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Abstract—Thanks to their excellent performances on typical
artificial intelligence problems, deep neural networks have drawn
a lot of interest lately. However, this comes at the cost of large
computational needs and high power consumption. Benefiting
from high precision at acceptable hardware cost on these difficult
problems is a challenge. To address it, we advocate the use
of ternary neural networks (TNN) that, when properly trained,
can reach results close to the state of the art using floating-
point arithmetic. We present a highly versatile FPGA friendly
architecture for TNN in which we can vary both the number of
bits of the input data and the level of parallelism at synthesis time,
allowing to trade throughput for hardware resources and power
consumption. To demonstrate the efficiency of our proposal, we
implement high-complexity convolutional neural networks on the
Xilinx Virtex-7 VC709 FPGA board. While reaching a better
accuracy than comparable designs, we can target either high
throughput or low power. We measure a throughput up to
27000 fps at ~7W or up to 8.36 TMAC/s at ~13 W.

I. INTRODUCTION

Artificial neural networks (ANN) have had a long and
complicated history [1], but there is now a consensus that
networks with many layers and many neurons per layer
are achieving the best results on a broad range of artificial
intelligence tasks. For the record, an ANN needs to be trained
on many instances of a problem to determine synaptic weights
(a.k.a learning) that are later used to solve a new instance
of the same problem (a process called inference). Thanks to
advances in integration technology and computer architecture,
full software solutions to both learning and inference can be
done at high performance on general purpose processors and
graphical processing units. However, solving problems like
clustering or classification has a lot of interest on systems
ranging from the servers in datacenters to battery-powered
devices, two kinds of systems in which power efficiency is key.

To achieve better results on ever increasing data sets, ANN
have grown wider and deeper, leading to a large number of
neurons. As a consequence a lot of floating-point multiplications
are needed to realize the multiply-accumulate operations
that compute the activations of the neurons. For instance,
the implementation of ConvNet [2], a relatively classical
convolutional neural network for synthetic vision, requires
435 million multiply-accumulate for VGA size images when
using a 7 x 7 convolution kernel. Our goal in this paper is to
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demonstrate that it is possible to design deep neural networks
(DNN) architectures that feature high throughput and low power
while producing inference results that are close to the state of
the art.

There are two strategies to lower power consumption: limit
the amount of data to work on by using application-specific
preprocessing and/or perform the computations with a low
number of bits or a small set of values [3]. The extreme
solution is to binarize all synaptic weights and activations,
which eliminates multiplications once and for all, as proposed
by [4], [5]. The loss of precision of these approaches is however
quite high.

In this paper, we propose an FPGA architecture for ternary
neural networks as a trade-off between inference accuracy,
hardware resource utilization and power consumption.

II. WHY TERNARY NEURAL NETWORKS?

There have been many recent works aiming at better utilizing
the hardware resources to implement DNN. We can classify
these works into two main categories.

The first one still uses floating-point arithmetic, but limits the
number of possible values to a subset. Among representative
works, [3] presents an ASIC architecture where they aim at
limiting greatly the number and size of external accesses to
memory. To that end, they prune the redundant connections and
share weights by adequate training. As a consequence their de-
sign works on sparse matrices and uses small indexes to access
arrays of weights. The approach proposed in [6] is somewhat
different: at training time, is uses only specific combinations of
activation and weight values. The pre-computed multiplication
results are stored in lookup tables. They use ternary content
addressable memory (TCAM) to ensure a fast and low-power
search, but are therefore limited to ASIC.

The second category, the one we also follow, limits the
number of bits for weight and/or activation values. The approach
is not new, and for example [7] is an early paper studying the
quality of the result as a function of the number of bit to
code the weights. Using normal arithmetic, it is today admitted
that using 6 or 7 bits does not significantly degrade the result
of inference [8]. However, more extreme solutions have been
advocated lately: binary [8], [9] (BNN) or ternary [10], [11]
(TNN) encodings of the weights. Based on these training-
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Fig. 1: CNN architecture overview

focused works, several hardware implementations have been
proposed.

We first quickly review the most recent works focusing
on binary weights. Andri ef al. [12] implement a systolic
array which processes each layer sequentially. Their ASIC
implementation of BNN achieves state of the art area and
energy efficiency, but because of the use of binary weights
and activations, their error rate in applications is still fairly
high. Umuroglu et al. [13] focus on high throughput FPGA
implementations, and achieve highest reported throughput on
a single FPGA chip. But again, binary trained networks are
limited in use by the accuracy they achieve.

