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The ignition of a confined explosive submitted to an impact strongly depends on the friction conditions between the explosive and the confinement material (generally steel). A test has been developed to study the friction between steel and a material mechanically representative of an explosive. The scope of interest is that of high pressures and high relative velocities (respectively 20 MPa and 10 m/s). The friction device consists of making a cylinder, formed of the material, slide through a steel tube. Axial prestress enabling the steel-material contact stress to be generated is performed by means of a screw-nut system. This confinement state avoids any fracture of the material from occurring throughout the test.

Two kinds of tests are carried out: low-velocity (around 1 mm/min) and high-velocity (around 10 m/s). The relative displacement is obtained using a testing machine during the low-velocity tests, and thanks to a Hopkinson bars system during the high-velocity tests. Examination of the measurements obtained during high-velocity tests shows that a workable steady state of equilibrium has been reached. As the interface stresses cannot be measured, the friction coefficient must be determined using indirect data: force measurements obtained from the machine or from the Hopkinson bars and strain measurements made on the exterior of the tube. The procedure to identify the steel-material friction coefficient from these measurements entails analytical modelling and finite element simulations of the mechanical behaviour of the tube-specimen assembly. The friction coefficient identified during the high-velocity tests is far higher than the coefficient identified during the low-velocity tests.

Introduction

Solid explosives are materials able to quickly release energy under excessive loadings.

Our study focuses more particularly on cases of so-called "low energy" impacts (below the shock-to-detonation threshold, which corresponds to impact velocities of some tens to hundreds of metres per second). Different experimental configurations are able to reproduce this situation [START_REF] Field | Ignition mechanisms of explosives during mechanical deformations[END_REF]. One of the most commonly used is the "Steven test" [START_REF] Chidester | A frictional work predictive method for the initiation of solid high explosives from low pressure impacts[END_REF], [START_REF] Vandersall | Experimental and modelling studies of crush, puncture, and perforation scenarios in the Steven impact test[END_REF]. This consists of launching projectiles of a few hundred grams, at a velocity of some tens to hundreds of metres per second, which impact targets composed of a steel/explosive/steel assembly (Figure 1).

Predicting the ignition of the explosive during this type of impact is based on numerical simulations [START_REF] Kim | The Influence of Temporal Profile on Hyperbolic Heat Conduction in Materials Subjected to Repetitively Pulsed Laser Radiation[END_REF].

However, prerequisite to such predictions is a deep and full awareness of the friction conditions at the explosive-steel interface. Indeed, numerical analysis shows that the time of ignition and the location of the ignition point in the target is highly influenced by the kinetic friction coefficient magnitude [START_REF] Dickson | Frictional Heating and Ignition of Energetic Materials[END_REF], [START_REF] Hoffman | Aspect of the tribology of the plastic bonded explosive LX-04[END_REF], [START_REF] Picart | Ignition of HMX-based PBX submitted to impact: strain localization and boundary conditions[END_REF]. The purpose of our study is thus to develop an experimental procedure enabling the friction coefficient between an explosive and a steel to be identified under loadings generated by "low energy" impacts. This range is that of high contact pressures (several tens of MPa) combined with high sliding velocities (10 m/s). Few set-ups satisfy the pressure and velocity requirements set in this study: tribometer with explosively-driven friction [START_REF] Kim | Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations[END_REF], target-projectile assembly with oblique impact [START_REF] Prakash | A pressure-shear plate impact experiment for investigating transient friction[END_REF], [START_REF] Rajagopalan | Novel experimental techniques for investigating time resolved high speed friction[END_REF], Hopkinson torsion bars [START_REF] Rajagopalan | Novel experimental techniques for investigating time resolved high speed friction[END_REF], [START_REF] Espinosa | A Novel Dynamic Friction Experiment Using a modified Kolsky Bar Apparatus[END_REF], [START_REF] Huang | Dynamic Friction of SiC Surfaces: A Torsional Kolsky Bar Tribometer Study[END_REF], [START_REF] Rajagopalan | A modified Kolsky bar for investigating dynamic friction[END_REF], dynamometrical ring with parallelepipedic specimen launched using a gas gun or hydraulic machine [START_REF] Philippon | An experimental study of friction at high sliding velocities[END_REF], [START_REF] Philippon | A Device Enhancement for the Dry Sliding Friction Coefficient Measurement Between Steel 1080 and VascoMax with Respect to Surface Roughness Changes[END_REF] and, as a final possibility, the friction of a pin on a revolving disc [START_REF] Dickson | Frictional Heating and Ignition of Energetic Materials[END_REF].

