = σ d , in Y D .
The periodic functions w i j and w j are then used to dene the eective conductivity tensors as:

σ i * kj =σ i,kj ξ B + σ i,k1 Y B ∂ y1 w i j dy + σ i,k2 Y B ∂ y2 w i j dy + σ i,k3 Y B ∂ y3 w i j dy , (6) 
σ e * kj = Y σ kj dy + Y σ k1 ∂ y1 w j dy + Y σ k2 ∂ y2 w j dy + Y σ k3 ∂ y3 w j dy , (7) 
for j, k = 1, 2, 3, and

ξ B = |Y B |.
As one may notice, σ i * and σ e * depend not only on the volume fraction of the diusive inclusion, but on their shape as well.

Ionic model for the rat heart. A reference ionic model that corresponds to the action potential (AP) of the rat heart is given in [START_REF] Pandit | A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes[END_REF]. In our simulations we use the Mitchell Schaeer (MS) model [START_REF] Mitchell | A two-current model for the dynamics of cardiac membrane[END_REF], tted to the reference ionic model for the rat heart,

I ion (v, h) = 1 τ in hv 2 (v -1) + 1 τ out v, (8) 
g(v, h) = 1 τopen (1 -v), for v < v gate , - 1 
τ close v, for v ≥ v gate , (9) 
where I ion , g, v and h have the same meaning as before, and τ in , τ out , τ open , τ close , and v gate are the model parameters. The former four are normally given in units of time and are related to the duration of AP phases: depolarisation, repolarisation, plateau phase and the total AP duration. The parameter v gate is related to the threshold value of transmembrane voltage when the AP in cardiac cell is triggered.

The original MS model is given so that the transmembrane voltage, v, is non-dimensional and is scaled to [0, 1]. Here we went a step further and used the approach given in [START_REF] Rioux | A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology[END_REF] to work with a fully non-dimensional model, using the time scale T = 10 -3 s and the length scale L = 10 -3 m. We have used the algorithm given in [START_REF] Ngoma | Parameter Identication for a Nondierentiable Ionic Model Used in Cardiac Electrophysiology[END_REF], that enables us to automatically determine new parameters of the MS model, given in Table 1. Note that in the non-dimensional model the conductivities are also scaled with the parameter σ = 0.1Sm -1 , and the non-dimensional values for the anisotropic tensors σ i and σ e are given in Table 1.

The MS model is chosen for its mathematical simplicity and easy numerical implementation. It has been shown that it is convenient as well for patientspecic modeling in [START_REF] Relan | Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing[END_REF].

1: Non-dimensional bidomain model parameters of the rat heart, as in [START_REF] Rioux | A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology[END_REF]. 
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Computing eective conductivities

To compute the eective conductivities σ i * and σ e * , rst we have to solve the equations ( 4)-( 5) on the unit cell Y . Hence, we need values for the conductivities σ i , σ e and σ d . The values for the anisotropic tensors σ i and σ e corresponding to the non-dimensional model are given in Table 1. We assume that the bers are aligned with the x-axis, so σ i and σ e are diagonal matrices. In that sense, we have σ i,11 = σ i,l and σ i,22 = σ i,33 = σ i,t , with non-diagonal terms being equal to zero. Similarly, σ e,11 = σ e,l and σ e,22 = σ e,33 = σ e,t , with non-diagonal terms being equal to zero. The conductivity tensor σ d is scaled with the same parameter σ = 0.1Sm -1 . We chose to test isotropic values σ d = 0.2, 1.5 and 3.0, where the former one corresponds to the conductivity of fatty tissue and the latter to isotropic extracellular space. Several shapes of the diusive inclusions have been tested, as shown in the Figure 2.

The cell problems were solved using the nite element approach and FreeFem++ 1 .

To illustrate results we plot the conductivity tensors and the anisotropy ratios for one case (see Figure 3). In this case we obtain diagonal conductivity tensors with σ i * 22 = σ i * 33 and σ e * 22 = σ e * 33 . We observe changes in the anisotropy ratios for both intra and extra-cellular conductivities. It is consistent with [START_REF] Davidovic | Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology[END_REF] where the shape of diusive inclusions induces signicant changes in anisotropy ratios.

