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We investigate analytically, numerically and
experimentally the spectral broadening of pulses that
undergo the formation of dispersive shocks, addressing
in particular pulses in the range of tens of ps generated
via electro-optic modulation of a continuous-wave laser.
We give an analytical estimate of the maximal spectral
extension and show that super-Gaussian waveforms
favor the generation of flat-topped spectra. We also
show that the weak residual background of the
modulator produces undesired spectral ripples.
Spectral measurements confirm our estimates and
agree well with numerical integration of the nonlinear
Schrédinger equation.

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5530) Pulse
propagation and temporal solitons.

Dispersive shock waves (DSWs) or undular bores are expanding
nonlinear wave packets composed of adjacent rapid oscillations
slowly modulated in amplitude and frequency, which have been
investigated in different physical contexts [1-4]. Coherent DSWs
develop in homogeneous or disordered media exhibiting strong
nonlinearity, weak dispersion and negligible dissipation. In such
media the shock waves originates from a wave-breaking process
or “gradient catastrophe” regularized by dispersive effects. In
optical fibers such wave-breaking have been observed long ago in
the normal dispersive regime when self-phase modulation (SPM)
dominates [5-7]. More recently such regime has conveyed a
renewed interest, considerably extending the importance of fiber
DSWs [8-15]. The main signature of DSWs is the appearance of
temporal ondulations near the pulse edges that induce spectral
sidelobes. The deleterious effect of these inherent temporal

oscillations can be avoided in practice with the use of non-breaking
parabolic pulses [16, 17]. However, DSWs can be judiciously
exploited to generate smooth and coherent continuum spectra in
normally dispersive nonlinear fibers [9]. A particularly interesting
application of DSW-induced spectral broadening is the generation
of flat-topped low noise frequency combs obtained by electro-optic
(e-0) intensity modulation of a continuous-wave (cw) laser. The
shape of the spectral envelope of such combs plays a crucial role in
applications such as direct frequency comb spectroscopy [18, 19],
radio-frequency photonics [20, 21] or telecommunications [22].
But because of the limited extinction ratio of high-bandwidth e-o
modulators (typically 30 dB) the pulse train is superimposed on a
residual continuous background. Even a weak background
strongly enhances the extension and the contrast of the temporal
oscillations inherent to the dispersive shock [14, 15, 23].

In this letter, we address the study of DSW-induced spectral
broadening of 50-ps pulses. We evaluate the influence of the pulse
shape and assess the impact of the residual background. We show
that super-Gaussian pulses are best suited to generate smooth and
flat-topped spectra. We propose an analytical estimate of the
maximum spectral extension of the DSW, which mainly depends
on the fiber parameters and input pulse peak power, but depends
only slightly on the shape and duration of the input pulses.
Experimental measurements carried out for different propagation
distances or different input powers quantitatively confirm the
analytical estimate of the pulse spectral extension and are in
excellent agreement with numerical integration of the nonlinear
Schrodinger equation (NLSE).

The propagation of an envelope wave A in an optical fiber
is governed by the NLSE which can be written in
dimensional form as:
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where 7y is the nonlinear coefficient, 8, is the second-order

chromatic dispersion coefficient and a is the linear loss. z is
the propagation distance and t a local time in a frame of
reference which moves at the group velocity. In the NLSE

|A|2 = P is the wave power. We focus our attention here on

the case of pulses generated from a cw laser, intensity
modulated by an electro-optic modulator (EOM). Because
any real EOM has a finite extinction ratio (ER) the pulse
train always contains a cw background or leakage. The
factor ER can be defined as ER = (P+P,)/P, where P and P,
are the pulse peak-power and cw background power of the
modulated light, respectively. The light modulated by a non-
ideal EOM can be seen as the sum of a pulse without cw
component and a leakage light. Following the procedure
described in refs. [24-25] taking into account the finite ER of
the intensity modulator and neglecting loss, Eq. (1)
possesses the following conservation law

d (. J(AED1P-Py)" dt
dz 2 [(JA(z,t)|2-Py) dt

[ 02(|A(z,0)|2—P5d(w)) dw
2 [(1A(z,w)|*=Pod(w))dw

+ B2 )=0. (2)

The two terms of Eq. (2) have a dimension of an inverse
length, and can be considered as a generalization of the
inverse of the standard nonlinear and dispersion lengths
[24]. In practice, for a pulse propagating in the highly
nonlinear regime, only the first integral will be relevant;
conversely in the purely dispersive regime only the second
integral matters. Equation (2) can be rewritten as [24]:

Lyi(2) + L' (2) =C, (3)

where Cis a constant fixed by the input conditions.