The very first work on TNN that we found is [14], a relatively
imprecise short abstract from 1988 in which the authors study
the adaptation of learning algorithms for ternary weights. Even
though interesting from an historical perspective, the paper is
quite lacunary. The first VLSI implementation of a TNN is
reported in [15]. It also presents a training approach. However,
the results are very difficult to interpret and to compare with
the current technologies and state of the art. Since then,
we have not found any detailed description of a hardware
architecture for TNN while, according to [11], TNN can be
fairly accurate when trained with the appropriate technique.
To the best of our knowledge, [11] is the only recent work
that makes reference to hardware implementations of TNN,
FPGA and ASIC, but a) there is no detail whatsoever regarding
the hardware architecture and its implementation, and b) they
use ternary data obtained after a preprocessing step as primary
input.

Given the accuracy achievable with TNN, we believe they
are a sweet-spot between resource usage and precision, and
that they have a place in applications for which power vs.
accuracy trade-offs have to be made, for instance autonomous
embedded devices or large-scale datacenters. The rest of this

paper is dedicated to the presentation and evaluation of our
TNN architecture and its FPGA implementation.

III. PROPOSED ARCHITECTURE

We now detail our TNN architecture. We first give an
overview of the architecture in terms of functional blocks,
and then we describe each block thoroughly. We also detail
how parallelism and area efficiency can be achieved by a proper
pipeline design.

A. Overview

The large-scale ternary CNN pipeline VGG-like introduced
in [8] is used as example throughout this paper. The architecture
of our CNN is the following:

(2 X nc‘/g),xg) — MPQXQ — (2 X 2’/’LC‘/3><3) — MP2><2—
(2 x 4nCViy3) — MPays — (2 x 8nFC) — 100FC (1)

where mC'V3, 3 represents a Convolution Layer (C'VL) with
m neurons, window size 3 x 3, step 1 and one pixel of padding
at zero, (2 x mCV3x3) is a pair of mCV3x3 layers in series,
MPy 5 is max-pooling with window size 2 x 2, step 2 and no
padding, and mF'C is a fully-connected neuron layer with m
neurons.

Figure 1 depicts how the VGG-like pipeline is decomposed
into layers connected in the form of a pipeline. All layers
are independent from each other: they have their own state
machine and image data is streamed through FIFO interfaces.
For each layer type, we design a hardware block (hand-written
VHDL) that is reused in the pipeline with different parameters.
See the top of Figure 1 for a simplified schematic view of
the implementation of each block type. Four main layer types
are used: Sliding Window Layer (SWL), Neuron Layer (NL),
Ternarization Layer (7'L) and Max Pooling Layer (MPL). The
TL exists because of the constraints introduced by the ternary-
only activations: the result of a neuron is a scalar and it must
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be ternarized before being sent as input of the next NL. The
pipeline begins with two CVL. A CVL is comprised of an
SWL, an NL and a TL. These two C'VL are followed by an
MPL, two more C'VL, another MPL, again two C'VL and an
MPL. It ends with three fully-connected NL.

Throughout this paper, we use two networks with different di-
mensions, NN-64 and NN-128, respectively with n = {64, 128}.
For instance according to Equation 1, the fifth NL has 2n
neurons, hence the second SWL frame size has dimension
z = 128 for NN-64 and z = 256 for NN-128. Our network
NN-128 actually has same architecture than the network used
in [8] except we increased the number of output neurons from
10 to 100 to enable using datasets with up to 100 classes.

Data channels between two blocks are implemented as small
FIFOs (not shown for clarity) to compensate for the pipeline
depth of the blocks and simplify their control flow. In our
baseline implementation, each of these FIFOs transfers at most
one activation value per clock cycle. This directly dictates the
design throughput, in frames per second (fps). To increase
throughput, parallelism is introduced in the layers that are
responsible for the bottleneck. The corresponding FIFOs are
widened and more activation values are transferred per clock
cycle. How parallelism is implemented depends on the layer
type and is explained in the following sections.

B. Sliding Window Layer

The Sliding Window Layer (SWL) is used for feeding either
an NL or an MPL. To do so, it is highly configurable, partly
at synthesis time and partly at runtime. Basically, the SWL
acts as a buffer that stores enough data for the next layer to
process in the order required by the following layer. To save
memory resources, a SWL stores only a fraction of a frame and
works as a ping-pong buffer. Both input and output sides can
be parallelized to increase throughput. The output parallelism
wanted defines the number of RAM blocks that are used to
read data in parallel.