Moreover, the desired pressures (several tens of MPa) are habitually reserved for metals [START_REF] Prakash | A pressure-shear plate impact experiment for investigating transient friction[END_REF], [START_REF] Rajagopalan | Novel experimental techniques for investigating time resolved high speed friction[END_REF] and ceramics [START_REF] Huang | Dynamic Friction of SiC Surfaces: A Torsional Kolsky Bar Tribometer Study[END_REF] whereas the explosives have little resistance to simple compression. This therefore requires a totally new device to be designed which enables us to confine the explosives. Indeed, a confinement configuration makes it possible to apply high pressures on an explosive sample without fracturing it. Consequently, the decision was made to design a tubular test chamber to act as a confinement for the explosive. For safety reasons, specimens made of an inert material mechanically representative of explosives are used to carry out our tests. A pressure of the order of 10 MPa is firstly imposed at the specimen -tube interface.

Then, the friction characterisation test consists of forcing the specimen to slide in the tube.

The advantage of this device lies in that it may be used with a classical test machine for tests at low sliding velocities (around 1 mm/min) or can be mounted on a dynamic test bench of the Hopkinson bar type to reach high sliding velocities (around 10 m/s).

In section 2, the description of the experimental set-up is followed by a presentation of the low-velocity and high-velocity tests. The raw results are discussed, which demonstrate the interest in performing the study at high sliding velocities. In section 3, the issue of the establishment of a procedure to identify the friction is raised, such procedure being based on analytical and numerical models. The test has to be modelled since there is no way to directly measure the stresses on the sliding interfaces. Two kinds of model are proposed: an analytical one similar to the Janssen's one [START_REF] Janssen | Versuche über Getreiedruch in Silozellen[END_REF] and a numerical one using the finite element method. In section 4, the limits of the experimental device and of the friction identification procedure are discussed.

Experimental configurations

The inert material which is a mechanical equivalent of explosives

An equivalent inert material, denoted I1 and largely described in [START_REF] Bailly | Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[END_REF], was used for safety reasons. Its mechanical properties are known and are relatively similar to those of explosives. The Young's modulus E is 2 GPa and the Poisson's ratio ν is 0.4. The non-elastic behaviour has been studied by carrying out triaxial compression tests. Under compressive loading, the material is able to flow when its plasticity threshold has been attained (here the maximal constraints obtained using triaxial tests are assimilated to a plasticity threshold in order to simplify the behaviour model). The plasticity flow threshold thus identified is defined by a Drucker-Prager criterion [START_REF] Bailly | Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[END_REF]:

(1)

C < αP + σ eq
where P is the hydrostatic pressure and σ eq the Von Mises equivalent stress.

As the identified behaviour is assumed to be perfectly plastic [START_REF] Bailly | Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[END_REF], the plasticity flow is defined by:

(2)

C αP + σ eq =
The model's parameters have been identified: C = 25 MPa and α = 0.63.

According to relation [START_REF] Chidester | A frictional work predictive method for the initiation of solid high explosives from low pressure impacts[END_REF], in the case of a simple compression loading, the maximum axial stress is only 31 MPa. The I1 specimen has therefore to be confined to reach pressures of several tens of MPa without fracturing it (the material cannot flow indefinitely).

Friction test cell enabling confinement

One way of confining a material is to enclose it in a ring [START_REF] Bailly | Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[END_REF], [START_REF] Forquin | Influence of free water on the quasi-static and dynamic of strength of concrete in confined compression tests[END_REF]. The idea retained is to slide a specimen of our material into a steel tube. The tube thus acts both as a sliding surface and a confining ring (Figure 2). The inner wall of the steel tube was reamed and the specimen was turned on a sliding lathe. Both have a weak surface roughness representative of the roughness of pyrotechnic structures such as the Steven-test (Figure 1). The normal pressure at the tube-specimen interface is generated by a screw-nut system (Figure 2). The tightening of this system creates an axial prestress and as the specimen is constrained in the tube, it induces the normal pressure by Poisson effect. The relative displacement of the specimen in the tube, and thus, the tangential stress linked to the friction, is then obtained using a classical test machine for the low-velocity tests (around 1 mm/min) or by using Hopkinson bars (Figure 3) for the high-velocity tests (around 10 m/s). Thus, there are no extra effects due to radial inertia. The stresses and the sliding velocity at the interface are deduced from measurements performed by a circumferential strain gauge bonded to the external face of the tube and from measurements of forces and velocities collected by the machine or the bar system. Bar and striker diameters: 20 mm

