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We are interested in modeling the impact of media investments on automobile manufacturer's market shares. Regression models have been developed for the case where the dependent variable is a vector of shares. Some of them, from the marketing literature, are easy to interpret but quite simple (Model A). Other models, from the compositional data analysis literature, allow a large complexity but their interpretation is not straightforward (Model B). This paper combines both literatures in order to obtain a performing market share model and develop relevant interpretations for practical use. We prove that Model A is a particular case of Model B, and that an intermediate specification is possible (Model AB). A model selection procedure is proposed. Several impact measures are presented and we show that elasticities are particularly useful: they can be computed from the transformed or from the original model, and they are linked to the simplicial derivatives.

Introduction

We are interested in modeling the impact of media investments on automobile manufacturer sales. We consider that the sales volume in a particular segment of the automobile market is mainly determined by the demand through the socio-economic and regulatory context. Thus, each brand tries to have "the largest share of the cake" using marketing tools, like price and media investments. The impact of media investments of brand j on its own sales cannot be assessed without taking into account the competition. Thus, we want to model the impact of media investments on market-shares, taking into account the marketing actions of competitors, directly (cross-effects) or indirectly.

In the existing literature, we found different types of models to model shares (see [START_REF] Morais | A tour of regression models for explaining shares[END_REF] for a comparison). Some of them, from the marketing or econometric literature, are perfectly adapted to model market-shares and to interpret direct and cross impacts of media investments, but the proposed models are quite simple and do not allow the specification of cross effects between brands. Actually, a "fully extended attraction model" is proposed by Cooper and Nakanishi [START_REF] Cooper | Market-Share Analysis: Evaluating Competitive Marketing Effectiveness[END_REF] to do so. However it does not succeed in identifying the parameters themselves but only their centered version (see [START_REF] Morais | Using compositional and dirichlet models for marketshare regression[END_REF] for details). Other models adapted to share data are proposed, which are called compositional regression models and are based on the simplicial geometry. These mathematical models are very flexible in terms of explanatory variables and complexity (alternative-specific and cross-effect parameters), but their interpretation is not straightforward. This paper combines both literatures in order to obtain a performing market-share model allowing to get relevant and appropriate interpretations, which can be used for example to help decision making of automobile manufacturers concerning their media investments.

Here we focus on compositional models which are coming from the so called Compositional Data Analysis (CODA) literature (see [START_REF] Pawlowsky-Glahn | Modeling and Analysis of Compositional Data[END_REF]). A vector of D shares is a composition of D components, lying in a space called the simplex, and then respecting the following constraints: components are positive and summing up to one. Compositional models are "transformation" models in the sense that they assume a Gaussian distribution for a log-ratio transformation of shares. Transformation models have several advantages compared to other share models: they are easy to estimate (usually by OLS on coordinates) and flexible in terms of explanatory variables (they can be compositional or classical variables, with or without component-specific parameters). More specifically, we focus on models where a compositional dependent variable is explained by some compositional explanatory variables. We distinguish two specifications of this model: in Model A, a unique coefficient is associated to each compositional explanatory variable (see [START_REF] Wang | Multiple linear regression modeling for compositional data[END_REF]), whereas in Model B a compositional explanatory variable is associated to component-specific and cross-effect coefficients (see [START_REF] Chen | Multiple linear regression with compositional response and covariates[END_REF]). We prove that Model A is a particular case of Model B, and that the two specifications can be mixed (Model AB) in order to attribute more or less complexity to some explanatory variable impacts. A model selection procedure is proposed using an adapted Fisher test, considering that Model B is the unconstrained model to be compared to the constrained models, Model A or Model AB.

In the CODA literature, the interpretation of parameters is not well developed. They are usually interpreted in terms of marginal effects on the transformed shares. In this paper we propose several interpretations directly linked to the shares, in terms of marginal effects, elasticities and odds ratios, in order to enhance the interpretability of these models. We show that marginal effects on shares may not be well adapted to interpret these models because they depend a lot on the considered observation. Elasticities are useful to isolate the impact of an explanatory variable on a particular share as they correspond to the relative variation of a component with respect to the relative variation of an explanatory variable, ceteris paribus (in a simplex sense). We show that they can be computed from the transformed model or equivalently from the model in the simplex. Other types of elasticities and odds ratios can be computed for ratios of shares, which are observation independent but they can be complicated to use in practice.

Model A, Model B and an intermediate Model AB are applied to an automobile market data set, where the aim is to explain the brands market-shares in a segment with brands media investments. The models are interpreted using marginal effects, elasticities and odds ratios, and they are compared using the Fisher test and in terms of (out-of-sample) goodness-of-fit using quality measures adapted for share data. This paper is organized as follows: the second section presents the two types of compositional models, their intermediate specification, along with the adapted Fisher test for model selection; the third section explains how to interpret them; the fourth section presents the results of the estimation of the models for the French automobile market along with interpretations, Fisher tests and quality measures. Finally, the last section concludes on the findings and on further directions to be investigated.

Compositional regression models

Definition and notations

By definition shares are "compositional data": a composition is a vector of D parts of some whole which carries relative information. D-compositions lie in a space called the simplex S D .

S D = s = (s1, s2, . . . , sD) : sj > 0, j = 1, . . . , D; D j=1 sj = 1
Compositions are subject to the following constraints: the components are positive and sum up to 1. Because of these constraints, classical regression models cannot be used directly. The following operations are used in the simplex (see [START_REF] Van Den Boogaart | Analysing Compositional Data with R[END_REF] for example): • is the power transformation, corresponding to the multiplication operation in the simplex:

λ x = C(x λ 1 , . . . , x λ D ) with λ ∈ R, x ∈ S D
• is the compositional matrix product, corresponding to the matrix product in the simplex:

B x = C D j=1 x b 1j j , . . . , D j=1 x b Dj j with B ∈ RD×D, x ∈ S D

Log-transformation approach

Compositional data analysis is based on the log-ratio transformation of compositions in order to obtain coordinates which can be represented in a R D-1 Euclidean space 1 . Then, classical methods suited for data in the Euclidean space, like linear regression models, can be used on coordinates. Below, terms with a " * " refer to transformed elements (in coordinates), whereas terms without " * " refer to elements in the simplex (compositions).

Several transformations are developed in the CODA literature (see [START_REF] Pawlowsky-Glahn | Modeling and Analysis of Compositional Data[END_REF] for example). The ILR (isometric logratio) transformation is preferred for compositional regression models. It consists in a projection of components on an orthonormal basis of S D in order to obtain D -1 orthonormal coordinates. Considering the transformation matrix V D×(D-1) , ILR coordinates are defined as:

ilr(s) = V log(s) = s * = (s * 1 , . . . , s * D-1 )
Its inverse transformation is given by: S = ilr -1 (S * ) = C(exp(VS * )) .

