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Abstract

Transient granular flows, such as rock falls, debris flows, and aerial and submarine avalanches, occur very often in nature. In the

geotechnical context, transient movements of large granular slopes are a substantial factor of risk due to their destructive force

and the transformations they may produce in the landscape. This paper investigates the ability of MPM, a continuum approach,

to reproduce the evolution of a granular slope destabilised by an external energy source. In particular, a central issue is whether

the power-law dependence of run-out distance and time observed with respect to the initial geometry or energy can be reproduced

by a simple Mohr-Coulomb plastic behaviour. The effect of base friction on the run-out kinematics is studied by comparing the

data obtained from the DEM and MPM simulations. The mechanism of energy dissipation is primarily through friction and the

MPM is able to predict the run-out response in good agreement with the DEM simulations. At very low excitation energies, the

DEM simulations show longer run-out in comparison to the MPM due to local destabilization at the flow front. At low input

energies, a larger fraction of the energy is consumed in the destabilisation process, hence the amount energy available for flow is

less. However, at higher input energy, where most of the energy is dissipated during the spreading phase, the run-out distance has

a weak dependence on the distribution of velocity in the granular mass.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Transient granular flows occur very often in nature. Well-known examples are rockfalls, debris flows, and aerial

and submarine avalanches. They form a major element of reshaping the lanscape and their high destructive potential

is a substantial factor of risk. Natural granular flows may be triggered as a result of different processes such as gradual

degradation, induced by weathering or chemical reactions, liquefaction and external forces such as earthquakes.

Granular flows have been studied in laboratory experiments in different geometries such as tilted slopes leading

to slope failure and surface avalanches [1–3] or by considering vertical columns of grains collapsing and spreading

under their ownweight [4,5]. The dynamics observed in the experiments is often nontrivial in the sense that the final

∗ Corresponding author.

E-mail address: kks32@cam.ac.uk

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 1st International Conference on the Material Point Method

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.01.032&domain=pdf


95 Krishna Kumar et al.  /  Procedia Engineering   175  ( 2017 )  94 – 101 

configurations after the dissipation of the whole kinetic energy can not be readily predicted by means of simple laws

based on the Mohr-Coulomb nature of the material. For example, in collapsing columns, the runout distance is found

to obey a power-law dependence with the initial aspect ratio of the column.

The observed nontrivial transient dynamics is often correctly reproduced by the discrete element method (DEM),

which provides a powerful tool for the grain-scale analysis of the trigger and its subsequent dynamics [6,7]. However,

even in simplified geometries such as those investigated in the experiments, the DEM suffers from a serious short-

coming in the number of particles that can be simulated in a reasonnable time. This is a critical issue when more

complex geometries or long-time granular processes are considered, or when particle size distributions are broad.

For this reason, most numerical studies are performed in 2D or simple particles shapes and size distributions are

considered.

It is also obvious that classical modeling strategies based on the finite element method (FEM) cannot be used for

the simulation of very large deformations. In various application of FEM, this problem is treated by means of technical

tools such as remeshing. Such methods are, however, not robust and lead to round-off errors and mesh-senstitivity.

In contrast, the Material Point Method (MPM) is an alternative approach for continuum problems that allows for

indefinitely large deformations without remeshing [8–11]. In this method, the material points carry the information

on state variables and a background fixed grid is used to solve the governing equations. The information between

the material points and the grid is exchanged via suitable shape functions. The MPM has been applied with success

to a number of solid mechanics problems and its theoretical foundations have recently been invesitgated by several

authors.

In this paper, we investigate the ability of the MPM, as a continuum approach, to reproduce the evolution of a

granular slope when destabilized by energy input. In particular, a central issue is wheather power-law dependence of

the runout distance and timewith respect to the initial geometry or energy can be reproduced by a simple prescription

of the Mohr-Coulomb plastic behavior within a MPM code. We therefore perform extensive simulations by varying

continuously different input parameters and compare the data with those obtained from DEM simulations of the same

system. We compare in detail the evolution of the profile of the slope and its total kinetic energy between the two

methods and for differerent initial states. As we shall see, the MPM can successfully simulate the transient evolution

with a single input parameter, namely the internal angle of friction. This opens the way to the simulation of geological-

scale flows on complex topographies.

2. Numerical set-up

The DEM sample was composed of ∼ 13000 disks with a uniform distribution of diameters by volume fractions

(dmax = 1.5dmin). The mean grain diameter and mass are d � 2.455 mm and m � 0.0123 kg, respectively. The grains

are first poured uniformly into a rectangular box of given width and then the right-hand side wall is shifted far to the

right to allow the grains to spread. A stable granular slope of 13.2 ◦ is obtained when all grains come to rest. The

initial slope configuration is shown in fig. 1. This procedure leads to a mean packing fraction (fraction of space filled

by disks) � 0.82. Soil grains with a mean density of 2600 kg/m3 and internal friction coefficient of 0.4 between grains

are considered. For grain-scale simulations, classical DEM approach was used [12].