Low-velocity tests

A series of low-velocity tests was performed by positioning the test cell onto a classical test machine. The speed of the machine is set at 1 mm/min. Different values for the normal contact pressure were obtained by modifying the prestress due to the tightening of the screw-nut system (Figure 2). Since the device is in equilibrium during these low-velocity tests, the forces F i and F o (Figure 2) are equal and denoted F. They correspond to the friction force.

Figure 4 gives, for two different values of ε θθ (due to the pre-tightening of the screwnut system), the evolution of F as a function of the displacement of the cross-piece ∆. These evolutions can be split into two phases: a first sticking phase during which the friction force increases until reaching a peak; then a second phase corresponding to the sliding during which the friction force remains constant. Relative motion does not occur everywhere along the interface during the first phase, which thus corresponds to the static friction; whereas relative motion occurs everywhere during the second phase, which thus corresponds to the kinetic friction. The curve forms a peak as the static friction coefficient is slightly higher than the kinetic friction coefficient. Only the second phase of the test, during which the sliding and the stress and strain states of the material specimen are assumed to be steady, is exploited.

A mean friction stress τ mean can be calculated during the sliding phase as the length L (L = 40 mm) and external radius R (R = 10 mm) of the specimen are known (Figure 5).

(

) RL F = τ mean 2π 3 
An indicative value of the pressure level at the interface p ind is obtained using the strain measurement ε θθ given during the steady phase by the circumferential strain gauge bonded on the tube (Figure 2):

(4)

(

)

θθ e t ind ε R R E = p 2 2 2

2R

where E t is the Young's modulus of the tube (E t = 210 GPa) and R e its external radius (R e = 14 mm) (Figure 2). Indeed, if no friction occurs at the tube-specimen interface, the formula (4) gives the pressure at this interface exactly. L tube =90 mm (length of the tube)

See Figure 2 for the other symbols.

High-velocity tests (using a Hopkinson bar apparatus)

The previously described confinement and sliding cell (section 2.2 and Figure 2) is mounted on a system of Hopkinson bars [START_REF] Bailly | Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[END_REF], [START_REF] Forquin | Influence of free water on the quasi-static and dynamic of strength of concrete in confined compression tests[END_REF] (Figure 3). The impact of the striker generates a compressive incident strain wave ε i in the input bar. When this wave reaches the cell, a reflected wave ε r appears in the input bar and a transmitted wave ε t appears in the output bar. Longitudinal gauges are bonded on the two bars enabling the three strains ε i , ε r and ε t to be determined. The bars and the striker are made of a hard stainless steel (a nickel alloy), whose yield strength is 1 GPa. The forces and velocities at the input and output ends of the cell (section 2.2, Figure 2 and Figure 3) can be deduced from the three measured strain waves by using the following relations:

(

( ) correspond here to the strains to be measured at the input bar -cell interface (which corresponds to the left hand end of the cell, see Figure 2 and Figure 3) and ε t corresponds to the strain to be measured at the output bar -cell interface (which corresponds to the right hand end of the cell).
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A phase of quasi-equilibrium of the forces applied to the cell enables a simple exploitation of the test. This quasi-equilibrium state is verified when the forces are identical at the two ends of the cell:

(7) o i F F ≈
When this quasi-equilibrium state becomes steady, the sliding velocity V at the interface between the steel confinement tube and the specimen I1 is estimated by: ( 8)

o i V V V - =
It is this phase which constitutes the useful part of the test.