After inverse transformation, results of a compositional analysis are the same regardless of the chosen transformation. However, ILR is preferred for compositional regression models.

Two types of compositional models

In this section, we consider two types of models adapted to a compositional dependent variable explained by compositional explanatory variable (and potentially classical variables). The difference between the two models is about the specification of the relationship between compositional explanatory and dependent variables: in contrast with Model B, Model A does not allow for component-specific and cross effect parameters associated to a compositional explanatory variable X. In this paper, we add the possibility to use classical variables Z as explanatory variables. There is no difference between Models A and B with regard to classical variables: component-specific parameters are specified.

For simplicity, models are presented with a single explanatory variable of each type (compositional X and classical Z), but of course several ones can be used like in the examples presented in Section 4.

Model A: Compositional dependent and explanatory variables without componentspecific and cross-effect parameters

Model A is presented by [START_REF] Wang | Multiple linear regression modeling for compositional data[END_REF]. In Model A, a compositional explanatory variable is associated to a unique parameter b ∈ R (see Table 1, equation ( 1)). Thus, cross-effects2 are not modeled directly, but indirectly through the shares closure. Indeed, we show in [START_REF] Morais | Using compositional and dirichlet models for marketshare regression[END_REF] that Model A in equation ( 1) can be written in attraction form like in equation ( 3). This equation contains a closure, and we can see that a change of X l will have an indirect impact on Sj through the denominator. Moreover, the attraction form of Model A enables to see that Model A respects the IIA (independence from irrelevant alternative) property. This property means that the ratio of shares of two alternatives j and l, Sj/S l , does not depend on characteristics of other alternatives m = j, l. Note that equation (3) can be expressed either in terms of shares Xj or in terms of volumes Xj thanks to the closure operation. If a classical explanatory variable Z is used in Model A, it is associated to a composition of parameters c3 . The ILR transformation is used in order to estimate Model A (see equation ( 5)). Assuming that the transformed error terms are normal (implying that the non-transformed compositional error terms are "normal in the simplex"), we can use OLS to estimate the model.

An important feature of Model A is that compositional explanatory variables X have to be of the same dimension that the compositional dependent variable S, such that S, X ∈ S D . This model is adapted when compositions X and S refer to two variables associated to the same components in the same order, for example S can be the composition of brands market-shares and X the composition of brand media investments (where brands are in the same order in S and X) (see Section 4), or S can be the composition of GDP from three sectors and X the composition of labor force of these three sectors. Otherwise, this model makes no sense. Then, equation ( 5) is estimated using (D -1) × T observations (the number of ILR coordinates D -1 times the number of observations T ). Actually, this model specification is close to the specification of multinomial or market-share models (see [START_REF] Morais | A tour of regression models for explaining shares[END_REF] for a comparison).

Model B: Compositional dependent and explanatory variables with componentspecific and cross-effect parameters

Model B is used by [START_REF] Van Den Boogaart | Analysing Compositional Data with R[END_REF] and [START_REF] Chen | Multiple linear regression with compositional response and covariates[END_REF] for example. Using exactly the same dependent and explanatory variables as Model A (see equation ( 2)), it allows each component X l of X to have a specific impact on each component Sj of S. This is particularly visible in the attraction form of Model B (equation ( 4)): instead of having a unique parameter b ∈ R associated to X, we have a matrix of parameters B ∈ RD S ,D X . If DS = DX and S and X refer to the same components in the same order, then B is a square matrix with direct effect on the diagonal and cross-effects outside of the diagonal. There is no difference between Model A and Model B for the specification of the intercept and classical explanatory variables. The same remark than for Model A can be done concerning the attraction form of Model B: equation ( 4) can be expressed either in terms of shares Xj or in terms of volumes Xj thanks to the closure operation.

As in Model A, in order to estimate Model B, we transform it using the ILR transformation (see equation ( 6)). But here, DS -1 equations are estimated separately (one for each coordinate of S) with T observations each. The complexity of Model B is reflected by a large number of parameters. This can be an issue if the number of observations T is too small.

Note that in Model B, X ∈ S D X and S ∈ S D S can have different dimensions. For example, S can be the composition of GDP from three sectors and X the composition of labor force for six occupation categories. In our application, DS = DX : S is the composition of brands market-shares and X is the composition of brand media investments (see Section 4).

Intermediate specification (Model AB) and model selection

One can show that Model A is a particular case of Model B where DS = DX and where B * is a diagonal matrix with b * = b on the diagonal and 0 otherwise, that is where only the j th ILR coordinates of compositional explanatory variables are relevant to explain the j th ILR coordinates of the dependent variable (see the appendix A.1 for a proof in the case of D = 3). Then, in a given model it is possible to mix the two specifications if and only if DS = DX for the explanatory variable with the Model A specification. This model called Model AB is defined as follows in the simplex:

St = a ⊕ β Xt ⊕ B Yt ⊕ Zt c ⊕ (7) 
Model AB can be estimated using its expression in ILR coordinates:

S * jt = D-1 d=1 1 d=j a * d + βX * jt + D-1 l=1 D-1 d=1 1 d=j b * dl Y * lt + D-1 d=1 1 d=j c * d Zt + * jt ( 8 
)
with 1 d=j = 1 if d = j and 0 otherwise, and * jt ∼ N (0, σ 2 ) ∀j = 1, . . . , D -1, ∀t = 1, . . . , T . However, the induced constant variance of transformed error terms across coordinates, as in Model A, is questionable. Note that Model B can also be estimated using dummy variables as in equation ( 8) leading to the same estimated coefficients but not to the same standard errors than in equation ( 6) because of the assumption on error terms. As Model A and Model AB are constrained versions of Model B, a model selection can be done using a Fisher test.

Table 1: Two kinds of models for compositional dependent and explanatory variables

Model A Model B

In compositions

St = a ⊕ b Xt ⊕ Zt c ⊕ (1) St = a ⊕ B Xt ⊕ Zt c ⊕ (2) 
In attraction form

Sjt = ajX b jt c Z t j jt D m=1 amX b mt c Z t m mt (3) Sjt = aj D l=1 X b jl lt c Z t j jt D m=1 am D l=1 X b ml lt c Z t m mt (4) 
In coordinates

S * t = a * + X * t b + c * Zt + * t ( 5 
)
with * jt ∼ N (0, σ 2 ) ∀j, ∀t

S * t = a * + X * t B * k + c * Zt + * t ( 6 
)
with * jt ∼ N (0, σ We consider testing the following null hypothesis : H0 : b * j,j = b * ∀j and b * j,l = 0 ∀j = l. The associate test statistic is:

F = SSE0 -SSE1 SSE1 × N -K p ∼ F (p, N -K) under H0 = SSE0 -SSE1 SSE1 × (D -1)[T -K(D -1) -KZ -1] p
with SSE0 and SSE1 the sum of squared errors of the constraint and non-constraint models, T the number of observations, K the number of compositional explanatory variables, KZ the number of classical explanatory variables, and p the number of constraints.