~350d

~
80

d

(a) DEM (b) MPM

Fig. 1: Initial geometry and dimensions of the slope subjected to a horizontal velocity of 50J.

In the present study, Generalised Interpolation Material Point Method is used to avoid cell crossing noise [13,14].

In MPM simulations, the material point spacing is adopted to be the same as the mean grain diameter in DEM.

A mesh size of 0.0125m is adopted with 25 material points per cell. The effect of mesh size and the number of
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material points per cell was investigated by Soundararajan[15]. The initial configuration of the slope used in the MPM

simulations is shown in fig. 1b. Frictional boundary conditions are applied on the left and the bottom boundaries

by applying constraints to the nodal acceleration. Mohr-Coulomb model with no dilation is used to simulate the

continuum behaviour of the granular slope. Periodic shear tests in DEM reveals a macroscopic friction coefficient of

0.22. Further details about DEM and MPM parameters and set-up can be found in Soundararajan[15].

The initial static slope was set into motion by applying a horizontal gradient velocity v0x(y) = k(ymax − y) with

k > 0. The evolution of the slope geometry and the total kinetic energy as a function of the initial input energy E0 is

studied. The run-out distance Lf is the distance of the rightmost grain, which is still in contact with the main mass

when the slope comes to rest. The run-out will be normalised by the initial length L0 of the slope, as in the experiments

of collapsing columns. The total run-out duration t f is the time taken by the slope to reach its final run-out distance

Lf . The natural units of the system are the mean grain diameter d, the mean grain mass m and acceleration due to

gravity g. For this reason, the length scales are normalised by d, time by (d/g)1/2, velocities by (gd)1/2 and energies

by mgd.

3. Evolution of slope geometry and run-out

Figure 2a shows the initial evolution of the granular slope subjected to an initial horizontal energy E0 = 61 (in

dimensionless units) using MPM. As the granular slope is sheared along the bottom, the shear propagates to the top

leaving a cavity in the vicinity of the left wall. This cavity gets partially filled as the granular mass at the top collapse

behind the flowing mass due to inertia. Similar behaviour is observed during the initial stages of the flow evolution

using DEM (fig. 2b). Due to inertia, the grains at the top of the granular heap roll down to fill the cavity, while the

slope continues to spread.

(a) MPM (b) DEM

Fig. 2: Evolution of granular slopes subjected to a gradient horizontal energy E0/(mgd) of 61.

The flow involves a transient phase with a change in the geometry of the slope followed by continuous spreading.

The gradient of input energy applied to the granular slope mimics a horizontal quake. Despite the creation of a

cavity behind the flowing mass, the granular heap remains in contact with the left wall irrespective of the input

energy. Figure 3a shows the normalised run-out distance (Lf − L0)/L0 and total run-out time t f as a function of the

input energy E0. Two regimes characterised by a power-law relation between the run-out distance and time as a
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function of E0 can be observed. In the first regime, corresponding to the range of low input energies E0 < 40 mgd,

the run-out distance observed varies as Lf ∝ (E0)α with α � 0.206 ± 0.012 over nearly one log cycle. Overall, the

run-out distance predicted by the continuum approach matches the DEM simulations. At very low energies, DEM

simulations show longer run-out distance due to local fluidisation, mainly controlled by failure of the soil mass at the

top of the pile. A critical energy is required, before the entire soil mass participates in the flow. This results in an

almost constant normalised time in DEM, which is absent in MPM due to the continuum nature.

While the run-out exhibits a power-law relation with the initial input energy, the DEM simulations show that the

flow duration remains constant at a value t f � 60 (d/g)0.5 irrespective of the value of E0. The constant run-out time, in

grain-scale simulations, indicates the collapse of grain into the cavity left behind the slope. An average run-out speed

can be defined as vs = (Lf − L0)/t f . According to the data, vs ∝ (E0)0.52±0.012. The error on the exponent represents

the error due to the linear fit on the logarithmic scale. Since the initial average velocity varies as v0 ∝ (E0)0.5, this

difference between the values of the exponents suggests that the mobilised mass during run-out declines when the

input energy is increased.
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Fig. 3: Evolution of run-out and time as a function of the normalised input energy for a slope subjected a gradient horizontal energy. (a) Run-out

as a function of KE0, (b) Duration of run-out as a function of KE0.

In the second regime, corresponding to the range of high input energies E0 > 40 mgd, the run-out distance varies

as Lf ∝ (E0)α
′

over one cycle with α′ � 0.56 ± 0.04 while the duration increases as t f ∝ (E0)β
′

with β′ � 0.33 ± 0.02.