Figure 6 gives the raw signals recorded by the strain gauges for two pre-tightening values. The first non-zero values (positive) appearing on the signal given by the gauge bonded to the input bar (on the red curve) correspond to ε i and the second (negative) to ε r . The following non-zero values appearing on the signals given by the gauges bonded to the output bar (green curve) and on the tube (blue curve) respectively correspond to ε t and to ε θθ (section 2.2). The appearance of a steady phase can be observed on all the signals. It should be noted that the gain (the raw signal over strain ratio) for the gauges bonded to the bars has been set to a value of 1,040 V whereas that of the gauge bonded to the tube has been set to a value of 6,240 V. Furthermore, the signals of the gauges bonded to the bars have been inverted.

The forces are determined by using the equations [START_REF] Hoffman | Aspect of the tribology of the plastic bonded explosive LX-04[END_REF]. Figure 7 gives the evolution of the different forces for the two pre-tightening values. Naturally, the equilibrium of the forces is not reached immediately. There is, however, a relatively long steady equilibrium state phase (approximately from 150 µs to 550 µs) characterised by the equality given by equation [START_REF] Picart | Ignition of HMX-based PBX submitted to impact: strain localization and boundary conditions[END_REF] and by constant forces and sliding velocity V (Figure 8). This corresponds to the sliding state being established over the full interface. Any mistake in the time-shifting of the waves has an effect on the estimation of the forces and velocities in the transient phase but nevertheless remains without effect upon the analysis of the steady state phase.

For two pre-tightening values, Figure 9 gives the evolution of the normal pressure and of the friction stress over time. A steady state is established after around one hundred microseconds. The signal transmitted by the gauge bonded to the tube, from which p ind is calculated, can be seen to be noisy. The mean friction stress τ mean is calculated from the output force F o rather than from the input force F i since the aim is to sidestep the problem of the timing of the incident and reflected waves: This study shows the feasibility of the high-velocity tests. The sensitivity of the friction to the sliding velocity emphasizes the necessity of reproducing in the test the velocities encountered in so-called "low energy" impacts (whose magnitudes are of the order of 10 m/s). Indeed, it is apparent that for the intended application (simulation of "low energy" impacts) friction conditions deduced from tests conducted at 1 mm/min may not reasonably be taken into consideration.

Identification of the friction coefficient

The interface stresses cannot be directly measured and the test can be exploited (and the friction coefficient identified) only if they can be estimated. One model is proposed based on an approximate solution of the elastic equilibrium of the cylinder of material I1. This simplified approach consists of considering the equilibrium of slices of elementary thickness constituting the cylinder [START_REF] Janssen | Versuche über Getreiedruch in Silozellen[END_REF]. Numerical simulations will then enable the level of approximation of this model to be judged and the assumption of an elastic behaviour will be verified too.

Analytical modelling

The stress and strain states in the I1 specimen have rotational symmetry and the stress tensor σ and the strain tensor ε are as follows: 

θ ε ε θθ ε ε ε ε           =
The axis are defined on Figure 5. Therefore, u ri tube is the initial difference in radii between the exterior of the specimen and the interior of the tube. u ri tube is defined such that u ri tube < 0 where there is radial clearance and u ri tube > 0 where there is radial extra thickness. Similarly, u ri screw is the initial difference in radii between the screw and the interior of the specimen. u ri screw is defined such that u ri screw < 0 where there is radial clerance and u ri screw > 0 where there is radial extra thickness (see Figure 11). The tube and the screw are assumed to be perfectly rigid. There is therefore no coupling between the behaviours of the tube, of the screw and of the specimen. If the specimen is slender enough, then ε rr and σ rr can be assumed to be independent of r and ε θθ can be assumed to be linearly dependent of r:
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where R i is the inner radius of the specimen (R i = 3 mm), see Figure 2. Using Hooke's law, this gives:

(12) ( ) ( ) ( )( )       + +         - + - - + + - = screw ri tube ri i screw ri i tube ri i rr zz u u R R r u R R r u R R E z z r ν ν ν σ ν ν σ 1 1 ,
E and ν are respectively the Young's modulus and the Poisson's ratio of I1 whose numerical values are given in section 2.1.