Figure 2 gives an example for an SWL configured with
dimensions 20 x 8 x 8 and window dimensions 3 x 3. Here,
output parallelism is P, = 4 using RAM1 to RAM4 and input
parallelism is P; = 2. Only 2 clock cycles are necessary to
read an entire z-dimension of the window. Window size and
step within all three directions can be set at run time. Input
data is written in the following fashion: z, then z and finally
y dimension. One should note that a P; up to 4 could have
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Fig. 4: Parallelism in Neuron Layer

been achieved thanks to the 4 RAM blocks that can be written
at the same cycle.

C. Neuron Layer

One Neuron Layer (NL) is composed of neurons and a
memory holding the ternary weights. At each clock cycle, one
or more input activation values are broadcast to all neurons.
Simultaneously, the weights are read from the memory and
distributed to the appropriate neurons. All neurons then perform
one multiply-accumulate operation on an internal register.

To extract the values out of the neuron accumulators as
well as allow a compact placement in the FPGA, neurons are
interconnected and form a scan chain, as proposed in [16].
This scan chain has its own registers, which enables to copy
accumulator values and to extract them while accumulators
perform the computations on the next frame data.

The architectural interest of using ternary values is illustrated
Figure 3, which details the internal structure of the proposed
neuron. The ternary multiplier requires two LUT4 which fit
into one unique LUT6 on a Xilinx FPGA. Hence the neuron
mainly consists of its two registers and associated ALUs and
multiplexers. The ALUs and multiplexers are small enough so
that they fit in the same slice with their associated registers.
The neurons may use more than one slice in height, depending
on the accumulator width that is required in the layer. For
resource efficiency, control signals are generated by a finite
state machine (FSM) that is shared among all the neurons of a
layer, in an SIMD fashion. As an example in the FPGA used
in our experiments (433200 LUT6 and 3600 DSP cores), it is
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Fig. 5: Parallelism in Max Pooling Layer

possible to implement 5 to 6x more 12-bit ternary neurons
(19 LUT6 each) than neurons based on DSP cores. Weight
sparsity is intentionally not exploited. Indeed, compared to our
very opimized FSM and neurons, the amount of per-neuron
control needed to handle sparsity would come at an excessive
cost in area and power.

Parallelism levels for input and output of the NL (P; and P,)
are independent. Figure 4 illustrates how parallelism is applied
with P, = 4 and P, = 2. On the input side, each neuron
receives P; weight and activation values, which are added up
with a small adder tree before the accumulator. On the output
side, all neurons are separated into P, groups according to

their index modulo P,, each group having its own scan chain.

The weight memories are implemented either using RAM
blocks or using the LUTRAM functionality of certain LUTs of
the FPGA. For each neuron layer, the memory implementation
is selected according to an arbitrary heuristic about the number
of weights per neuron (W): LUTRAM is used when W < 64
or when W < 128 and P; > 4 or when W < 256 and P; > 16,
otherwise RAM blocks are used. This balances well the usage
of LUTs for memory and for the neuron logic, while reserving
RAM blocks for the deepest memories of the network.

D. Ternarization Layer

The Ternarization Layer (7T'L) is used to convert to ternary
the scalar values produced by an NL. It acts as activation
function as is often used in the literature. It is composed of
one memory storing threshold values, two comparators and a
multiplexer. There are two threshold values for each neuron
of the previous neuron layer. Ternarization is performed the
following way: if the result of a neuron is less than the first
threshold, then the output is —1; if it is higher than the second
threshold then the output is +1; and between the two thresholds
the output is 0. Specifications of this step are closely linked to
our training methodology, which is described in [11].

Parallelism level P is obtained by instantiating the ternariza-
tion block P times while sharing the same FSM. Instance index
1 handles data index ¢ modulo P. Input and output parallelism
levels of this layer are identical. In particular, this parallelism
level is identical to the output parallelism of the previous NL.

E. Max Pooling Layer

The Max Pooling Layer (MPL) is used to find the maximum
activation within a window. The window values are sent by
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an SWL. Like other layers, both the input and the output can
be parallelized. Figure 5 depicts an MPL with P; = 4 and
an P, = 2. This parallelism configuration is for illustration
only. Actually, is not particularly well suited to the typical
case of a 2 x 2 sliding window feeding the MPL (see Figure 1
for the SWL configuration). There are 4 data items (2 x 2
window) at each 2-bit input (0 mod 4 to 3 mod 4) and the
number of cycles to empty the scan chain is 2 thanks to the
output parallelism. Hence in this configuration, the scan chain
is stalled half of the time. This output parallelism value is best
used when the P; reaches 8.

