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ABSTRACT

In this paper we describe the LaTTe proof assistant, a soft-
ware that promotes the Lisp notation for the formalization
of and reasoning about mathematical contents. LaTTe is
based on type theory and implemented as a Clojure library
with top-level forms for specifying axioms, definitions, the-
orems and proofs. As a pure library, LaTTe can exploit the
advanced interactive coding experience provided by mod-
ern development environments. Moreover, LaTTe enables a
form of proving in the large by leveraging the Clojar/Maven
ecosystem. It also introduces a very simple and concise
domain-specific proof language that is deeply rooted in nat-
ural deduction proof theory. And when pure logic is not
enough, the system allows to take advantage of the host
language: a Lisp way to proof automation.

CCS Concepts
eTheory of computation — Logic; Type theory;

Keywords
Logic; Type Theory; Proof Assistant; Clojure

1. INTRODUCTION

Proof assistants realize an ancient logician’s dream of
(re)constructing mathematics based on purely mechanical
principles. Most proof assistants (perhaps with the excep-
tion of [6]) are complex pieces of software.

One important factor of this complexity is that proof as-
sistants generally try to mimic the common mathematical
notation, which is a complex parsing problem that very of-
ten get in the way of the user. LaTTe, in comparison, totally
surrenders to the simplicity (and sheer beauty) of a Lisp no-
tation. One immediate gain is that the complex issue of
parsing vanishes. It also makes the definitions more explicit
and less ambiguous than if written with more traditional
(and highly informal) computerized variants of mathemati-
cal notations.
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Another important characteristic is that LaTTe is imple-
mented as a library. The activity of doing mathematics is
here considered as a prolongation (and not as an alternative)
to that of programming. We see this as a clear advantage
if compared to proof assistants designed as standalone tools
such as Isabelle [10] or Coq [13]. First, this gives a better
separation of concerns, only a small library is to be main-
tained, rather than a complex tool-chain. Moreover, modern
Lisp implementations often come with very advanced tools
for interactive programming that enables live-coding math-
ematics?.

Another important factor of complexity in proof assis-
tants, both for the developers and the users, is the language
in which proof are written. The LaTTe proof language is
from this respect extremely small and simple. It only in-
troduces two constructs: assume and have with obvious
semantics. The language is also arguably less ad-hoc than
most other proof languages in that it is deeply rooted in
natural deduction proof theory [11]. As a summary, LaTTe
ailms at minimalism. It has less features than most other
proof assistants and each implemented feature strives for
simplicity and concision. We argue, however, that this set
of features is already plenty enough for the purpose of for-
malizing mathematics on a computer.

The outline of the paper is as follows. First, in section 2
LaTTe is introduced from a user perspective. The general
principles underlying the LaTTe kernel are then discussed
in section 3. In particular, we provide a bidirectional type
systems that is used in LaTTe to perform both proof/type-
checking and type inference. Perhaps the most significant
feature of LaTTe is the introduction of a domain-specific
language (DSL) for proof scripts. This is presented and il-
lustrated with examples in section 4. In section 5 we discuss
the way parts of proofs can be automated, the Lisp-way. In
section 6 we discuss some (non-)features of LaTTe in com-
parison with other proof assistants.

2. A LOGICIAN’S DREAM

Quoting [5], the main functionality of a proof assistant is
to:

e formalize mathematical contents on a computer

e assist in proving theorems about such contents

Mathematical contents, as can be found in textbooks and
proof assitants, is mostly based on definitions, and statement

Lcf. https://www.youtube.com /watch?v=5YTCY7wmONw



(proof compose-injective
:script
;7 Our hypothesis is that f and g are injective.
(assume [Hf (injective U V f)
Hg (injective T U qg)]
;7 We now have to prove that the composition is injective.
;7 For this we consider two arbitrary elements x and y

;¢ such that fo g(z)=f o g(y)
(assume [x T
y T
Hinj (equal V (f (g x)) (f (g y)))]

;7 Since f is injective we have: g(z) = g(y).
(have (a) (equal U (g x) (g y))
:by (Hf (g x) (g y) Hinj))
;7 And since g is also injective we obtain: x = y.
(have (b) (equal T x y) :by (Hg x y (a)))
;7 Since x and y are arbitrary, f o g is thus injective.
(have (c) (injective T V (A [x T] (f (g x))))
:discharge [x y Hinj (b)1))
;7 Which is enough to conclude the proof. [l
(ged (c))))