Interpretation of compositional models

As the estimation of compositional models is performed in the coordinate space, the interpretation of the fitted parameters is difficult because parameters are linked to the log-ratio transformation of shares, not directly to the shares. It is possible to derive the coefficients in the simplex associated to shares using the inverse transformation, but their interpretation is not straightforward either. We are going to show that relative impacts, like elasticities or odds ratios, are more natural (as is the case of the classical logistic model) than marginal effects, to interpret impacts on shares.

Table 2 compares the different measures of impact assessment of explanatory variables (compositional and classical) in Model A and Model B, which are detailed below. Note that it is not possible to measure the impact of the share of X lt , but only of the corresponding volume of Xlt . Indeed, a share cannot increase ceteris paribus because it implies a change in other shares. However, we can consider a change in the volume of Xlt , with all other volumes Xmt, m = l fixed.

Marginal effect of a component

In classical linear models, coefficients are usually interpreted in terms of marginal effects: if the explanatory variable increases by one, then the dependent variable increases by the value of the coefficient. In the case of compositional models, we prove in this paper that it is possible to compute marginal effects, but it is not straightforward. The marginal effect of the component Xlt (in volume) on the dependent share Sjt is defined as:

me(E ⊕ Sjt, Xlt ) = ∂E ⊕ Sjt ∂ Xlt (9) 
where E ⊕ Sjt is the "expected value in the simplex" of Sjt (see [START_REF] Morais | Using compositional and dirichlet models for marketshare regression[END_REF]), such that

E ⊕ Sjt = a j X b jt c Z t j D m=1 amX b jt c Z t m
for Model

A and

E ⊕ Sjt = a j D l=1 X b jl lt c Z t j D m=1 am D l=1 X b ml lt c Z t m for Model B.
For Model B, we show that marginal effects can be computed as follows:

me(E ⊕ Sjt, Xlt ) = ∂E ⊕ Sjt ∂ log E ⊕ Sjt ∂ log E ⊕ Sjt ∂ log Xlt ∂ log Xlt ∂ Xlt = b jl - D m=1 Smtb ml E ⊕ Sjt Xlt (10) 
If M ED S ,D X is the matrix containing all marginal effects, we then have:

M E(E ⊕ St, Xt) = [S jt ] WtB 1 Xlt = [S jt ] WtVB * V 1 Xlt (11) 
where denotes here the Hadamard product (term by term product)4 , [S jt ] is a DS × DS matrix with Sjt on the j th row, 1

Xlt is a DX × DX matrix with Xlt on the l th column, B * and B denote the parameters in the transformed space and in the simplex, and Wt is a DS × DS matrix composed of diagonal terms equal to 1 -E ⊕ Sj and non-diagonal terms in column j equal to -E ⊕ Sj. Similar results can be found for Model A in Table Table 2, where B is replaced by b.

This marginal effect matrix can also be computed using ILR coordinates and Jacobian matrices instead of using the attraction form of the model (see detail in the appendix A.2).

Elasticity of a dependent share relative to a component

The marginal effect me(E ⊕ Sjt, Xlt ) depends on all shares Smt and on volumes Xlt . We can see in our application that it can vary a lot across observations, and therefore it is not a good measure to summarize the impact of a component Xlt on a share Sjt. We are going to show that elasticities are more natural to interpret compositional models.

The first elasticity we may want to compute is the elasticity of the share Sjt relative to the volume of Xlt . It corresponds to the relative variation of Sjt induced by a relative variation of 1% of the volume Xlt (keeping all other volumes constant) or alternatively a relative variation of 1% of the share X lt (holding constant the ratios X it X jt of the remaining components).

e jlt = e(E ⊕ Sjt, Xlt ) = ∂E ⊕ S jt E ⊕ S jt ∂ Xlt Xlt = ∂ log E ⊕ Sjt ∂ log Xlt (12) 
Since both variables (dependent and independent) are compositions, we should consider the notion of derivative of a simplex valued function with respect to a compositional variable. Egozcue et al. (in [START_REF] Pawlowsky-Glahn | Compositional data analysis: Theory and applications[END_REF], chapter 12) treat the case of the derivative of a simplex-valued function of a real variable and Barcelo-Vidal et al. (in [START_REF] Pawlowsky-Glahn | Compositional data analysis: Theory and applications[END_REF], chapter 13) the case of the derivative of a vector valued function of a compositional variable. Combining the two notions, let us denote by

∂ ⊕ h ∂ ⊕ X l the directional C derivatives of a function h from the simplex S D X of R D X
to the simplex S D S of R D S . Using a result (see appendix A.3) linking the directional C derivatives of the function h of shares with the semi-log derivatives of the corresponding function of volumes, we can then derive the relationship between the directional C-derivatives of the share vector St with respect to the shares X lt and the above elasticities as follows:

e ⊕ lt = ∂ ⊕ E ⊕ St ∂ ⊕ X lt = C exp ∂ log E ⊕ St ∂ log Xlt = C (exp(e 1lt ), . . . , exp(e Dlt )) (13) 
The elasticities e jlt from (12) are easy to compute from the attraction form of E ⊕ Sjt, in a similar way than marginal effects (see equation ( 10)). They can also be expressed in matrix form E(E ⊕ St, Xt) (results are in Table 2). The relationship between marginal effects and elasticities is as follows:

M E(E ⊕ St, Xt) = [S jt ] E(E ⊕ St, Xt) 1/ Xlt
where denotes the Hadamard product. These elasticities allow to isolate the impact of one X's component on one S's component which is very useful. This impact is understood as the impact of a relative variation of the volume (resp: the share) keeping all other volumes constant (resp: holding constant the ratios of the remaining components). Compared to marginal effects, the e(E ⊕ Sjt, Xlt ) still depend on observations through the shares Smt, but do not depend any more on the volumes Xlt . Then, if shares are not varying too much, as it is the case in our example (see Section 4), they can be a good measure of impact.

As for marginal effects, the elasticity matrix can also be computed from ILR coordinates (see detail in the appendix A.2).

Let us now consider making a first order Taylor approximation of the vector of shares for a small relative change in component l. For a small δ = ∆ Xlt Xlt , we could write this first approximation of the share:

S jt = Sjt(1 + δe jlt ) (14) 
and it is easy to see that S t = (S 1t , . . . , S Dt ) does belong to the simplex (they are summing up to one because D m=1 E ⊕ Smte jlt = 0 and D m=1 E ⊕ Smt = 1, see proof in the appendix A.4). Another first order Taylor approximation of the vector of shares denoted S t is5 :

S t = St ⊕ δ e ⊕ lt = C (S1t exp(δe 1lt ), . . . , SDt exp(δe Dlt )) (15) 
Note that when δ → 0, since exp(δe jlt ) 1 + δe jlt these two approximations are equivalent at first order:

S t C (S1t(1 + δe 1lt ), . . . , SDt(1 + δe Dlt )) = C S 1t , . . . , S Dt = S 1t , . . . , S Dt (16) 

Elasticity and odds ratio of a ratio of dependent shares relative to a component

In order to avoid being observation dependent, other measures can be computed for interpreting Models A and B. However, they are concerning ratios of shares, not directly a single share. Then, they can be complicated to interpret in practical cases.