Here, in the general case the input conditions correspond
to an e-o wave consisting of 50-ps pulses of peak power P
and normalized power profile f(t) superimposed on a
residual continuous background of power P.. The e-o wave
propagates through a highly dispersive single mode fiber
with B, =0.119 ps’m™ and y=4.6x107 W 'm™" ata carrier
wavelength of 1560 nm.
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Fig. 1. (a) Temporal and (c) spectral color map evolution vs
propagation distance for a 50-ps hyperbolic secant pulse with P =
100 W and without background (P, = 0). The dashed line shows the
maximum spectral extension predicted by Eq. (8). (b) Evolution of

Lyt and L5 versus propagation distance.

Figure 1 shows the temporal (a) and spectral (c) evolutions
along the propagation distance in the particular case of
hyperbolic secant pulses without background or loss. With
such conditions, one can distinguish two stages of the pulse
evolution. As can be seen from Fig. 1, at the early stage of
propagation, the nonlinear effect, i.e. self-phase modulation,
dominates, thus leading to a significant spectral broadening
(LX”{(Z=0)
Lpt(z=0)
number N=52 [9]). Subsequently, for larger propagation
distances, this resulting spectral expansion, associated with
a strong steepening of the pulse edges, makes dispersion to
acquire weight. At the shock distance zc = 274 m (see Fig.
1(b)), nonlinearity and dispersion have approximately the
same importance (Lyi = £;1) and sidelobes appear in the
spectrum. After the shock point, the pulse disperses and its
peak power decreases, making the evolution progressively
almost linear. In this second regime dispersion dominates
and the spectrum is almost conserved while the pulse
strongly temporally broadens. This process can be
summarized by help of Eq. (3) as follows [24]:

Ly1(0) = Ly (z » z,), (4)

where z > z, means at a distance well beyond the shock
point. In Eq. (2) we can recognize the variance of the power
spectrum o2 deprived of the cw component defined as

= 6200 corresponding to an equivalent soliton

2 _ J0?lAzw)|?dw
Ouw = [14(z,0)|2dw=P," )

From Eqgs. (2), (4) and (5) and with an input
condition |A(0,t)|> = P, + P f(t) the root mean square
(rms) o, at a propagation distance well beyond the wave-
breaking point can be expressed as

0, = EF, (6)

where the dimensionless factor F is defined as

2 _ [f®*dt

F=Tou: 0
The parameter F does not depend on the background level
and on the input pulse duration and can be calculated
explicitly for different input temporal profiles. The factor F
is approximately equal to one for relevant pulses. For
example F = 27Y4™ for a super-Gaussian of order m (e.g. F
=0.944 for m = 3). Consequently, considering that most of
the spectrum ranges in the interval [-20w; 200], then the
maximum of spectral extension wy,,, can be calculated as

Omay |22 =20, [2=2F=2. (8)
yP YP

Equation (8) shows that spectral extension depends only
slightly on the pulse profile but is independent of the pulse
duration and scales as /yP /B, corresponding to the inverse
of the average temporal period of the DSWs obtained from
Whitham modulation theory [1,11,15]. This scaling is
identical to that predicted for parabolic nonlinear-
dispersive similaritons of passive fibers [26]. Note that for a
constant pulse peak power P the maximum spectral
extension does not depend on the power level P, of the
continuous background.
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Fig. 2. (a) Variation of spectral broadening at the fiber output vs input
temporal profile for 50 ps pulses with the same peak power P; (b)
Spectral broadening obtained for third-order super-Gaussian of
different pulse durations. Here the input pulse power is P=100 W and
the background is zero (P,=0). The dashed lines show the maximum
spectral extension predicted by Eq. (8).
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Fig. 3. Temporal and spectral profiles obtained at the fiber output
from numerical integration of the NLSE (1). The input third-order
super-Gaussian pulse has a peak power P = 50 W: (a), (b) infinite ER
(no background), (c), (d) ER = 30 dB, (e), (f) ER = 20 dB. The dashed
lines show the maximurm spectral extension predicted by Eqg. (8).