If the friction stresses at the interface with the screw (at r = R i , see Figure 2) are put aside, the elastic equilibrium of an infinitesimal slice of the specimen with a thickness dz located at z results in:

(13) ( ) ( ) [ ] ( ) ∫ = + - R i R rz zz zz dz z R R dr dz z r z r r , , ,

σ σ σ

The friction condition is expressed as:

(14) ( ) ( ) ( ) z f z R f z R rr rr rz σ σ σ = = , ,
where f is the friction coefficient at the interface with the tube (at r = R), see Figure 2 and In this case, relation [START_REF] Rajagopalan | A modified Kolsky bar for investigating dynamic friction[END_REF] becomes:

(15) ( ) ( ) z R f dr z r r rr R i R z zz σ σ = -∫ , ,
However, according to equation ( 12):

(16) ( ) ( ) z z r z rr z zz , , 1 , σ ν ν σ - =
Using the equality [START_REF] Philippon | A Device Enhancement for the Dry Sliding Friction Coefficient Measurement Between Steel 1080 and VascoMax with Respect to Surface Roughness Changes[END_REF], the differential equation governing the distribution of the radial stress is obtained:

(17) ( ) ( )( ) ( ) z R R fR z rr i z rr σ ν ν σ 2 2 , 1 2 - - - =
Let p(z) and τ(z) be the pressure and friction stresses at the interface with the tube (at r = R), see Figure 2 and Figure 5:

(18) ( ) ( ) ( ) ( ) ( )    > - = > - = - = 0 , 0 , z R z z z R z p rz rr rr σ τ σ σ
According to relations ( 14) and ( 17), the interface stresses can be expressed as a function of τ mean :

(19) ( ) ( ) ( ) ( ) [ ] ( ) ( )        = - - = f z z p L f z L f L f z mean τ β β τ β τ 1 exp
exp where β being defined as:

(20) ( )( ) 2 2 1 2 i R R R - - = ν ν β
Since the confinement tube is of reduced thickness, the circumferential strain along the external face of the tube ε θθ (z) (at r = R e , see Figure 5) can be estimated. For z ∈ [0,L], the normal stresses p(z) make a direct contribution to ε θθ (z) of the form:

(21) ( ) ( ) z p R R E R e t 2 2 2 2 -
Since the tube is blocked to the right (Figure 2), for z ∈ [0,L], the tangential stresses τ(z) make an indirect contribution by Poisson's effect to ε θθ (z) of the form:

∫ - z e t t d R R R E 0 2 2 2 ζ ζ τ π π ν (22) ( ) ( ) 
where ν t is the Poisson's ratio of the tube (ν t = 0.33).

For z ∈ [0,L] the following formula can be deduced: (

]
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If z g represents the position of the strain gauge glued on the tube (Figure 2), the indicative values of the interface pressures can be expressed as:

(24) ( ) ( ) g e t ind z R R R E p θθ ε 2 2 2 2 - =
According to relation [START_REF] Sheu | Tool Surface Morphologies for Friction and Wear Control in Metalworking Processes[END_REF] this gives:

]

t g t ind mean z f R L L f R p ν β ν β β τ + - - - - = exp exp 1
In relation [START_REF] Qi | Adhesion and Adhesive Transfer at Aluminum/Diamond Interfaces: A First Principles Study[END_REF], all the parameters are known with the exception of f, this relation thus enables the form of the dependence of The strain gauge is glued on the tube (Figure 2). As the specimen moves relatively to the tube, z g (the position of the gauge relatively to the specimen) varies during the tests and initially, z g = 20 mm (Figure 2). The f relative uncertainty f f ∆ due to the z g uncertainty ∆z g can be deduced from relation [START_REF] Qi | Adhesion and Adhesive Transfer at Aluminum/Diamond Interfaces: A First Principles Study[END_REF] which leads to:

( ) [ ]( ) ( ) g g t t g t g z z f R L f L f L z f R z f f - - - - - - + - - ∆ = ∆ β β ν β β ν β ν β exp exp 1 exp exp (26) ( ) ( ) [ ] ( ) 
In the case of the low-velocity tests, the displacement of the specimen in the tube is less than 1 mm (Figure 4) and f = 0.14, which leads to f f ∆ < 2 %. As a result, the friction coefficient obtained with z g = 20 mm can be considered to be reliable.

In the case of high-velocity tests, the sliding velocity between the specimen and the tube can reach almost 10 m/s during 500 µs (Figure 8). It leads to a relative displacement of 5 mm, which cannot be neglected relatively to the specimen length. Thus, the position of the strain gauge z g varies from 20 mm to 15 mm. Even if the specimen remains in a stationary state (which implies that τ mean remains constant), p ind , which depends on z g , increases but this variation cannot be seen on Figure 9 because of the noise. The uncertainty due the relative displacement can be taken into account by identifying f with z g = 15 mm, which leads to f = 0.45 (whereas z g = 20 mm leads to f = 0.37).