Additionally to that, the main direction of propagation might be changed as well. This implies that in certain situations, depending on the tissue structure, one needs to know more than just the ber direction to recover the correct wavefront of depolarization.

3 Application to a slab of rat heart 3.1 Data on the rat heart HR-MRI. Data were provided by the IHU-Liryc, Bordeaux. The MR Imaging has been performed on the heart of a male Wistar rat. After the proper preparation of the heart, the heart was perfused with MRI contrast agent and xative, and then stored in contrast/xative solution until imaging. The heart was imaged using a T1 weighted FLASH (Fast Low Angle SHot) MRI sequence in a Bruker (Ettlingen, Germany) 9.4T spectroscope with 20 averages and echo time (TE) = 7.9ms, repetition time (TR) = 50ms, and ip angle 40 degrees, at a resolution of 50 × 50 × 50µm, a matrix size of 256 × 256 × 512 for a eld of view of 12.8 × 12.8 × 25.6mm. For further details see [START_REF] Gilbert | Visualization and quantication of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI[END_REF]. Fig. 2: Test cases for the unit cells in 3D. The shapes of the inclusions are: sticks aligned with ber direction (here x-axis), plates parallel to bers, plates perpendicular to bers, and nearly cubic superellipsoids. For each case we used superellipsoids, with dierent semi-axes. Fig. 3: Eective conductivities and anisotropy ratios for inclusions in the shape of cubes (see Figure 2 at the bottom right), ranging in volume fraction from 0 to 98%, with bers aligned with the x-axis. ber directions. The ber structure in the cardiac tissue leads to anisotropy in the bidomain model. For the simulation of both bidomain and modied model it is important to assess the ber orientation in the tissue. The diusion tensor (DT) MRI technique is used for this purpose. The data from DT-MRI are given on an image that is four times coarser than the original HR-MRI data, i.e. 64 × 64 × 128 for the same view eld. This results in a spacing between voxels that is four times larger, i.e. 0.2 × 0.2 × 0.2mm.

Image processing

Segmentation. The semi-manual segmentation of the images has been performed with the software Seg3D2 . The median lter and thresholding on the gray scale were used to dene roughly the boundaries of cardiac tissue. Following thresholding, bad pixels have been xed manually, layer by layer. Cropping tools have been used to dene the computational domain, i.e. a part of the leftventricular wall. This is done solely for performance reasons, in order to reduce the computing cost of the simulations.

Diusive inclusion detection and local volume fraction. Using the software Seg3D we were able to dene the diusive inclusions in the computational domain. For this we used only a threshold on gray scale, without additional processing, see Figure 4. The mask of computational domain with agged subdomain of diusive inclusions has been exported in .mat le, and Matlab was used for the computation of the local volume fraction of the inclusions. Around each voxel, X, we dene a 5 × 5 × 5 window, and count the number n of voxels inside of this window that belong to the diusive inclusions, n ∈ [0, 125]. The local volume fraction of voxel X is then given as ξ D (X) = n 125 .

Mesh generation. For the mesh generation we used the software SCIRun3 , which integrates the call function to tetgen. We have set a minimum radius-edge ratio and imposed a maximum volume constraint on tetrahedra. The result is a ne mesh, that has 351706 nodes and 1924747 tetrahedra, see Figure 4.

Mapping data on the mesh. To be able to use the imaging data in our simulations we have to map them on the mesh nodes. For this purpose, we use the software SCIRun. Both, local volume fraction ξ D and the ber orientations were mapped on nodes of the mesh. 

Simulations

Settings. Here we set the parameters for the bidomain and modied model ( 1)-( 3). The computational mesh and ξ B = 1 -ξ D are set. The non-dimensional parameter N is set to 0.0125, as in the Table 1. The eective conductivity tensors, σ * i and σ * e , have been computed for several test cases, as in Figure 2, with the ber direction assumed to be aligned with the x-axis and for the range of diusive inclusions volume fractions ξ D ∈ (0, 1). Now, for each node in the mesh we assign one of these values depending on the corresponding local value of ξ D , obtained from the image processing. Finally, we recompute the eective conductivities for each node based on the ber direction, obtained from DT-MRI images.