These remarkable properties have been verified by
numerical integration of the NLSE (1) without losses as
shown in Fig. 2. Figure 2(a) shows the simulated spectral
profiles obtained at the fiber output for three different input
profiles of identical duration and pulse peak power P. We
can see that the same spectral extension is obtained for the
three profiles but that super-Gaussian pulses lead to the
flattest spectrum. Figure 2(b) confirms, in the case of super-
Gaussian pulses, that the spectral extension depends very
little on the pulse duration over a large time scale from
20ps to 80ps. A good agreement is obtained with the
maximum spectral extension predicted by Eq. (8) (dashed
vertical lines). This latter remarkable property is also
verified for other input pulse profiles and for initially
chirped pulses. Note that the factor 2 in Eq. (8) is in good
agreement with the fact that, well beyond the shock, the
pulse spectrum becomes nearly parabolic [27] with a
maximum extension equal to its rms width multiplied by
/5 = 2.2. More precisely an input parabolic pulse, for which
F =2//5, leads to a parabolic output spectrum with a
maximum extension defined by w,ax f—; = %g = 2. Another
interesting feature is that a small continuous component
due to the non-ideal EOM is sufficient to induce strong
distortions of the temporal [11] and spectral profiles as
visible in Figs. 3(c)-(f). Thus, in the absence of background
[Figs. 3(a),(b)] both pulse and spectrum exhibit a smooth
shape, while, in the presence of the latter, rapid oscillations
with high contrast appear on the pulse profile as well as on
the spectrum [Figs. 3(c)-(f)]. The contrast of the oscillations
increases strongly with the level of the continuous
background. Figure 3(f) shows that a modulator with
ER = 20 dB generates a spectrum which is not very suitable
for applications, given the strong fluctuations of its
intensity. Electro-optic modulators with ER of at least 30 dB
are thus required for accurate applications [18-22]. The
flatness of the spectra could be easily increased by
cascading two modulators. Figure 3(a) clearly shows that
the pulse acquires a parabolic profile far away the shock
point as already mentioned in Ref. [27].

We performed a series of experiments to illustrate the
spectral broadening of the e-o pulses by the DSW process.
The dispersion and nonlinear parameters of the fiber are
the same as those used in the simulations and the linear loss
coefficient is a=0.55dB/km. A cw centered around
1560 nm is first generated by a diode laser and then
intensity modulated by an EOM set at a repetition frequency
of 100 MHz and delivering 52-ps third-order super-
Gaussian pulses [18]. Figure 4 shows the input spectrum
(black curve) together with spectra recorded for different
fiber lengths from 50 m to 1400 m. Here the pulse peak
power is P=47W and ER=30dB. The input optical
spectrum shows a sinc squared shape as expected for
nearly-square pulses. The narrow peak at the center of the
spectra is the signature of the residual cw component. At
propagation distance of 50 m the spectrum expands
substantially and keeps broadening significantly up to a
distance of 800 m. For further propagation distances the
spectral range begins to saturate and the spectrum becomes
more and more flat. Spectral oscillations appear due to the
continuous background in good agreement with the
numerical simulations of Fig. 3(d).
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Fig. 4. Experimental spectra recorded at 1559.34 nm for several
propagation distances ranging from 0 m (input) to 1400 m. The pulse
peak power is P = 47 W and the extinction ratio is ER = 30 dB. The
curves are shifted by 5 dB with respect to each other for clearness.



The spectral asymmetry originates from the slight
asymmetry of the input condition (see the input spectrum
with black line).

Figure 5(a) shows the variation versus propagation
distance of the full width determined at -20 dB of the
maximum intensity (cw component excluded) of the spectra
displayed in Fig. 4. We observe that the spectral width tends
rapidly towards a maximum limit value corresponding to
the propagation regime dominated by dispersion. But it
should be noted that the widths at -20 dB are indeed slightly
less than the theoretical estimate given by Eq. (8). Let us
note also an excellent agreement between the
measurements and the spectral width determined from
numerical integration of the NLSE (1) without any adjusted
parameter and including losses. Figure 5(b) shows the
spectral width measured as a function of the square root of
input power at a propagation distance of 1400 m. The
perfect linear evolution clearly demonstrates that the

spectral extension scales as v/P.
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Fig. 5. (a) Variation of the full spectral width at -20 dB vs propagation
distance and at a fixed pulse power P = 47 W. Same fiber parameters
and pulse profile as in Fig. 4. (b) Spectral width evolution vs input
pulse power at a propagation distance of 1400 m. Same fiber
parameters and pulse profile as in Fig. 4 and ER = 30 dB.

In conclusion, we revealed the influence of the residual
continuous background inherent to the finite ER of any non-
ideal e-o intensity modulator. We showed that a low
extinction ratio results in a substantial enhancement of
the contrast of the spectral oscillations inherent to DSW
and is thus unacceptable for the generation of flat and
smooth spectra. Well beyond the shock distance the pulses
enter into a regime dominated by dispersion and the
spectrum evolution becomes quasi-stationary. We
analytically calculated the maximum spectral extension and
showed that, at a constant pulse peak power, it does not
depend on the background level and is quasi-independent of
the shape of the pulses as well as of their duration. However,
we demonstrated that super-Gaussian pulses are more
adapted to produce flat-topped and smooth spectra than
Gaussian or hyperbolic secant pulses. The experimental
measurements of the spectral width as a function of
propagation distance are in good agreement with the
numerical integration of the NLSE and the maximum
spectral extension scales as v/P. We believe that our results
will be very useful for the design of e-o frequency combs
dedicated to various applications and relevant to many

systems requiring spectral broadening of pulses of duration
of tens of ps.
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