Hence, in this regime the average run-out speed varies as vs ∝ (E0)0.498±0.01. This exponent is close to the value 0.5 in

v0 ∝ (E0)0.5, and hence, within the confidence interval of the exponents. In the second regime, both DEM and MPM

predict almost the same run-out behaviour. However, the MPM predicts longer duration with increase in the input

energy.

It is worth noting that a similar power-law dependence of the run-out distance and time are found in the case of

granular column collapse with respect to the initial aspect ratio. In the column geometry, the grains spread away

owing to the kinetic energy acquired during gravitational collapse of the column. Topin et al.[16] found that the run-

out distance varies as a power-law of the available peak kinetic energy at the end of the free-fall stage with an exponent

� 0.5. This value of exponent is lower than the run-out evolution observed in the second regime. This is, however,

physically plausible since the distribution of kinetic energies at the end of the collapse is more chaotic than in this

case where the energy is supplied from the very beginning in a well-defined shear mode. As pointed out by Staron

et al.[6], the distribution of kinetic energies is an essential factor for the run-out distance.

4. Decay of kinetic energy

The non-trivial evolution of the slope geometry in two regimes suggests that the energy supplied to the slope is not

simply dissipated by shear and friction along the bottom plane. It is important to split the kinetic energy into vertical
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and horizontal components (KEx and KEy) of the velocity field. Although, the input energy is in the x component, a

fraction of the energy is transferred to the vertical component of the velocity field and dissipated during the transient

phase. The evolution of kinetic energy is studied to understand the behaviour of granular flow that is consistent with

the evolution of the slope shape.

The evolution of total kinetic energies Ek with time for different values of the input energy Eki based on MPM

simulations are shown in fig. 4. The MPM simulation shows two distinct regimes in the normalised kinetic energy

plot as a function of normalised time in fig. 4a. However, the DEM simulations (fig. 4b) show that the energy

evolution corresponding to the low energy regime nearly collapse on to a single time evolution. This is consistent

with the observation of run-out time t f being almost independent of the input energy. In contrast, MPM simulations

predict a power law relation between the run-out duration and input energy. However, the plots corresponding to the

high energy regime (fig. 4), collapse only at the beginning of the run-out i.e. for t < t1 � 7.5 (d/g)0.5. Although MPM

simulations show a longer duration of run-out (fig. 4), the total kinetic energy is completely dissipated at t = 60
√

d/g.

DEM simulations predict t = 80
√

d/g for the kinetic energy to be completely dissipated, which is due to grain

rearrangement at the free surface. The granular mass densifies as the flow progresses, after the initial dilation phase

for t = 20
√

d/g.

(a) MPM (b) DEM

Fig. 4: Evolution of normalised kinetic energy with normalised time for a slope subjected to gradient input velocities.

Figure 5 displays the evolution of kinetic energy in the translational (Ex and Ey) degrees of freedom. Ex decays

similar to the total energy dissipation, but Ey increases and passes through a peak before decaying rapidly to a negligi-

ble level. The transient is best observed for Ey, which has significant values only for t < t1. This energy represents the

proportion of kinetic energy transferred to the y component of the velocity field due to the destabilisation of the slope

and collapse of grains in the cavity behind the slope. Higher proportion of vertical acceleration Eky/E0 is observed for

lower values of input energy E0. This means that, at lower input energies a larger fraction of the energy is consumed

in the destabilisation process, which results in oscillations in the kinetic energy. Whereas at a higher input energies,

most of the energy is dissipated in the spreading phase. For this reason, the total duration t1 of this destabilisation

phase is nearly the same in both regimes and its value is controlled by gravity rather than the input energy. The height

of the slope being of the order of 80 d, the total free-fall time for a particle located at this height is � 12 (d/g)0.5, which

is of the same order as t1. DEM simulations show that the contribution of the rotational energy during the transient

stage and the spreading stage is negligible.

To analyse the second phase for higher input energies, the kinetic energy E′kx0
at the end of the transient phase is

considered. This energy is responsible for most of the run-out, hence it is expected to control the run-out distance

and time. A decay time τ can be defined as the time required for Ekx to decline by afactor 1/2. Figure 6 shows the

same data in which the time t′ elapsed since t1, normalised by τ. Interestingly, now all the data nicely collapse on to a

single curve. However, this curve can not be fitted by simple functional forms such as variants of exponential decay.

This means that the spreading of the slope is not a self-similar process in agreement with the fact that the energy fades

away in a finite time t′f .
The scaling of the data with the decay time τ suggests that the run-out time, since the beginning of the second

phase, t′f might be a simple function of τ. Figure 7a shows both t′f and τ as a function of E′x0, where a power-law
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(a) Evolution of normalised horizontal kinetic en-

ergy with time.