We use linear nite elements as implemented in FreeFem++ to solve the the bidomain and modied model ( 1)- [START_REF] Camelliti | Structural and functional characterisation of cardiac broblasts[END_REF]. For the time discretization we use the semi-explicit SBDF2 numerical scheme, as proposed in [START_REF] Ethier | Semi-implicit time-discretization schemes for the bidomain model[END_REF], with the time step dt = 0.05ms. The resulting linear system was solved using the conjugate gradient method, to avoid excessive memory usage.

We run simulations for several test cases as given in Table 2. The reference case consists in solving the standard bidomain model without any diusive inclusions. In the table we report the total depolarization duration of the computational domain, T D , calculated as the rst time t > 0 for which all nodes have a value v > v gate . From this one we conclude that the velocity is aected by 5 -7% in most of the cases, and 35% and 37% in the case of plates perpendicular to the ber direction.

On Figure 5 we plot the isochrones of depolarization on the boundary of the computational domain. We compare the reference case to the case of inclusions with the shapes of plates parallel to the ber directions. We can observe a change in the shape of the wavefront. The same isochrones plotted on a cut through the domain are shown in Figure 6, where contours are separated by 2ms. As can be seen the shape of the wavefront far from the boundary is more aected by the diusive inclusions than on the boundary of the domain. 

Conclusions and Discussion

In some pathological cases the microscopic structure of the cardiac tissue is aected and there is an increase in collagen, fatty or brous tissue. These microscopic changes aect the propagation of electrical signals through the heart walls. In models, these changes are usually accounted for through the tuning of model parameters in an ad hoc way.

We have presented a modied bidomain model that has been derived in a rigorous way from the microscopic model of heterogeneous tissue. The modelling assumption is that the brous inltrations are electrically passive, and are organized in a locally periodic way. Then, using the homogenisation technique the modied bidomain model has been derived, where the diusive inclusions give rise to modied conductivity tensors in the bidomain model. We obtain a direct relation between the modied conductivity tensors and the local size and shape of the diusive inclusions.

Further, we described a framework to obtain image based distribution of the parameters for the modied bidomain model. We worked on high resolution MRI of the rat heart. Using thresholding we detected the diusive inclusions in the images and determined their local volume fractions. We used several test cases for the shapes of the inclusions, and computed the modied conductivity tensors for each test case, based on the local volume fractions of the diusive inclusions. Finally, we ran simulations for all test cases and compared the results to the reference case, without diusive inclusions.

The results are interesting as we could observe changes in the velocity of propagation, from 5% in some test cases to 37% in others. The largest impact on the velocity and shape of the depolarization wavefront occurred for diusive inclusions perpendicular to the ber directions. This is in agreement with previous 2D test cases in [START_REF] Davidovic | Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology[END_REF], where it has been observed that the principal direction of propagation might change depending on the shape and the large volume fraction diusive inclusions. Since we do not have an a priori knowledge on the actual shapes of the diffusive inclusions, we have tested several simple geometries. To our knowledge, there has not been any studies performed that would give us a more precise idea on the shape of passive inclusions in the cardiac tissue.

In this paper we aimed to demonstrate the possibility to rigorously determine model parameters form HR-MRI of the rat heart with a pathological heterogeneous structure. It has a great deal of possible applications to brotic disease, ischemic heart disease, infarct scars etc.
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 4 Fig. 4: Up left: segmentation from the HR-MRI data and diusive inclusions detection. Bottom: ne mesh of the selected domain. Up right: details of the mesh.
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 5 Fig. 5: Depolarization isochrones. From left to right, reference case and parallel plates, σ d = 0.02Sm -1 . Time between consecutive isochrones is 2.5ms.
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 6 Fig. 6: Depolarization isochrones. From left to right: reference case, parallel plates and perpendicular plates, σ d = 0.02Sm -1 . Time between consecutive isochrones is 2ms.

Table 2 :

 2 Various test cases and total depolarization time, T D . ] -0.02 0.3 0.02 0.3 0.02 0.3 0.02 0.15 0.3 0.02 0.3 TD [ms] 32.66 33.02 31.75 32.26 30.99 44.89 44.07 34.31 32.49 33.3 34.91 34

ref Volume fraction from HR-MRI Articial scars shapes -sticks ( ) plates ( ) plates (⊥) cubes cubes σ d [Sm -1
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