Table 1: A declarative proof script in LaTTe.

of axioms and theorems. For example, we can define the
notion of an injective function as follows in LaTTe:

(definition injective
"An injective function.
[[T %] [U %] [F (= T U)]]
(forall [x y T]
(= (equal U (F x) (F y))
(equal T x y))))

We see that a Lisp notation (with Clojure extensions and
Unicode characters) is used for the definition. With a bit
of practice and a good editor, this notation shoud become a
Mathematician’s best friend.

After defining mathematical concepts, the next step is the
statement of theorems. An important property of injective
functions is stated below.

(defthm compose-injective
"The composition of two injective functions
is injective."
[[T x] [Ux] [Vx] [f (== UV)] [g [= T U]]]
(= (injective U V f)
(injective T U g)
(injective T V (A [x T] (f (g x))))))

The defthm form only declares a theorem. In the next
step, we must provide a formal proof so that the theorem
can be used in further developments.

There are two main families of proof languages. First
there is the LCF-style tactic languages as found in e.g. Coq [13]
or HOL light [6]. This is an imperative formalism that works
on a goal-state to conduct the proofs. The main drawback
of such an approach is that the proofs are then very remote
from the mathematical practice. Moreover, they cannot be
understood without interacting with the tool. Proofs do
not have a life on their own in such environments. The
declarative proof languages, such as Isar® in Isabelle [10], on
the contrary, are designed to be closer to standard “pencil
and paper” proofs. In LaTTe a proof can be written in two
ways: either by supplying a lambda-term (as explained in
the next section), or more interestingly using a declarative

Isar stands for “Intelligible semi-automated reasoning”.

(definition D "(doc)"

[[z1 t1] [Tn tnl]

(term))

(term) t,u = O (kind)
| * (type)
| @ (variable)
| [t u] (application)
| (A [z t] w) (abstraction)
| (IT [z t] w) (product)
| (D t1t2 ... tn) (instantiation)

Table 2: The syntax of the LaTTe calculus

proof script. The language for proof scripts is probably the
most distinctive feature of LaTTe. It is described more thor-
oughly in section 4, but we illustrate its use by the proof of
the theorem compose-injective, given in Table 1. One impor-
tant characteristic of this proof is that the formal arguments
(in Lisp forms) are in close correspondence with the infor-
mal proof steps (in comments). An important difference
with a proof language such as Isar is that of simplicity: only
two constructs are introduced: assume and have. And
the theory behind is just standard natural deduction proof
theory [11].

3. LAMBDA THE ULTIMATE

The kernel of the LaTTe library is a computerized version
of a simple, although very expressive lambda-calculus. It is a
variant of AD as described in the book [8], which corresponds
to the calculus of constructions [4] (without the prop/type
distinction) enriched with definitional features.

3.1 Syntax

The basic syntax of the LaTTe calculus is given in Ta-
ble 2. There are various syntactic sugars that will for some
of them be introduced later on, and there is also a defno-
tation mechanism to introduce new notations when needed
(e.g. for the existential quantifier, which is a derived prin-
ciple in type theory). Perhaps the most notable feature of
the calculus is that it is compatible with the extended data
notation®, i.e. it is a subset of the Clojure language*. As
a dependently-typed lambda-calculus, there is no syntactic
distinction between terms and types. A type is simply a term
whose type is %, called the sort of types. The type of % itself
is a sort called a kind and denoted by [1°. The kernel of any
lambda-calculus is formed by the triptych: variable occur-
rences ,v, . .., function applications [t u] and abstractions
(A [z t] w). The latter expresses a function with an argu-
ment z of type ¢t (hence a term of type x) and with term u
as body. The type of a lambda-abstraction is called a prod-
uct and is denoted by (II [z ¢] u). The intended meaning is
that of universal quantification: “for all = of type t, it is the
case that u”. As an example, the term (A [A +] (A [z A] x))
corresponds to a type-generic identity function. Its type is
(IT [A ] (II [z A] A)). An important syntactic sugar that
we will largely exploit is that if in (II [z ¢] w) the variable z

3¢f. https://github.com/edn-format/edn

4This means that the lambda-terms in LaTTe can be quoted
in Clojure, and thus used to feed macros.