Elasticity of a ratio of dependent shares

As compositional data analysis is based on a log ratio approach, elasticities of ratios are easy to compute. We can be interested in the elasticity of a ratio of shares (or volumes) E ⊕ Sjt/E ⊕ S j t relative to an infinitesimal change in the volume of Xlt .

e(E ⊕ Sjt/E ⊕ S j t , Xlt ) = ∂ log(E ⊕ Sjt/E ⊕ S j t ) ∂ log Xlt (17)
We see in Table 2 that the result is constant across observations because it only depends on parameters. Note here that Model A respects the IIA (Independence from Irrelevant Alternatives) property, meaning that the ratio of two shares E ⊕ Sjt/E ⊕ S j t only depends on the corresponding components j and j of X. Then, e(E ⊕ Sjt/E ⊕ S j t , Xlt ) = 0 if l = j, j . Moreover, the elasticity of the ratio between the share j and the share j relative to a change in Xjt is the same for all considered shares j . This is a lack of flexibility of Model A, because it implies that an increase of Xjt will reduce proportionally all other shares. Model B does not satisfy the IIA property, and then this model is able to take into account possible synergies between brands.

Odds ratio of a ratio of dependent shares Another type of interpretation which can be used for shares is the odds ratio. The advantage of this measure is that it is a measure of impact of a discrete change, as opposed to infinitesimal change, of Xl ( Xl is increased by ∆ × 100% between situations t = t1 and t = t2) on the ratio E ⊕ Sjt/E ⊕ S j t . The odds ratio for a couple of shares E ⊕ Sjt/E ⊕ S j t relative to Xlt is given by:

OR(E ⊕ Sjt/E ⊕ S j t , Xlt , ∆) = (E ⊕ Sj,t2/E ⊕ S j ,t2 )| Xl,t2 (E ⊕ Sj,t1/E ⊕ S j ,t1 )| Xl,t1 (18) 
where Xl,t2 = (1 + ∆) Xl,t1 and ∆ ≥ 0.

Remark: e(E ⊕ Sjt/E ⊕ S j t , Xlt ) and OR(E ⊕ Sjt/E ⊕ S j t , Xlt , ∆) are more or less measuring the same thing differently, if ∆ is small:

e(E ⊕ Sjt/E ⊕ S j t , Xlt ) (E ⊕ Sjt2/E ⊕ S j t2 ) -(E ⊕ Sjt1/E ⊕ S j t1 ) (E ⊕ Sjt1/E ⊕ S j t1 ) / Xlt2 -Xlt1 Xlt1 OR(E ⊕ Sjt/E ⊕ S j t , Xlt , ∆) -1 ( Xlt2 -Xlt1 )/( Xlt1 )

Elasticity of a particular ratio of dependent shares relative to a particular ratio of components

Usually, compositional models are interpreted directly on coordinates. Thus, it is advised to choose an appropriate ILR transformation in order to have ILR coordinates which make sense for the considered application, using sequential binary partition for example (see [START_REF] Hron | Linear regression with compositional explanatory variables[END_REF]). But, previously the interpretation was made in terms of marginal effects on ILR coordinates, that is marginal effects on a particular log ratio of shares. We show here that we can go a step further and make an interpretation in terms of elasticity for the ratio of shares directly.

[1] interpret in the case of Model B the impact of the ratio X l /g(X -l ) = Xl /g( X-l ) on the ratio E ⊕ Sj/g(E ⊕ S-j) = E ⊕ Šj/g(E ⊕ Š-j) (ratios on shares or volumes are equivalent), which is the ratio of a particular share (or volume) Sj over the geometric average of other shares (or volumes). The adapted ILR transformation is the following:

ilr(X)i = D -i D -i + 1 log xi ( D j=1+i xj) 1/(D-i) , i = 1, . . . , D -1
With this transformation, the first expected coordinate of S in Model A, is equal to:

Eilr(S)1 = D -1 D log E ⊕ S1t g(E ⊕ S-1t) = a * 1 + b * D -1 D log X1t g( X-1t) + c * 1 Zt
In Model B, the first expected coordinate of S is equal to:

Eilr(S)1 = DS -1 DS log E ⊕ S1t g(E ⊕ S-1t) = a * 1 + b * (j,l) 11 DX -1 DX log X1t g( X-1t) + b * (j,l) 12 DX -2 DX -1 log X2t g( X-1-2t) + . . .
In order to interpret their model, [START_REF] Chen | Multiple linear regression with compositional response and covariates[END_REF] compute the marginal effect of ilr(X)

(l)
1 on ilr(S)

(j) 1 :
me(Eilr(S)

(j) 1 , ilr( X) (l) 1 ) = ∂ D S -1 D S log(E ⊕ Sjt/g(E ⊕ S-jt)) ∂ D X -1 D X log( Xlt /g( X-lt )) = b * (j,l) 11
such that an increase of one unit of ilr( X)

(l)
1 implies an increase of b * (j,l) 11 units of Eilr(S) (j) 1 6 .

Note that this is only true if D X -1 D X log(X lt /g(X -lt )) moves because X1t moves while other Xjt remain constant. Otherwise, other ILR coordinates in the right part of the equation are moving and the marginal effect should take it into account. However, for Model A, we do not have this problem because other ILR coordinates of X are not used.

We show that this is equivalent to compute the following elasticity (multiplying by a factor if DS = DX ):

e E ⊕ Sjt g(E ⊕ S-jt) , Xlt = ∂ log(E ⊕ Sjt/g(E ⊕ S-jt)) ∂ log Xlt = (DX -1)/DX (DS -1)
/DS b will be different for each permutation (i.e. each couple j, l). [START_REF] Chen | Multiple linear regression with compositional response and covariates[END_REF] show how one can determine in one step the first coefficient of B * (j,l) , the b * (j,l) 11

which is used to compute the above elasticity, for all possible permutations without fitting several times the model. 