Finite element simulations

Numerical simulations based on the finite element method are performed using ABAQUS CAE / Standard. The computations are made in two-dimensional axisymmetric configuration with quadrangular elements having quadratic interpolation. Only the I1 specimen and the steel tube are modelled and their mechanical behaviours are assumed to be perfectly elastic (which is checked in section 4.1). They are discretized by 0.2 mm x 0.2 mm size square elements. The normal contact between both parts is defined by a direct hard contact (no interpenetration) and separation is enabled (no adhesion). The tangential contact obeys a Coulomb's law imposed by Lagrange multipliers. The test is simulated with friction coefficients f varying from 0.10 to 0.45 by step of 0.05. The presence of the screw is modelled by an imposed displacement boundary condition. The radial displacement is assumed equal to u ri screw on the interface (Figure 13). The influence of the friction between screw and specimen is assumed to be negligible (no tangential stresses). The tightening of the screw-nut assembly is modelled by axial displacements imposed at the two ends of the specimen. Moreover, the specimen being pushed in the tube, a displacement is imposed on the right face of the tube (Figure 13). According to relation [START_REF] Durand | Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations[END_REF] this gives:

(27) ( ) 1 exp 1 exp ) ( -               - = L f L z L f L f z mean β β β τ τ
It is thus possible for the stress profiles provided by the analytical model and by the numerical simulations to be compared. Figure 15 shows that formula [START_REF] Durand | Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations[END_REF] gives results that are similar to those given by the numerical simulations although it does not allow any edge effects to be taken into account. The error produced by the analytical model is essentially due to the approximation of a reduced thickness for the confinement tube used to establish the formula [START_REF] Sheu | Tool Surface Morphologies for Friction and Wear Control in Metalworking Processes[END_REF]. The term σ rz 2 is the highest at the contact with the tube (at r = R), the criterion defined by inequality (1) can therefore be reformulated by using the notations defined in relation ( 18):

(29) C p f <         + - +       - ν ν α ν ν 3 1 3 2 1 2 2
The condition (29) is verified whatever the p magnitude if:

(30) ( ) ( ) 3 3 2 1 9 1 2 2 2 ν ν ν α - - + < f
In this particular case, this gives f < 0.31. The condition (29) is thus verified for the low-velocity tests for which f = 0.15.

For higher friction coefficients, the elasticity of the material is preserved if the pressure p remains under a certain value:

(31) ( ) ν ν α ν ν 3 1 3 2 1 2 2 + - +       - < f C p
For the high-velocity tests, it has been established that f < 0.56. f = 0,56 leads to the minimal value of ( )

ν ν α ν ν 3 1 3 2 1 2 2 + - +       - f C
and the corresponding maximal pressure p is 70 MPa.

According to relation [START_REF] Zhang | Origin of Static Friction and its Relationship to Adhesion at the Atomic Scale[END_REF], the maximal value of the stresses is 3.4 times higher than the value of the mean stress, which limits the mean pressure p mean to around 20 MPa. Given the values reached by the mean pressures p mean (Figure 14), the elasticity condition is respected.

Limits of the experimental device

Due to the fracture of the screw (which suddenly breaks in torsion) during its tightening, the pressure value of the device is limited to roughly 20 MPa and the compressed air gun used during the Hopkinson bar tests limits the possible range of relative velocity to roughly 5-20 m/s.

The proposed configuration merely gives macroscopic information on the interface conditions. It does not, therefore, enable less global information to be supplied on the sliding and namely on the transition between the sticking phase and the sliding phase.

As only the measurements of the friction force and of the external strain of the tube are available, a model is needed to estimate the friction coefficient and there are no overabundant measurements to confirm its adequacy.

Conclusion

The purpose of the study was to design an experimental configuration enabling the friction measurement between an inert material, mechanically representative of an explosive, and steel. The desired sliding velocities were of the order of 10 m/s and the desired pressures These results are useful since there is otherwise very little data. Future researches should focus on:

-Understanding local behaviour (namely the onset of sliding), and in this objective there are ongoing developments to improve the metrology (measurement of fields) and analysis (inverse method) to obtain more localised data on the interface [START_REF] Durand | Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations[END_REF].