IV. EXPERIMENTS AND RESULTS

In this section, we first describe our experimental setup. Then
we present some characteristics of our TNN namely area vs.
throughput and power consumption.

A. Experimental Setup

Experiments are performed on a VC709 FPGA board directly
plugged in a PCI-Express slot of a workstation. This board is
equipped with the Xilinx FPGA XC7VX690T. We highlight
that the on-board 8 GB RAM is unused because only on-chip
memory is used in our designs.



TABLE I: Neural network parallelization

NN  Par. Parallelism per layer (in/out) FPGA usage Throughput (fps)
size level | NL1 NL2 MPL1 NL3 NL4 MPL2 NL5 NL6 MPL3 LUT (logic) LUTRAM BRAM 18k Theory  Measure
1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 67300 (15.5%) 606 (0.34%) 667 (22.7%) 4239 4225
2 1/1 2/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 67523 (15.6%) 786 (0.45%) 659 (22.4%) 847.7 845.1
4 1/1 471 1/1 171 2/1 1/1 1/1 1/1 1/1 68830 (15.9%) 794 (0.46%) 669 (22.8%) 1695.4 1690.3
64 8 1/1 8/1 1/1 2/1 471 1/1 1/1 2/1 1/1 74940 (17.3%) 3138 (1.80%) 661 (22.5%) 3390.8 3381.2
16 1/72 16/2 2/1 4/1 8/1 1/1 2/1 4/1 1/1 83789 (19.3%) 5118 (2.94%) 725 (24.7%) 6781.7 6763.3
32 2/4 32/4 4/1 8/2 16/2 21/1 4/1 8/1 1/1 108474 (25.0%) 22110 (12.7%) 669 (22.8%) | 13563.4 13525.3
64 3/8 64/8 8/2 16/4 32/4 4/1 8/2 16/2 2/1 154929 (35.8%) 59762 (34.3%) 679 (23.1%) | 27126.7 27042.9
1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 113179 (26.1%) 1046 (0.60%) 2276 (77.4%) 211.9 211.3
2 1/1 2/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 113650 (26.2%) 1050 (0.60%) 2276 (77.4%) 423.9 422.6
4 1/1 471 1/1 171 2/1 1/1 1/1 1/1 1/1 115778 (26.7%) 1058 (0.61%) 2276 (77.4%) 847.7 8453
128 8 1/1 8/1 1/1 2/1 471 1/1 1/1 2/1 1/1 128499 (29.7%) 1434 (0.82%) 2321 (78.9%) 1695.4 1690.8
16 1/2 16/2 2/1 4/1 8/1 1/1 2/1 4/1 1/1 144983 (33.4%) 9362 (5.37%) 2264 (77.0%) | 3390.8 3382.1
32 1/74 32/4 4/1 8/2 16/2 2/1 4/1 8/1 1/1 191192 (44.1%) 42582 (24.4%) 2234 (76.0%) | 6781.7 6764.0
64 | 2/8 64/8 8/2 16/4 32/4 41/1 8/2 16/2 2/1 275042 (63.4%) 84810 (48.6%) 2187 (74.4%) | 13563.4 13525.8

The RIFFA framework [17] is used as PCI-Express com-
munication interface with the computer. All designs run at
250 MHz clock frequency, which is the frequency generated by
the embedded PCI-Express endpoint. Power measurements are
performed with on-board PMBus, an I2C bus dedicated to that
purpose. We added a custom and independent UART-to-12C
bridge to our designs to read power values without interfering
with PCI-Express data transfers.

The networks used are NN-64 and NN-128. Experiments
are conducted with well-known datasets CIFAR10 [18], GT-
SRB [19] and SVHN [20]. In all datasets, all images have a
size of 32 x 32 pixels on 3 color channels. As also performed
in the related works, we pre-process the images before sending
them to the FPGA: Global Contrast Normalization followed
by LeCun LCN is used for datasets GTSRB and SVHN, and
normalization and ZCA whitening is used for dataset CIFAR10.
We use 8-bit quantization per pixel and per color channel.

Demonstration materials (bitstreams and communication
software) are available at the team webpage!. It allows to
reproduce the paper results.