5For the sake of logical consistency, the kind [ has no type,
which makes LaTTe an impredicative type theory.



has no free occurrence in the body u, then we can rewrite
the product as (= t w). The intended meaning is that
of an arrow type of a function that from an input of type ¢
yields a value of type u, or equivalently by the logical propo-
sition that “¢ implies u”. When the logical point of view is
adopted, the universal quantified symbol V can be used in-
stead of the more esoteric II. For the type-generic identity
function, this finally gives (V [A x| (= A A)), i.e. for any
type (proposition) A, it is the case that A implies A. This
gives a first glimpse of the tight connection between com-
putation and logic in such a typed lambda-calculus, namely
the Curry-Howard correspondence [12].

Because LaTTe is aimed at practice and not only theory,
the basic lambda-calculus must be enriched by definitional
principles. First, parameterized definitions can be intro-
duced using the definition form. Then, such definitions
can be instantiated to produce unfolded terms. In LaTTe,
parenthesized (and desugared) expressions that do not begin
with X or II are considered as instantiations of definitions.

For example, we can introduce a definition of the type-
generic identity function as follows:

(definition identity
"the identity function"
[[A %] [x A]]
x)

Then, an expression such as (identity nat 42) would be in-
stantiated to 42 (through d-reduction, as discussed below).
In theory, explicit definitions and instantiations are not re-
quired since they can be simulated by lambda-abstractions
and applications, but in practice it is very important to give
names to mathematical concepts (as it is important to give
names to computations using function definitions).

3.2 Semantics

The semantics of lambda-calculus generally rely on a rewrit-
ing rule named S-reduction and its application under a con-
text:

e (conversion) [(A[z t]u) v] LN u{v/x}

e (context) if ¢ Z, ¢ then Clt] LN C[t'], for any single-
hole context C.

The notation u{v/z} means that in the term v all the free oc-
currences of the variable x must be substituted by the term

v. For example, we have [a [(A [z] [bz]) [¢ d]]] LN [a [b[cd]].
This is because if we let t = [(A [z] [bz]) [c d]] and ¢’ = [b [c d]]

then t 2 ¢/ by the conversion rule. And if we define the con-

text C[X] = [a X] with hole X, then C[t] 2 C[t'] by the
context rule. While S-reduction seems trivial, it is in fact
not the case, at least at the implementation level. One dif-
ficulty is that lambda-terms must be quotiented according
to a~equivalence. For example, (A [z t] u) =a (A [y t] u) be-
cause we do not want to distinguish the lambda-terms based
on their bound variables. Reasoning about such issues is in
fact not trivial, cf. e.g. [3]. A lambda-calculus aimed at
logical reasoning has to fulfill two important requirements:

e strong normalization: no lambda-term ¢ yields an in-
finite sequence of S-reductions

e confluence: if t ﬁ—> t1 and t B—) to then there exist

a term w such that ¢ B-) uw and to ﬁ-) u (up-to a-
equivalence)®

As a consequence, each lambda-term ¢ posseses a unique
normal form t (up-to a-equivalence). Thus, two terms t;
and t2 are (-equivalent, denoted by t1 =g to, iff t1 =, ta.
In a proof assistant based on type theory, the a-equivalence
and S-reduction relations are not enough, for example to
implement the definitional features. The LaTTe kernel uses
a 0-reduction relation, similar to that of [8], to allow the
instantiation of definitions.

If we consider a definition D of the form given in Table 2
then the rules are as follows:

e (instantiation) (D t1 ... ty) 2 u{ti/x1,...,tn/Tn}

e (context) if ¢ 2 ¢ then Ct] N C[t'], for any single-
hole context C.

At the theoretical level, the overlap between 3 and §-reductions

is relatively unsettling but in practice, S-reduction works by
copying terms while d-reduction uses names and references,
and is thus much more economical. Moreover, in mathe-
matics giving names to definitions and theorems is of pri-
mary importance so the issue must be addressed with rigour.
LaTTe here still roughly follows [8].