(b) Evolution of normalised vertical kinetic energy

with time.

Fig. 5: Evolution of vertical and horizontal kinetic energy with time (MPM) for a slope subjected to gradient input velocities.

Fig. 6: Evolution of kinetic energy in the x component of the velocity field normalised by the available kinetic energy at the end of the transient as

a function of normalised time (MPM).

relation can be observed for both time scales. The run-out time t′f ∝ (E′x0)β
′

has the same exponent β′ � 0.33 ± 0.02

as t f as a function of E0. For the decay time we have τ ∝ (E′x0)β
′′

with β′′ � 0.38± 0.03. The relation between the two

times can thus be expressed as (fig. 7b)

t′f = k τ (E′x0)β
′′−β′ , (1)

where k � 5.0 ± 0.4 and β′′ − β′ � 0.05 ± 0.05. This value is small enough to be neglected. It is therefore plausible to

assume that the run-out time is a multiple of the decay time and the spreading process is controlled by a single time.

A weak dependence on the energy E′kx0
is consistent with the fact that the energy available at the beginning of the

second phase is not dissipated in the spreading process (calculated from the position of the tip of the slope) since the

slope keeps deforming by the movements of the grains at the free surface even when the tip comes to rest. This can

explain the small difference between the two exponents as observed here.

5. Effect of friction

The run-out distance, duration of flow, and the dissipation of kinetic energy are controlled by the input energy

and collective dynamics of the whole slope. However, the run-out behaviour is also expected to depend on the base

friction. A series of simulations with different values of base friction was performed using MPM to analyse the

influence of friction on the run-out behaviour. The influence of friction on the run-out behaviour for different input

energies is shown in fig. 8a. The run-out distance decreases with increase in the basal friction. The exponent of the

power-law relation between the run-out and input energy has a weak dependence on the base friction, however, the
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(a) (b)

Fig. 7: Decay time and run-out time as a function of the normalised kinetic energy Ekx0: (a) Power law evolution of t′f and τ as a function of kinetic

energy E′kx0
and (b) Linear relationship between decay time and run-out time after the transient as a function of the normalised kinetic energy Ekx0.

proportionality constant is affected by the change in the base friction. This behaviour is similar to that observed in

granular column collapse with varying initial properties [5,17].

The effect of friction coefficient is quite important for the run-out. MPM simulations with varying friction coef-

ficient show that both the run-out distance and the decay time decrease as the friction coefficient is increased. This

effect is much more pronounced at low values of the friction coefficient. The run-out time, for example, is reduced

by a factor of approximately 4 as μs is increased from 0.1 to 0.2 while the change in the run-out and duration is less

affected with increase in friction coefficient. This “saturation effect” can be observed in a systematic way in simple

shear tests. The dissipation rate may reach a saturation point where the dilation of granular materials and rolling of

the grains change in response to increase in friction coefficient [18].
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Fig. 8: MPM simulations of effect of friction on the run-out behaviour of slopes subjected to horizontal excitation.

6. Conclusion

Natural granular flows are triggered by different mechanisms. The distribution of kinetic energy in the granular

mass is found to have an effect on the flow kinematics. A multi-scale analyses of a granular slope subjected to

horizontal velocities are performed and the following conclusions are derived:

• A power-law dependence of the run-out distance and time as a function of the input energy is observed. The

power-law behaviour is found to be a generic feature of granular flow dynamics. The values of the power-law

exponents are not simple functions of the geometry.
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• Two regimes with different values of the exponents are observed: a low-energy and a high-energy regime.

• The low energy regime reflects mainly the destabilisation of the slope, with a run-out time independent of the

input energy.

• The second regime is governed by the spreading dynamics induced by higher input energy. The evolution of

granular slope in the high-energy regime can be described by a characteristic decay time, which is the time

required for the input energy to decay by a factor of 0.5.

• The run-out distance and the decay time decrease as the friction increases. This effect is much more pronounced

at low values of friction.

• At low input energies, the distribution of kinetic energy in the system is found have a significant effect on the

run-out, as the energy is mostly consumed in the destabilisation process.

• At higher input energies, where most of the energy is dissipated during the spreading phase, the run-out distance

has a weak dependence on the distribution of velocity in the granular mass.

• The material property and the distribution of kinetic energy in the system has a non-trivial influence on the flow

kinematics and the internal flow structure.

• MPM is successfully able to simulate the transient evolution with a single input parameter, the macroscopic

friction angle.

This study exemplifies the ability of MPM, a continuum approach, in modelling complex granular flow dynamics

and opens the possibility of realistic simulation of geological-scale flows on complex topographies.
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