-Designing devices enabling the extension of the pressure range to 100 MPa and over. It has been done in [START_REF] Durand | Identification of the friction under high pressure between an aggregate material and steel: experimental and modelling aspects[END_REF] with a low-velocity tribometer which need to be adapted to high velocities.

-The achievement of higher velocities (100 m/s), for which another dynamic testing device would have to be designed.

-Modelling the friction process to understand the influence of the roughness [START_REF] Hector | Focused Energy Beam Work Roll Surface Texturing Science and Technology[END_REF], [START_REF] Hector | Analysis of Engineering Surfaces[END_REF], [START_REF] Sheu | Tool Surface Morphologies for Friction and Wear Control in Metalworking Processes[END_REF] and the influence of the chemical interaction [START_REF] Adams | Adhesion, Lubrication and Wear at the Atomic Scale[END_REF], [START_REF] Qi | Adhesion and Adhesive Transfer at Aluminum/Diamond Interfaces: A First Principles Study[END_REF], [START_REF] Zhang | Atomic Simulation of Kinetic Friction at Its Velocity Dependence at Al/Al and α-Al 2 O 3 /α-Al 2 O 3 Interfaces[END_REF], [START_REF] Zhang | Origin of Static Friction and its Relationship to Adhesion at the Atomic Scale[END_REF].
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Figure 6 :

 6 Figure 6: Raw signals from the strain gauges.
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 7 Figure 7: Forces F i and F o respectively applied to the input and output ends of the device.
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 8 Figure 8: V i , V o and V, respectively, velocity of the input end of the cell, velocity of the output

  (a): smallest pre-tightening value (b): largest pre-tightening value

Figure 9 :

 9 Figure 9: Levels of normal pressure (p ind ) and shear stress (τ mean ) at the interface during a test.
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 10 Figure 10: Shear stress τ mean as a function of the normal stress p ind . Results obtained during
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 11 Figure 11: Definition of u ri tube : initial difference in radii between the exterior of the specimen and the interior of the tube and of u ri screw : initial difference in radii between the screw and the
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 5 Figure 5.
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  be estimated.Using a first order Taylor expansion of the function exp, the formula (25) leads to an Figure12shows the validity of this approximation. This approximation enables f to be identified from the values of Figure10). This gives, with z g = 20 mm, f = 0.14 for the low-velocity tests and f = 0.37 for the high-velocity tests.
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 12 Figure 12: Numerical and analytical (from relation (25)) evolutions of f 1 as a function of

Figure 13 :

 13 Figure 13: Axial and radial displacements (u z and u r ) imposed on the tube-specimen

Figure 15 :

 15 Figure 15: Numerical and analytical axial profiles of the friction stress for f = 0.15 and for

  were several tens of MPa. A new confinement set-up was designed because of the low mechanical resistance of the material when submitted to the classical compression of commercial tribometers. The stresses and the friction coefficient between steel and the inert material have been identified from indirect measurements, from an analytical model and from numerical simulations of the mechanical response of the set-up.The mean pressures reached almost 20 MPa whereas the classical pin-on-disk tribometer limits this pressure to 5 MPa[START_REF] Dickson | Frictional Heating and Ignition of Energetic Materials[END_REF]. The sliding velocities reached around 1 mm/min during low-velocity tests and around 10 m/s during high-velocity tests. An influence of the sliding velocity on the friction has been clearly demonstrated since the kinetic friction coefficient identified is around 0.15 for the low-velocity tests and of the order of 0.4-0.5 for the high-velocity tests.
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For the high-velocity tests, the uncertainty due the relative displacement is taken into account by applying a 5 mm axial displacement on the tube (Figure 13) in additional simulations (instead of 0.1 mm). f = 0.56 is identified from these simulations.

The friction coefficient thus being calculated for both types of test (low and high sliding velocities), it is possible, for each test, for the mean pressure p mean at the interface to be estimated from the values of τ mean obtained by measurement (Figure 10). Thus, we can check if the desired pressures have been reached. The results obtained with the friction coefficient estimated from the numerical simulations are presented in Figure 14.