LaTTe introduces a further o-reduction relation for def-
special’s. This is discussed in section 5.

3.3 Type inference

There are three interesting algorithmic problems related
to the typing of lambda-terms. First, there is the type check-
ing problem. Given a term t and a term w, check that u is
the type of ¢. In LaTTe this problem occurs given:

e a definitional environment I' containing an unorded
map of definition names to definitions. For exam-
ple, if D is a definition then I'[D(¢1,...,ts)] gives the
lambda-term corresponding to the definition contents.

e a contert A containing an ordered list of associations
from (bound) variable names to types. If z is a variable
in the context, then A[z] is its type.

A term t that has type u in environment I and context A
is denoted by: I'; A ¢ :: u. It is not very difficult to show
that type checking in LaTTe is decidable. This would be a
relatively straightforward elaboration for AD in [8]. Suppose
that we know only the type part. Thus, we have to find a
term to replace the question mark in I'; A F7 0 w. This
term synthesis problem is not decidable in LaTTe and the
intuition is that we would then have an algorithmic way to
automatically find a proof for an arbitrary theorem. Term
synthesis can still be partially solved in some occasions, and
it is an interesting approach for proof automation. On the
other hand, one may want to replace the question mark in
the following problem: T'; A+t ::7. Now we are looking for
the type of a given term, which is called the type inference
problem. LaTTe has been designed so that this problem is
decidable and can be solved efficiently. If the inferred type
of term t is A, then we write: I'; A F¢:> A.

5The notation ¢ LN means zero or more S-reductions from
t to t’, it is the reflexive and transitive closure of the relation
of B-reduction under context.



DAFA:s se{x0}

DGAFA:>s Az AFBi>sy §1,8 € {x,U}

— (¢ rod
;A FR%:>0 (type) Az Abx > A (var ;AR (I [z A] B) > s2 (prod)
Az AFt:>B T;AR((II [z Al B) :>s se {x0} (abs) DARE:> Iz A]B) TTAFu: A (app)
abs a
AR N[z Al {) > (I [z A] B) T;AF [t u] > Blu/a} PP
D[D] :: [z1 t1] [z2 t2] - [Zn ta] = ¢
TAFRer itn A,z st Fesiito Ty A xy b, 22 i ta, 0o, 1 b1 F e it (ref)
re
;AR (Duruz oo um) :> (I [Zmg1 tng1] -0 (I [zn tn] tH{ur/z1,u2/x2, . oy Um /Tm }) -+ +)
Table 3: Type inference rules
(defn type-of-var [def-env ctx x]
(if-let [ty (ctx—-fetch ctx x)]
(let [[status sort] (let [ty’ (norm/normalize def-env ctx ty)]
(if (stx/kind? ty’)
[:0k ty']
(type-of-term def-env ctx ty)))]
(if (= status :ko)
[:ko {:msg "Cannot calculate type of variable. :term x :from sort}]
(if (stx/sort? sort)
[0k ty]
[:ko {:msg "Not a correct type (super-type 1is not a sort)" :term x :type ty :sort sort}])))
[:ko {:msg "No such variable in type context" :term x}]))
(example
(type-of-var {} ' [[bool %] [x bool]] ’'x) = ’[:0k bool])
(example
(type-of-var {} '[[x bool]] ’x)
= ' [:ko {:msg "Cannot calculate type of variable.",
:term x :from {:msg "No such variable in type context", :term bool}}])

Table 4: The Clojure source for the (var) inference rule.

Table 3 summarizes the type inference rules used in LaTTe.

Each rule corresponds to a Clojure function, we will take
the (var) rule as an example. Its implementation is a Clo-
jure function named type-of-var, whose complete definition is
given in Table 4. For a variable x present in the context A
(parameter ctx in the source code) with type A, the (var)
rule first normalizes A (using the norm/normalize function)
and compares its type with a sort x or [J. This checks that
A is effectively a type. In the conclusion of the rule, the
notation x :> A is to be interpreted as “the inferred type
for x is A”. In the source code, this corresponds to the
value of the variable ty. Note that only the denormalized
version of the type is inferred, which is an important mem-
ory saving measure. The other rules are connected similarly
to a rather straightforward Clojure function. One subtlety
in the (app) rule for application is that the operand term u
must be checked against an inferred type A. It is possible
to implement a separate type-checker. For one thing, type-
checking can be done more efficiently than type inference.
Moreover, it is a simpler algorithm and is useful for separate
proof checking. However, there is a large overlap between
the two algorithms and it is not really worth the duplication.
Indeed, a type-checking algorithm can be obtained “for free”
using the following fact:

ARt uwiff T;AFE:>vand v =g u

(proof) P ::= (proof thm :term t)
| (proof thm :script p)

(direct proof)
(proof script)

(script) p == o p (proof step o)
| (assume [H t] p) (global assumption)
| (qed t) (proof term t)
(step) o =

(local assumption)
(proof of A with term ¢)
(discharge assumptions)

(assume [H t] p)
| (have (a) A :by t)
| (have {(a) A :discharge [z1 - - zn, t])

Table 5: The proof language of LaTTe

The complete implementation of the type inference algo-
rithm is less than 400 lines of commented code, and is avail-
able on the github repository”.

4. A DSL FOR PROOF SCRIPTS

The language of mathematical proofs is very literary and
remote from the formal requirements of a computer system.

"cf.https://github.com/latte-central /LaT Te/blob/master/
src/latte/kernel /typing.clj



Tizy ity it Fp=>t T

Tixyoth,...,zn ity bt P Dizy e, ,zn it bt P )
(term) (script)
D,thm(zy i t1,...,Tn 5 tp)<d? 2 P D,thm(z1 it ..., Tn 3 tp)<d? 2 P
F (proof thm :term t) 4I',thm <t :: P F (proof thm :script p) 4", thm <t :: P
ARt TSARp=u AT DA H = tFp=u
(step) < (glob) (ged)

AR p=u-AT”

I'; A (assume [H t] p) = u

T;AF (qged t) = ¢

DAH:tFp=u-TY (loc) ARt A (by)
oc
T; A+ (assume [H t] p) 4T [ At (have (a) A by t) AT, {a)<at = A Y
DARE A Y=z at] o N[z i tn] t)--0)
(hyp)

Az ot ..

, T ity b (have (a) A :discharge [z1 - --

zn t]) AT, {a) at' i+ A

Table 6: The semantics of LaTTe proof scripts

H P = QA(-R = -Q)
(a) P = Q A Elim:H
x. P
(b) Q = Elim:(a), x
(c) "R = -Q A Elim:H
Hr. =R
(d) -Q = Elim:(c), Hr
(e) Q Repeat:(b)
HR Absurd:Hr
(&) P = R = Intro:x, (f)

Table 7: A Fitch-style proof (from [11])

As discussed in [5], a proof should be not just a certificate
of truthness but also, and perhaps most importantly, an ez-
planation about the theorem under study. Proof assistants
that use a tactic language (such as Coq or HOL) do not pro-
duce readable proofs. To understand the proof, one gener-
ally has to replay it step-by-step on a computer. A language
such Isabelle/Isar allows for declarative proof scripts, that
with some practice can be read and understood like classi-
cal proofs on papers. However Isar is arguably a complex
an rather ad hoc language, with only informal semantics.
The domain specific language (DSL) for declarative proof
scripts in LaTTe is in comparison very simple. It is an im-
plementation, in the context of type theory and LaTTe, of
fitch-style natural deduction proofs [11], and is thus deeply
rooted in logic and proof theory. The syntax of the proof
language is very concise (cf. Table 5) and with simple and
formal semantics (cf. Table 6).

As an illustration, we consider the following proposition:

p=((P = QNER = Q) = (P = R)

A natural deduction proof of ¢, said in Fitch-style and adapted

from [11], is given in Table 7. We will now see how to
translate such a proof to the LaTTe proof language. Ini-
tially, the environment I' contains at least the theorem to
prove, but without a type, i.e. something of the form:
thm(P :: %,Q = x, R :: x)4? : ¢. The context A contains
the three bindings: P :: %,Q :: x, R :: %

The beginning of our LaTTe proof is as follows:

(proof thm :script
(assume (H (and (= P Q)

(= (not P) (not Q))))