S jt Xlt (b jl -D m=1 Smtb ml ) S jt Xlt Indirect (-bS lt ) S jt Xlt M E(St, Xt) Matrix [S jt ] Wtb [1/ Xlt ] [S jt ] WtB [1/ Xlt ] e(Sjt, Xlt ) Direct b(1 -Sjt) (b jl -D m=1 Smtb ml ) Indirect -bS lt E(St, Xt) Matrix Wtb WtB e S jt S j t , Xlt Direct b (b jl -b j l ) Indirect 0 OR S jt S j t , Xlt , ∆ Direct (1 + ∆) b (1 + ∆) (b jl -b j l ) Indirect 0 e S jt g(S -jt ) , Xlt Direct b b * (j,l) 11 D X -1 D X / D S -1 D S Indirect 0 Z me(Sjt, Zt) (log cj -D m=1 Smt log cm)Sjt M E(St, Zt) Vector [S jt ] Wt log c e(Sjt, Zt) (log cj -D m=1 Smt log cm)Zt E(St, Zt) Vector Wt log cZt e( S jt S j t , Zt) log(cj/c j )Zt OR S jt S j t , Zt, ∆ (cj/c j ) ∆Z t
In this table, E ⊕ S jt is denoted by S jt to shorten notations, and denotes the Hadamard product. Moreover, these measures are estimated using observed shares S jt in practice, not fitted shares. Direct effect when l = j; indirect effect when l = j. W t contains 1 -S it on the diagonal and -S it otherwise.

Elasticities and odds ratios relative to a classical variable

The same kind of interpretations can be done for classical variables Z, as presented in Table 2, except for the elasticity including the geometrical mean.

Indeed, this would allow to measure the marginal effect (not the elasticity) of Zt over

D S -1 D S log S 1t
g(S -1t ) . This marginal effect would be equal to c * 1 for Model A and Model B, but this kind of interpretation is not useful to understand the impact of Z on the final shares. Thus, we do not show this measure in Table 2.

Note that in practice, elasticities and other measures depending on E ⊕ Sjt are estimated using the observed shares Sjt, not the fitted shares Sjt.

Impact of media investments on brands market-shares

In Europe, the automobile market is usually segmented in 5 segments, from A to E, according to the size of the vehicle chassis. Within each segment, one can suppose that consumers intending to buy new cars make their choice between brands7 according to the price and the "image" of the brand. The image of the brand is supposed to reflect the notion of quality and reliability of the brand. Car manufacturers spend millions of euros in media investments to enhance their image, giving rise to the following question: do the media investments have an impact on brands market-shares8 ?

In order to answer this question in the present paper, we model brands market-shares of the B segment of the French automobile market9 as a function of brand media investments (in TV, radio, press, outdoor, internet and cinema), of brand average catalogue price and of a scrapping incentive dummy variable. In a further work, we consider modeling other segments, and differentiate media investments according to channels.

In this paper, three brands are highlighted (Renault, Peugeot, Citroen, the leaders of the B segment) while other brands of the B segment are aggregated in a category "Others" (see Figure 1). The media investments are the sum of TV, radio, press, outdoor, internet and cinema investments in euros by brands for their vehicles in the B segment (see Figure 1). They do not include advertising budget for the brand itself. Actually we use the media investments of one, two and three months before the purchase time (at time t -1, t -2, t -3) as explanatory variables. The average brand price (average of catalogue prices weighted by corresponding sales at the vehicle level) is also used as an explanatory variable (see Figure 1). It does not include potential promotions made in the car dealership at the time of purchase. Even if they do not vary a lot across time, prices are used to position brands within the segment. We also control for scrapping incentive periods. The corresponding dummy variable is a "classical" variable (not compositional) and varies across time only, not across brands.

Model A and Model B can be considered in this framework: Model A considers that the effect of media investments and price are the same for all brands whereas Model B implies cross-effects and brand-specific impacts of media investments and price on market-shares. As our interest is on the impact of media investments, we also consider the Model AB which contains cross-effects and brand-specific parameters for media investments, but a unique parameter for all brands for the composition of prices. This section presents the results of this application. We interpret the two models A and B in terms of elasticities and odds ratios of shares, and we compare them in terms of goodness-of-fit measures. The Fisher tests comparing the non-constrained Model B to the constrained Model A and Model AB are also computed.

Non brand-specific impact of media investments (Model A)

Model In the case where it is assumed that brand media investments and brand prices have the same effect for all brands, the following equations correspond to the model in the simplex and the attraction formulation of 

St = a 3 τ =1 bτ Mt-τ ⊕ bP Pt ⊕ SIt c ⊕ εt ⇔ Sjt = aj 3 τ =1 M bτ t-τ,j P b P t,j c SI j εjt 4 m=1 am 3 τ =1 M bτ t-τ,m P b P t,m c SI m εmt
where S, Mt-τ , P ∈ S 4 are the compositions of brand sales, of brand media investments at time t -1, t -2 and t -3, and of brand prices. bτ , bP ∈ R are the parameters associated to compositional explanatory variables and c ∈ S 4 is a composition of parameters associated to the dummy variable SI (scrapping incentive).

The ILR transformed version of the model is:

S * t = a * + 3 τ =1 bτ M * t-τ + bP P * t + c * SIt + ε * t ⇔ S * jt = a * j + 3 τ =1 b * τ M * j,t-τ + b * P P * jt + c * j SIt + ε * jt for j = 1, 2, 3
where ε * is supposed to be a Gaussian distributed error term. The balance matrix used for the ILR transformation is the default matrix in the R software:

V ILR,4 =     -1/2 -1/6 -1/12 1/2 -1/6 -1/12 0 2/3 -1/12 0 0 3/4     (19) 
Results All explanatory variables are significant at 0.1% according to the analysis of variance (ANOVA).

Figure 2 compares observed and fitted shares. It confirms that the model succeeds in fitting the main trends of brands market-shares. However, the model underestimates the market-share of "Others" at the beginning of the period, and overestimates it at the end.

The parameters estimated with the ILR transformed model are presented in Table 3. The corresponding 4. We remark that the coefficient associated to the price is positive, which can be surprising, but price here is correlated with the image of quality of the brand, which is very important for the customer who buys a durable and expensive good like a car. The corresponding ILR transformed model is:

St = a 3 τ =1 Bτ Mt-τ ⊕ B P Pt ⊕ SIt c ⊕ εt ⇔ Sjt = aj 3 τ =1 4 l=1 M b τ,jl t-τ,l 4 
S * t = a * + 3 τ =1 B * τ M * t-τ + B * P P * t + c * SIt + ε * t ⇔ S * jt = a * j + 3 τ =1 3 l=1 b * τ,jl M * l,t-τ + 3 l=1 b * P,jl P * lt + c * j SIt + ε * jt for j = 1, 2, 3
where ε * is supposed to be a Gaussian distributed error term. The same balance matrix VILR,4 is used.

Results All variables of the model are significant at 0.1% according to the ANOVA, except the price which is significant at 1%. According to Figure 2, Model B seems to fit better than Model A (see Section 4.3 for associated quality measures). The estimated parameters of the models are given in Table 5 and Table 6. 