B. Area and throughput

In our base design, all layers of the network receive and
transmit at most one ternary value per clock cycle. In particular,
inside neuron layers, all neurons perform in parallel one
multiply-accumulate operation per clock cycle. To increase the
design throughput (in frames/second), we parallelize the layers
that are the bottleneck of the architecture. Table I presents the
parallelism levels applied to neurons and to max pooling layers.
Corresponding parallelism levels on ternarization and window
layers result directly. Layers are named NL1 to NL9 for Neuron
Layers and MPL1 to MPL3 for Max Pooling Layers. The unit
used is the number of values transferred per clock cycle in the
input and output ports of these layers. The input and output of
the pipeline are not bottlenecks and are not parallelized.

We highlight that gaining a 2x speedup does not necessarily
require 2x more hardware resources. This is illustrated in
Figures 6 and 7 (resources not on the same scale for clarity).
Indeed, all layers have different execution times, and only the

Uhttp://tima.imag.fr/sls/research-projects/tnn-fpga-implementation/

most demanding layers are parallelized, which may be only
a small fraction of the design resources. Similarly, inside the
neurons themselves, only the size of the adder tree increases,
not the entire neuron.

Without parallelism, all weight memory banks are imple-
mented within dedicated block RAM (BRAM) resources of
the FPGA. Adding parallelism increases the amount of data
that these memory banks have to produce at each clock cycle.
Even though the storage needs (in bits) does not increase, the
BRAM requirements increase to implement the required output
width. To avoid BRAM shortage, the LUTRAM resources are
used when parallelism is high enough and frame size is low
enough in the neuron layers.

There are two limits to the achievable parallelism with our
design. The first is due to hardware resources: NN-128 with
parallelism level 128 does not fit in our FPGA. The second
is due to our parallelization technique for the SWLs: the
maximum parallelism level achievable is the dimension of
the image in the z dimension, which is directly related to the
number of neurons. This is why with our current design, the
maximum parallelism level for NN-64 is 64. Otherwise, the
available hardware resources would allow parallelism level 128,
with corresponding throughput 54k fps.

C. Power consumption

We measure the power consumption using the core 1 V
power supply rail of the FPGA, since our designs fit entirely
inside the FPGA. To confirm that this way of doing the measure
is correct, we also monitored the global board power (all supply
rails measured through PMBus) and observed that it is higher
than the core 1 V rail by a rather constant 4.5 W for all
designs.

Results are presented in Figure 8. The figures related to
NN-64 and NN-128 form two very distinct groups. For each
of the two NN sizes, the power consumption is approximately
a linear function of the design throughput, and varies little
between datasets. This is due to our FPGA implementation not
exploiting dataset sparsity (zero-activations and zero-weights)
to reduce design activity. When neuron weights are packed
inside large RAM banks, it is not possible to inhibit RAM read
for selected positions.



TABLE II: Comparison with related works

Dataset Authors Plat. name ‘ NN Arch. Input quant. Weight quant. oerr ‘ fps Power (W) fps/W ‘ Target
This work NN-64 3 ch, 8 bits 2 bits 1329 | 27043 6.80 3976 VC709
This work NN-128 3 ch, 8 bits 2 bits 10.61 | 13526 13.64 992 VC709
CIFARI0
[13] FINN NN-64 24 bits 1 bit 19.90 | 21900 3.6 6080 ZC706
[21] BCNN NN-128 3 ch, 6 bits 1 bit 1220 | 6218 8.2 758 | xcTvx690t
[22] BNN NN-128 3 ch, 20 bits 1 bit 11.32 168 47 358 | ZedBoard
[11] TNN NN-128 12 ch, 2 bits 2 bits 12.11 | 1695 9.58 178 VC709
This work NN-64 3 ch, 8 bits 2 bits 240 | 27043 7.08 3820 VC709
SVHN This work NN-128 3 ch, 8 bits 2 bits 230 | 13526 13.70 987 VC709
[13] FINN NN-64 24 bits 1 bit 5.10 | 21900 3.6 6080 ZC706
[11] TNN NN-64 12 ch, 2 bits 2 bits 273 | 3390 4.8 709 V€709
GTSRB This work NN-64 3 ch, 8 bits 2 bits 105 | 27043 6.64 4073 V€709
This work NN-128 3 ch, 8 bits 2 bits 0.80 | 13526 12.57 1076 VC709
[11] TNN | NN-128 12 ch, 2 bits 2 bits 098 | 1695 9.58 178 | VC709
14 ‘ ‘ | V. RELATED WORK
NN-128 CIFAR10 . .
12 - A NN-128 SVHN _ Our results are presented in Table II, along with results from
gl — 6 NN-128 GTSRB others FPGA-based works using the same datasets. For each
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Fig. 8: Power versus framerate

For low throughput (less than 4000 fps), the NN-128 power
is roughly 2x the NN-64 power. This was expected because
most of the time only layer NL2 runs while other layers wait,
so the idle power dominates. But as throughput increases, this
difference increases up to 3. Actually for one frame, NN-128
performs 618 million multiply-accumulate operations while
NN-64 performs 155 million, so a difference of 4x instead
of 3x was expected. This is due to our implementation of
parallelism inside neurons: for a given framerate, the neurons
in NN-128 have to be parallelized twice more than in NN-64,
but this impacts only the leaves of the adder tree and not the
accumulator and scan chain.