According to rule (glob) of Table 6, the hypothesis H and
its type (the stated proposition) is introduced in the context
A. The term u generated by the body of the assume block
will be propagated. The first step is as follows:

. continuing

(have (a) (= P Q) :by (p/and-elim-left% H))

The justification (and-elim-left% H) is a defspecial that
will be discussed more precisely in the next section. But it
is simply a function that takes the proof of a conjunction and
generates the proof of the left operand of the conjunction.
The result of a have step, handled by the rule named (by),
is to add a new definition to the environment I' of the form:

(a) <t (= P Q)

with ¢ the left-elimination of assumption H. Of course,
this only works if the type-checker agrees: each have step
is checked for correctness.

Ultimately, each accepted step is recorded as a local the-
orem recorded in I'.

The hypothesis z of type P is assumed and in the next
steps we have:

. continuing
(assume [x P]
(have (o) O :by ((a) x))
(have (c) (= (not R) (not Q))
:by (p/and-elim-right% H))

Now, still through rule (by) the environment I is extended
with definitions (b}, obtained by applying z on (a), and (c),
obtained by right-elimination of H. For the moment we
remain very close to the original Fitch-style proof. In the
next step, the objective is to perform a reductio ab absurdum.
We first state =R and derive a contradiction from it. This
gives:



continuing
(assume [Hr (not R)]
(have (d) (not Q) :by ({c) Hr))
(have (e) absurd :by ((d) (b)))
(have (f1) (not (not R))
:discharge [Hr (e)]))

In the type theory of LaTTe, the proposition (not P) corre-
sponds to (= P absurd) with absurd an type without inhab-
itant, classically: (V [A %] A). Hence after having obtained
(not Q) through step {c) we obtain step (e). The :discharge
step (f1) corresponds to the generation of a lambda term of
the form: (X [Hr (not R)] (e)) hence a term of type (==> (not
R) absurd), thus (not (not R)). Since we discharged the hy-
pothesis Hr we can close the corresponding assume scope®.

In the Fitch-style proof at step (f) we deduce R by con-
tradiction. This reasoning step can only be performed in
classical logic. In fact the proposition (= (not (not R)) R) is
equivalent to the axiom of the excluded middle, and is thus
classical in essence. In LaTTe, we must rely on the classic
namespace to perform the corresponding step, as follows.

... continuing
(have (f2) R
:by ((classic/not-not-impl R) (f1))

At this point we are able to assert the conclusion of the
rule, and finish the proof.

continuing
(have <g> (==> P R) :discharge [x (f2)1))
(qed (g))))

The term synthetized at step (g) is propagated to the
(script) rule using the rule (ged). Finally, the type-checking
problem (g) :: ¢ is decided, which leads to the acceptation
or refutal of the proof. Hence, the natural deduction proof
script is only to elaborate, step-by-step, a proof candidate.
Ultimately, the type-checker will decide if the proof is correct
or not.

5. PROOF AUTOMATION, THE LISP WAY

As illustrated in the previous section, each have step of
the form (have (a) A :by t) involves the following chain of
events:

1. stating a proposition as a type A
2. finding a candidate term ¢
3. checking that the term t effectively has type A

In the normal usage, the user needs to perform steps 1
and 2, and LaTTe automatically performs step 3. In some
situations, the user can benefit from the LaTTe implemen-
tation to either state the proposition, or even receive help
in finding a candidate term.

Given the term ¢, the type inference algorithm of Table 3
may be used to obtain proposition A automatically. The
syntax of such a proof state is: (have (a) _ :by ¢). In many sit-
uations, it is not recommended because it may make a proof

8In the current version of LaTTe the :discharge steps are per-
formed automatically when closing the assume blocks. Thus,
they do not have to (and in fact cannot) be written by the
user.

unintelligible, however sometimes this is useful to avoid re-
dundancies in the proofs.

The most interesting situation is the converse: when the
proposition A is known but it remains to find the candi-
date term ¢. The term synthesis problem is not decidable
in general, but it is of course possible to help in the finding
process.

The LaTTe proof assistant follows the Lisp tradition of
allowing users to write extensions of the system in the host
language itself (namely Clojure). This is the purpose of the
defspecial form that we introduce on a simple example.

