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Dispersive shock waves (DSWs) or undular bores are expanding nonlinear wave packets composed of adjacent rapid oscillations slowly modulated in amplitude and frequency, which have been investigated in different physical contexts [1][2][3][START_REF] Maiden | Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits[END_REF]. Coherent DSWs develop in homogeneous or disordered media exhibiting strong nonlinearity, weak dispersion and negligible dissipation. In such media the shock waves originates from a wave-breaking process or "gradient catastrophe" regularized by dispersive effects. In optical fibers such wave-breaking have been observed long ago in the normal dispersive regime when self-phase modulation (SPM) dominates [START_REF] Tomlinson | Optical wave breaking of pulses in nonlinear optical fibers[END_REF][START_REF] Rothenberg | Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers[END_REF][7]. More recently such regime has conveyed a renewed interest, considerably extending the importance of fiber DSWs [START_REF] Rosenberg | Evolution of optical pulses towards wave breaking in highly nonlinear fibres[END_REF][START_REF] Finot | Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers[END_REF][START_REF] Liu | Wave-breaking-extended fiber supercontinuum generation for high compression ratio transformlimited pulse compression[END_REF][START_REF] Conforti | Dispersive wave emission from wave breaking[END_REF][START_REF] Fatome | Observation of optical undular bores in multiple four-wave mixing[END_REF][START_REF] Lecaplain | Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers[END_REF][14][START_REF] Xu | Dispersive Dam-Break Flow of a Photon Fluid[END_REF]. The main signature of DSWs is the appearance of temporal ondulations near the pulse edges that induce spectral sidelobes. The deleterious effect of these inherent temporal oscillations can be avoided in practice with the use of non-breaking parabolic pulses [16,[START_REF] Brazhnyi | Hydrodynamic flow of expanding Bose -Einstein condensates[END_REF]. However, DSWs can be judiciously exploited to generate smooth and coherent continuum spectra in normally dispersive nonlinear fibers [START_REF] Finot | Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers[END_REF]. A particularly interesting application of DSW-induced spectral broadening is the generation of flat-topped low noise frequency combs obtained by electro-optic (e-o) intensity modulation of a continuous-wave (cw) laser. The shape of the spectral envelope of such combs plays a crucial role in applications such as direct frequency comb spectroscopy [18,[START_REF] Yan | Mid-infrared dual-comb spectroscopy with electro-optics modulators[END_REF], radio-frequency photonics [START_REF] Wu | Generation of very flat optical frequency combs from continuouswave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms[END_REF][START_REF] Wu | Supercontinuum-based 10-GHz flat-topped optical frequency comb generation[END_REF] or telecommunications [START_REF] Maher | Implementation of a cost-effective optical comb source in a WDM-PON with 10.7Gb/s data to each ONU and 50km reach[END_REF]. But because of the limited extinction ratio of high-bandwidth e-o modulators (typically 30 dB) the pulse train is superimposed on a residual continuous background. Even a weak background strongly enhances the extension and the contrast of the temporal oscillations inherent to the dispersive shock [14,[START_REF] Xu | Dispersive Dam-Break Flow of a Photon Fluid[END_REF][START_REF] Trillo | Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems[END_REF].

In this letter, we address the study of DSW-induced spectral broadening of 50-ps pulses. We evaluate the influence of the pulse shape and assess the impact of the residual background. We show that super-Gaussian pulses are best suited to generate smooth and flat-topped spectra. We propose an analytical estimate of the maximum spectral extension of the DSW, which mainly depends on the fiber parameters and input pulse peak power, but depends only slightly on the shape and duration of the input pulses. Experimental measurements carried out for different propagation distances or different input powers quantitatively confirm the analytical estimate of the pulse spectral extension and are in excellent agreement with numerical integration of the nonlinear Schrödinger equation (NLSE).
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