We extrapolate the idle power as the intersection with the
y-axis, and we obtain around 1.8 W for NN-64 and 4 W for
NN-128. The possible sources are the static power, the clocks
and the IPs related to the PCI-Express interface. According to
the synthesis tool estimations (Vivado 2015.3) for parallelism
level 64, the highest contributors to the idle power are the
clocks (2.2 W and 3.2 W) and the static power (0.5 W and
0.6 W). The power related to PCI-Express can be high (up to
2.8 W) but, assuming that it scales according to the ratio of
the maximum throughput, that communication interface should
account for only 0.3 W. So Vivado values are over-estimated
for NN-64, but rather close for NN-128.

ference may be linked to us using a higher-performance FPGA
technology (Virtex-7 where they use Zynq-7000). Our power
efficiency (throughput per watt) is lower than their by 33 —37%.
Indeed, using ternary weights makes neuron operations a little
more complex than with binary weights, which contributes to
power. However, we are using a higher-performance FPGA
technology and PCI-Express communication interface, and our
FPGA is largely oversized for NN-64. Actually, our design
would fit in their board. The strongest difference is accuracy:
our error rate is only 13.29% for CIFAR10 and 2.40% for
SVHN, where they have 19.9% and 5.1%, respectively. Given
how difficult it usually is to reduce error rate, this shows
superiority of ternary over binary-only weights.

Zhao et al. [22] propose BNN, an FPGA implementation of
NN-128 with binary weights on board ZedBoard. They focus
on accelerating the neural network in a very reduced FPGA,
so the resulting throughput is very low. All weights don’t fit
in the FPGA, so they have to transfer them from the external
on-board DDR memory. Moreover, the FPGA is so small that
the power consumption of the on-chip processor subsystem
dominates. Their accuracy is also notably lower than ours
with a neural network of identical size. Overall, the resulting
efficiency and accuracy is still interesting as an accelerator for
the small on-chip processors, but it is far from related works
who focus on performance per watt and/or accuracy.

Li et al. [21] propose BCNN, an FPGA implementation of
NN-128 with binary weights on FPGA xc7vx690t (same chip
than our board VC709). Their design is not entirely binary:



they use 2-bit weights in the first neuron layer. They use
Vivado HLS to generate their design and their results are the
Vivado-estimated execution times and power consumption. The
communication interface is unknown. Their HLS-generated
design runs at 90 MHz and processes the dataset CIFAR10
at 6218 fps. With our hand-written RTL, our frequency is
higher (250 MHz) and our design is notably faster. But even
if they used our frequency, their throughput would be only
17272 fps which is still much lower than our platform. Their
design is presented as a 7.663 TOP/s accelerator (with multiply
and accumulate counted as different operations). We have
4.19 TMAC/s for NN-64 and 8.36 TMAC/s for NN-128, hence
respectively 8.38 TOP/s and 16.72 TOP/s, an improvement of
respectively 9.4% and 118% over their design.

In [11], Alemdar et al. propose ternary neural networks
similar to our NN-64 and NN-128, but with 12-channel ternary
input. Only a fixed parallelism of 8% is used in their FPGA
version and the power consumption is based on pessimistic
estimations. Our results bring a significant improvement over
their work: our designs are more power-efficient with about
6x better throughput per watt, and error rate is lower.

VI. CONCLUSION

Thanks to their very good performance in solving inference
problems when properly trained, TNN are good candidates
for efficient hardware implementations. In this work, we have
designed a set of blocks that can be stacked and pipelined to
build arbitrarily complex convolutional neural networks making
use of ternary values for weights and/or activations. The ternary
nature of the network leads to significantly better inference
results than binary NN, for an increase in resource usage and
power affordable in many applications. The resulting designs
feature high density, high throughput and low power. With no
impact on accuracy, parallelism levels can be tuned to span a
broad range of power-area-throughput trade-offs.
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