Interpretation of models A and B

Marginal effect of media investments We calculate the marginal effects of media investments at time t -1 on market-shares at time t. The average marginal effects are reported in Table 7. They are quite consistent between Model A and Model B, with positive direct marginal effects and negative cross marginal effects. However, these measures are not really adapted to summarize an impact as they fluctuate a lot across time, as we can see in Figure 3 (marginal effects can be larger than 6e-08 but we voluntarily cropped the graph). The marginal effects of Citroen media investments are especially very high when these investments are very low, for example between 2007 and 2009.

Elasticity of the share S j relative to X l For Model A, cross elasticities are necessarily negative and direct elasticities are necessarily positive if the parameter b is positive. Moreover, cross-elasticities of marketshares Sj with respect to a particular media budget M l,t-1 are equal for any brand j = l. This is a lack of flexibility of Model A compared to Model B: it does not allow positive interaction between brands, and it considers that if a brand increases its media investments of 1% it will affect in the same way all competitors market-shares Sj (they will all decrease by b%).

Let us consider a situation where the market shares of Citroen, Peugeot, Renault and Others in the B segment are respectively 10%, 25%, 25% and 40%. According to Table 8, if Renault increases its media investments Mt-1 about 1%, the average elasticity of Model A on the studied period suggests that its market-share should increase by 0.0204% to reach 25.005% and that competitors market-shares should decrease by 0.0204% to reach respectively 9.998%, 24.995% and 39.992% 10 . of other brands during the whole studied period. 

Elasticity of the ratio

Sj S j

relative to Xl (see Table 10 in the appendix A.5)

In Model A, the elasticity of a ratio Sj/S j relative to Xj is equal to 0.0267, whereas in Model B it can be smaller or larger according to the considered brands: the largest elasticity is for SR/SZ relative to XR which is equal to 0.0535. In general, ratios between the market-share of Renault and another brand are quite positively sensitive to media investments of Renault. For example, if the ratio SR/SZ is equal to 25/40 = 0.6250 and Renault increases by 1% its media investments, then the ratio will increase to 0.6253. Let us remind that this measure does not depend on the considered period. This evolution is consistent with the fact that the market-share of Renault is very positively elastic and the market-share of "Others" is very negatively elastic to Renault media investments, as seen in Table 8.

Odds ratio of

Sj S j

to a change of Xl (see Table 11 in the appendix A.5)

As expected, this measure is consistent with the previous one. In Model A, the odds ratio of any couple of brand market-shares Sj/S j to a change of 10% of Mj,t-1 is equal to 1.0025, whereas it can reach 1.0054 in Model B for the ratio SR/SZ for a change of 10% in MR,t-1. It means that if the ratio of market-shares of Renault over Others is equal to 25/40 = 0.6250 and Renault decides to increase its media budget by 10%, then this ratio will increase to 0.6266 according to Model A and to 0.6284 according to Model B.

Elasticity of

Sj g(S-j ) relative to Xl (see Table 12 in the supplementary material)

As in Model A, no matter which transformation is used, the parameter b1 will be the same, then we obtain that e

S jt g(S -jt ) , M j,t-1 g(M -j,t-1 ) = e S jt S j t , Mj,t-1 = e S jt S j t , M j,t-1 M j ,t-1
. Moreover, these elasticities are consistent with previous impact measures, and the largest one concerns the ratio S R g(S -R ) relatively to the ratio M R g(M -R ) , which is equal to 0.0389%. For example, let us consider a situation where the market-shares are the following: (SC , SP , SR, SZ ) = (13, 22, 25, 40) , inducing that S R g(S -R ) = 1.1095. Then, if Renault increases its media investments by 1% of the geometric average of other brands media investments, we can expect its market-share to move from 110.95% to 110.99% of the geometric average market-share of others.

Complexity and goodness-of-fit

We have seen that Model A and Model B can be used for the same type of application. Model B is more complex than Model A because it allows to have component-specific parameters for each explanatory variables along with cross-effects parameters. We have also fitted an intermediate model without component-specific and cross-effects parameters for the price (Model AB). The number of parameters to fit of Model B can be a serious limitation when the number of components D and the number of explanatory compositions K increase. For example, in our application Model A involves 10 parameters whereas Model AB and Model B involve respectively 34 and 42 parameters. However, B is also more flexible than Model A in the sense that it allows to have positive synergies (positive interactions) between some shares, whereas cross elasticities of Model A are necessarily negative11 . For example, we see in Table 8 that when the media investments of Citroen increase, it tends to benefit also to "Others", and when the media investments of Renault increase, it tends to benefit to Peugeot. Is the complexity of Model B useful to explain brands market-shares of the B segment? According to the Fisher tests of Model A against Model B, and Model AB against Model B, for which the estimated statistics are respectively 2.22 and 3.72 to be compared to the 99% quantiles, respectively 0.51 and 0.56, we conclude that Model B is significantly more adapted than Model A and Model AB. This means that the brand specific and cross effect parameters for media investments and prices are necessary to reflect the complexity of the competitive interaction in the automobile market. We also compare cross-validated12 quality measures: adjusted R 2 calculated on the transformed model with coordinates used for the estimation13 , R 2 based on the total variance (as defined in compositional data analysis) and RMSE (see Table 9). All measures agree on the fact that Model B is better than Model A and Model AB for our application. 

Conclusion

The focus of this paper is to present two types of compositional models for the case when the dependent variable and some of the explanatory variables are compositions, and to interpret them. A vector of shares (for example the brands market-shares in a given market) is called a composition, characterized by the fact that the components are positive numbers which sum up to one. Compositional models are transformation models: they use a log-ratio transformation to transform components into coordinates in order to enhance the estimation. The difference between Model A and Model B is due to the model specification: in Model A, a single global coefficient is associated to an explanatory composition, whereas in Model B we assume that each component of the explanatory composition has a specific impact on each component of the dependent variable. Thus, in Model B, cross-effects between components are explicitly specified and can be positive, whereas in Model A they are implicit and negative by construction. Consequently, Model B is more flexible but also much more complex than Model A, and the number of parameters to fit can be a serious limitation to use it. We prove in this paper that Model A is a constrained version of Model B, and that an intermediate Model AB can also be considered.

An adapted Fisher test can be used for model selection. This paper also presents a set of possible measures, mutually consistent, to interpret parameters of these two models: marginal effects, elasticities and odds ratios. The elasticity of a component relative to an explanatory variable is the relative variation of this component to a relative variation of the explanatory variable, ceteris paribus. This type of measure is totally adapted to enhance the interpretability of these models. However, this measure is observation dependent and we have to make sure that it is stable across observations to use it. Marginal effects are not well adapted to interpret this kind of models because they depend a lot on the considered observation. The other types of measures presented have the advantage to be observation independent, but they are more difficult to interpret in practical cases because they involve ratios.