The left-elimination rule for conjunction is declared as fol-
lows in LaTTe:

(defthm and-elim-left "..."
[[A :type] [B :typell]
(==> (and A B)

A))

when using this theorem in a have step, one needs to
provide the types A and B as well as a proof of (and A B),
i.e. something of the form:

(have (a) A :by ((and-elim-left A B) p))

with p a term of type (and A B). But if p has a conjunction
type, then it seems redundant having to state propositions
A and B explicitely. This is where we introduce a special
rule and-elim-left% as follows.

(defspecial and-elim-left% "..."
[def-env ctx and-term]
(let [[status ty]
(type-of-term def-env ctx and-term)]
(if (= status :ko)
(throw (ex—-info "Cannot type term." ...))
(let [[status A B]
(decompose-and-type def-env ctx ty)]
(if (= status :ko)

(throw (ex—-info "Not an ‘and'‘-type."” ...))
[ (list #’and-elim-left A B) and-term])))))

A defspecial is similar to a regular Clojure funtion, ex-
cept that it may only be called during a have proof step. It
receives as arguments the current environment and context
as well as the argument calls. In the case of the left elimi-
nation rule, only one supplementary argument is passed to
the special: the term whose type must be a conjunction (pa-
rameter and-term in the code above). In the first step, the
type of the term is calculated using the inference algorithm.
If a type has been successfully derived, an auxiliary function
named decompose-and-type analyzes the type to check if it is
a conjunction type. If it is the case then the two conjuncts
A and B are returned. Ultimately, a defspecial form must
either throw an exception or return a synthetized term. In
our case, the non-special term ((and-elim-left A B) and-term) is
returned.

In a proof, the have step for left-elimination is now sim-
pler:

(have (a) A :by (and-elim-left% p))

This is only a small example, there are many other use of
specials in the LaTTe library.

The defspecial form is quite expressive since the com-
putational content of a special can exploit the full power
of the host language. We might wonder if allowing such



computations within proofs is safe. Thanks to the ultimate
type-checking step, there is no risk of introducing any in-
consistency using specials. In fact the only “real” danger is
to introduce an infinite loop (or a too costly computation)
in the proof process. But then the proof cannot be finished
so we are still on the safe side of things.

6. DISCUSSIONS

In this section we discuss a few common features of proof
assistants, and the way they are supported (or not) in LaTTe.

Implicit arguments

Proof assistants such as Coq [13] and Agda [2] allow to make
some arguments of definitions implicit. The idea is that
such arguments may be filled automatically using a unifi-
cation algorithm. The advantage is that the notations can
thus be simplified, which removes some burden on the user.
A first drawback is that because higher-order unification is
not decidable, it is sometimes required to fill the arguments
manually. Moreover the implicit arguments may hide some
important information: it is not because an argument can be
synthesized automatically that it is not useful in its explicit
form. In LaTTe all arguments must be explicited. However,
it is possible to refine definitions by partial applications. For
example, the general equality predicate in LaTTe is of the
form (equal T x y), which states that x and y of the same
type T are equal. In the arithmetic library®, the equality on
integer is defined as follows:

(definition =
"The equality on integers."
[[n int] [m int]]
(equal int n m))

Hence, we can write (= n m) instead of (equal int n m) when
comparing integers. Thanks to the powerful namespacing fa-
cilities of Clojure, partial application becomes a good alter-
native to implicit arguments. And there is no requirement
for a complex unification algorithm.

Holes in proofs

The proof assistant Agda [2] allows to put holes (i.e. unifi-
cation variables) in proof terms, which gives an alternative
way to perform proofs in a stepwise way. Such a partial
proof can be type-checked (assuming the holes have the cor-
rect type), and suggestions (or even completions) for holes
can be provided by a synthesis algorithm. For the moment,
LaTTe does not integrate such a feature but it is planned
for the next version of the proof engine. The idea is to reject
a proof but return possible mappings for the holes.

Inductives and =-terms

In Coq [13] and Agda [2] the term languages is much more
complex than that of LaTTe. In particular inductives and
Y.-terms are proposed. It is then much easier to introduce
inductive types and recursive functions in the assistants.
Moreover, this gives a way of performing proofs by (recur-

siwe) computation. The main disadvantage is that the unique-

ness of typing is lost, and of course the underlying implemen-
tation becomes much more complex. Moreover, universe

9¢f. https://github.com/latte-central/latte-integers

levels must be introduced because inductives do not seem
to deal well with impredicativity. In LaTTe we adopt the
approach of Isabelle [9] and HOL-light [6] (among others)
of introducing inductive sets and recursion as mathematical
libraries. Proof automation is then needed to recover a form
of proof by computation. In LaTTe we just started to im-
plement inductive sets and recursion theorems °. The next
step will be to automate recursive computations using def-
special forms. The Y-types are much easier to implement
than inductives. They offer a way to encode subsets, i.e. a
term Y : T.P(x) is the subset of the elements of type T’
that satisfies the predicate P. This is not needed in type
theory and LaTTe since such a subset can simply be coded
by a predicate (A [z T] (Pz)). We haven’t found any strong
argument in favor of X-types in the literature.

User interfaces

Most proof assistants are provided with dedicated user in-
terfaces, in general based on an extensible editor such as
Emacs. An example of such an environment is Proof gen-
eral [1] that is working with Coq and was also working with
Isabelle until version 2014. Proof general was also working
with other proof assistants, but support has been dropped.
The major weak points are maintainability and evolvabil-
ity. There is in general much more motivation to work on
the kernel of a proof assistant rather than its user inter-
face. The user interfaces for proof assistants can be seen as
live-coding environments. In most Lisps, and of course Clo-
jure, development environments are designed for a thorough
live-coding experience. This observation is one of the two
reasons why LaTTe was designed as a library and not as a
standalone tool. Our experience is that the Clojure coding
environments (Emacs/cider, Cursive, Gorilla Repl, etc.) are
perfectly suited for proof assistance. In a way LaTTe has a
very powerful interactive environment, maintained by rather
large communities, and all this for free!

Proving in the large

The second reason of the design of LaTTe as library is
to leverage the Clojure ecosystem for proving in the large.
Mathematical content can be developed as Clojure libraries,
using namespaces for modularization. The mathematical li-
braries can be very easily deployed using Clojars (and Maven)
and then used as dependencies in further development. Since
all proof forms are macros, the proof checking is performed
at compile-time and thus the deployed libraries are already
checked for correctness. In this way, although LaTTe is not
(yet) a very popular proof assistant, its features for proving
in the large are already much more advanced if compared
to all the proof assistants we know of. This is of course ob-
tained for free thanks to the way Clojure and its ecosystem
is (very thoroughly) designed.

10¢f. https://github.com/latte-central/fixed- points



7. CONCLUSION AND FUTURE WORK

In this paper we described the LaTTe proof asistant in
much details. The ways a dependent type theory might be
implemented in practice is not very often described in the
litterature, a notable exception being [7]. LaTTe can be seen
as a rather minimalistic implementation of a proof assistant
based on type theory. It is not, however, just a toy imple-
mentation for demonstration purpose. It has been used, and
is used, to formalize various theories such as a part of typed
set-theory, the foundations of integer arithmetic and some
developments about fixed points and inductive sets. These
are available on the projet page'.

Beyond the formalization of important parts of mathe-
matics (especially the real numbers), we have a few plans
concerning the implementation itself. The terms manipu-
lated in type theory can become quite large in the case of
long proofs. This is a rather sparsely studied aspect of type
theory, as most of the implementation aspects. We already
experimented a more efficient term representation, but the
performance gains were limited and the price to pay — give
up the internal Lisp representation — much too high. We also
introduced a memoization scheme for the type inference al-
gorithm (which is a known bottleneck) but the ratio memory
increase vs. CPU gains is not very good. The best way to
circumvent this performance issues is to split the proof in
separately-compiled subproofs. An automatic proof split-
ting algorithm is under study. Note, however, that these
performance issues only occur at compile-time because this
is when the proofs are checked for correctness. This has no
impact when using the mathematical libraries. Most of the
other planned features revolve around higher-order pattern
matching and (partial) unification. One functionality that
would then be possible is the notion of proof refinement us-
ing holes. This would also enable the development of search
algorithms for theorems.

"https://github.com/latte-central
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