The two models,and an intermediate specification, are applied to the B segment of the French automobile market, for the purpose of measuring the impact of brand media investments on brands market-shares. Model B fits our data better than Model A and Model AB according to cross-validated quality measures and to Fisher tests. In Model B, Renault is the brand which has the largest direct elasticity to media investments. This model also shows interesting non-symmetric synergies between brands.

In a further work, as compositions are observed across time, the potential autocorrelation of error terms has to be considered. Moreover, from a marketing point of view, it would be interesting to measure the impact of each channel (TV, radio, press, outdoor, internet, cinema) separately. 

A Appendix

=    1 √ 6 1 √ 2 1 √ 6 -1 √ 2 -2 √ 6 0   . Then, B = VB * V = 1 3 b *   2 -1 -1 -1 2 -1 -1 -1 2 
  such that the matrix B does verify the rows sum and columns sum equal to 0 requirement. We can check that in this case we have B X = b X:

B X = C(X 2 3 b 1 X -1 3 b 2 X -1 3 b 3 , X -1 3 b 1 X 2 3 b 2 X -1 3 b 3 , X -1 3 b 1 X -1 3 b 2 X 2 3 b 3 ) = C(X b 1 (X1X2X3) -1 3 b , X b 2 (X1X2X3) -1 3 b , X b 3 (X1X2X3) -1 3 b ) = C(X b 1 , X b 2 , X b 3 ) = b X
Then, in this particular case, the Model B specification is equivalent to the Model A specification.

A.2 Marginal effect and elasticity calculus on ILR

We are going to demonstrate how to compute marginal effects of the volume Xlt on the dependent shares Sjt, and elasticities of Sjt relative to Xlt , using the transformed and the non-transformed models. The demonstration is made for Model B, with D = 3 components and an ILR transformation defined by the transformation matrix

V =    2 3 0 -1 √ 6 1 √ 2 -1 √ 6 -1 √ 2   . Let us remind that X * = ilr(X) = V log(X), and X = ilr -1 (X * ) = C(exp(VX * )).
We define the following transformations:

T : ( X1, X2, X3) → ( X * 1 , X * 2 ) F : ( X * 1 , X * 2 ) → (ES * 1 , ES * 2 ) = (a * 1 + b * 11 X * 1 + b * 12 X * 2 , a * 2 + b * 21 X * 1 + b * 22 X * 2 ) T -1 : (ES * 1 , ES * 2 ) → (E ⊕ S1, E ⊕ S2, E ⊕ S3)
We are going to use the following property of Jacobian matrices: J = J T -1 JF JT , implying that:

M E(E ⊕ St, Xt) = ∂E ⊕ Sit ∂ Xjt D,D = ∂E ⊕ Sit ∂ES * jt D,D-1 ∂ES * it ∂ X * jt D-1,D-1 ∂ X * it ∂ Xjt D-1,D and 
E(E ⊕ St, Xt) = ∂ log E ⊕ Sit ∂ log Xjt D,D = 1 S it ∂E ⊕ Sit ∂ES * jt D,D-1 ∂ES * it ∂ X * jt D-1,D-1 ∂ X * it ∂ Xjt D-1,D [X jt ]
where denotes here the Hadamard product (term by term product)14 , 1 S it is a D × D -1 matrix with 1/Sit on the i th row and [X jt ] is a D -1, D matrix with Xjt on the j th column.

The Jacobian of the model in coordinates J

F JF =   ∂ES * 1 ∂ X * 1 ∂ES * 1 ∂ X * 2 ∂ES * 2 ∂ X * 1 ∂ES * 2 ∂ X * 2   = b * 11 b * 12 b * 21 b * 22 = B *
The Jacobian of the transformation J T The ILR transformation is defined by:

( X * 1 , X * 2 ) = T ( X1, X2, X3) = 2 3 log X1 - 1 √ 6 log X2 - 1 √ 6 log X3 , 1 √ 2 log X2 - 1 √ 2 log X3 Then, JT = ∂ X * 1 ∂ X1 ∂ X * 1 ∂ X2 ∂ X * 1 ∂ X3 ∂ X * 2 ∂ X1 ∂ X * 2 ∂ X2 ∂ X * 2 ∂ X3 = V 1 X j = 2 3 1 X 1 -1 √ 6 1 X 2 -1 √ 6 1 X 3 0 1 √ 2 1 X 2 -1 √ 2 1 X 3
where 1 X j is a D -1, D matrix with 1/Xj on the j th column.

The Jacobian of the inverse transformation J T -1

(E ⊕ S1, E ⊕ S2, E ⊕ S3) = T -1 (ES * 1 , ES * 2 ) = C(exp(VES * ) ) = C exp(ES * 1 ) √ 2 3 ; exp(ES * 1 ) -1 √ 6 exp(ES * 2 ) 1 √ 2 ; exp(ES * 1 ) -1 √ 6 exp(ES * 2 ) -1 √ 2 = u1 DEN ; u2 DEN ; u3 DEN where u1 = exp(ES * 1 ) √ 2 3 u2 = exp(ES * 1 ) -1 √ 6 exp(ES * 2 ) 1 √ 2 u3 = exp(ES * 1 ) -1 √ 6 exp(ES * 2 ) -1 √ 2 DEN = u1 + u2 + u3
In order to compute the matrix 

J T -1 =     ∂E ⊕ S 1 ∂ES * 1 ∂E ⊕ S 1 ∂ES * 2 ∂E ⊕ S 2 ∂ES * 1 ∂E ⊕ S 2 ∂ES * 2 ∂E ⊕ S 3 ∂ES * 1 ∂E ⊕ S 3 ∂ES * 2     ,
= V u =     ∂u 1 ∂ES * 1 = 2 3 u1 ∂u 1 ∂ES * 2 = 0 ∂u 2 ∂ES * 1 = -1 √ 6 u2 ∂u 2 ∂ES * 2 = 1 √ 2 u2 ∂u 3 ∂ES * 1 = -1 √ 6 u3 ∂u 3 ∂ES * 2 = -1 √ 2 u3    
Now we can compute the elements of J T -1 . For example, the first element of this matrix is:

∂E ⊕ S1 ∂ES * 1 = DEN 2 3 u1 -u1[ 2 3 u1 -1 √ 6 u2 -1 √ 6 u3] DEN 2 = 3 √ 6 u1(u2 + u3) DEN 2 = 3 √ 6 E ⊕ S1(1 -E ⊕ S1)
using the fact that u1/DEN = E ⊕ S1 and u2 + u3 = DEN -u1. Similar computations give the results for the whole matrix:

J T -1 =     ∂E ⊕ S 1 ∂ES * 1 ∂E ⊕ S 1 ∂ES * 2 ∂E ⊕ S 2 ∂ES * 1 ∂E ⊕ S 2 ∂ES * 2 ∂E ⊕ S 3 ∂ES * 1 ∂E ⊕ S 3 ∂ES * 2     =    3 √ 6 E ⊕ S1(1 -E ⊕ S1) 1 √ 2 E ⊕ S1(E ⊕ S3 -E ⊕ S2) -3 √ 6 E ⊕ S1E ⊕ S2 1 √ 2 E ⊕ S2(E ⊕ S1 + 2E ⊕ S3) -3 √ 6 E ⊕ S1E ⊕ S3 -1 √ 2 E ⊕ S3(E ⊕ S1 + 2E ⊕ S2)    = [S it ]    3 √ 6 (1 -E ⊕ S1) 1 √ 2 (E ⊕ S3 -E ⊕ S2) -3 √ 6 E ⊕ S1 1 √ 2 (E ⊕ S1 + 2E ⊕ S3) -3 √ 6 E ⊕ S1 -1 √ 2 (E ⊕ S1 + 2E ⊕ S2)    = [S it ] W *
The Jacobian of the model in the simplex J -

J = J T -1 JF JT =    ∂S 1 ∂ X1 ∂S 1 ∂ X2 ∂S 1 ∂ X3 ∂S 2 ∂ X1 ∂S 2 ∂ X2 ∂S 2 ∂ X3 ∂S 3 ∂ X1 ∂S 3 ∂ X2 ∂S 3 ∂ X3    = [S it ] W * B * V 1/ Xj = [S it ] W * V B 1/ Xj = [S it ] WB 1/ Xj = [S it ]    3 √ 6 (1 -E ⊕ S1) 1 √ 2 (E ⊕ S3 -E ⊕ S2) -3 √ 6 E ⊕ S1 1 √ 2 (E ⊕ S1 + 2E ⊕ S3) -3 √ 6 E ⊕ S1 -1 √ 2 (E ⊕ S1 + 2E ⊕ S2)
1 √ 6 -1 √ 6 0 1 √ 2 -1 √ 2 1/ Xj = [S it ]   1 -S1 -S2 -S3 -S1 1 -S2 -S3 -S1 -S2 1 -S3     b11 b12 b13 b21 b22 b23 b31 b32 b33   1/ Xj = M E(E ⊕ St, Xt) ⇔ E(E ⊕ St, Xt) = 1 S it M E(E ⊕ St, Xt) Xj = WB
where W * V = W is a D, D matrix with 1 -Si in the diagonal and -Si in the row i otherwise.

We then conclude that marginal effects and elasticities matrices are easy to compute using coefficients in the simplex or coefficients in the transformed space:

M E(E ⊕ St, Xt) = [S it ] WB 1/ Xj = [S it ] WVB * V 1/ Xj E(E ⊕ St, Xt) = WB = WVB * V

A.3 C derivatives

We keep here the notations of chapter 13 in [START_REF] Pawlowsky-Glahn | Compositional data analysis: Theory and applications[END_REF] except that we denote ∂f ∂ ⊕ x the part-C derivatives. Let f be a vector valued scale invariant function from R D X to R k . Let f be the corresponding vector valued function on S D X induced by f (x) = f (w), where w is the vector of volumes corresponding to the vector of shares x. We have f (w) = f (C(w))

For the sake of simplicity, let us assume that DX = 3. Denote by w+ = D X i=1 wi the total volume. Taking the derivative of (20) with respect to wj yields ∂f ∂wj (w) = 

Let us now consider the case of a function from the simplex S D X of R D X to the simplex S D S of R D S . Rewriting (12.6) from chapter 12 (page 163) with our present notations we have

∂ ⊕ h ∂t (t) = C exp( ∂ log(h) ∂t ).
Combining this with (24), we can define the following directional C derivatives of h, denoted ∂ ⊕ h

∂ ⊕ x j as ∂ ⊕ h ∂ ⊕ x j = C exp( ∂ log(h) ∂ ⊕ x j ) = C exp( ∂ log(h) ∂ log w j ).
A.4 Nullity of the sum of elasticities weighted by shares

We have to prove that D m=1 e mlt E ⊕ Smt = 0. This is the necessary condition for new shares S mt , resulting from a change in X lt , to sum up to one: 

•

  C() denotes the closure operation which transforms volumes into shares: C(x1, . . . , xD) = . . . , xD) where x denotes the volume and x denotes the share of a variable. • ⊕ is the perturbation operation, corresponding to the addition operation in the simplex: x⊕y = C(x1y1, . . . , xDyD) with x, y ∈ S D

Figure 1 :

 1 Figure 1: Sales, media and average price of brands, in volume and in share, in the B segment

whereFigure 2 :

 2 Figure 2: Observed (color) and predicted (grey) brands market-shares

Figure 4 :

 4 Figure 4: Direct elasticity of S jt relative to M j,t-1 across time

A. 1

 1 Model A is a particular case of Model B Let consider a Model B where DS = DX = 3, where the matrix of coefficients in the transformed space is equal to B * = b * 0 0 b * , and where V

  we need to compute the derivatives of the numerators of E ⊕ S: u = (u1, u2, u3) with respect to ES * . ∂u ∂ES *

∂x i ∂w i = w + -w i w 2 + and ∂x i ∂w j = -w i w 2 +

 22 if i = j, we obtain 13.3.5 tells us that ∂f ∂ ⊕ xj (x) = xj[ ∂f ∂xj (x) -with wj replaced by log(wj) Combining this with (23) yields the following proposition linking the semi-log derivatives of f with the directional C derivatives of f . ∂f ∂ ⊕ xj (x) = ∂f ∂ log(wj) (w)

D m=1 S

 m=1 mt = 1 ⇔ D m=1 e mlt E ⊕ Smt = 0. Proof:

Table 2 :

 2 Measures of impact assessment for Model A and Model B

	Var Measure	Effect	Model A	Model B
	me(Sjt, Xlt )	Direct	b(1 -Sjt)	
	X			

Table 3 :

 3 Estimated parameters on ILR coordinates -Model A

		Estimate Std. Error t value Pr(> |t|)
	a * 1	0.3439	0.0151	22.84 0.0000 * * *
	a * 2	0.3363	0.0159	21.19 0.0000 * * *
	a * 3	0.6620	0.0263	25.14 0.0000 * * *
	b1	0.0267	0.0071	3.79 0.0002 * * *
	b2	0.0241	0.0062	3.90 0.0001 * * *
	b3	0.0264	0.0062	4.26 0.0000 * * *
	bP	1.2217	0.2313	5.28 0.0000 * * *
	c * 1	-0.0241	0.0338	-0.71 0.4758
	c * 2	-0.1690	0.0334	-5.05 0.0000 * * *
	c * 3	0.1292	0.0336	3.84 0.0001 * * *
	Nb param.	10		
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	parameters for the model in the simplex are in Table		

Table 4 :

 4 Estimated parameters in the simplex -Model A Model Now, let us look at a different specification of the model (dependent and explanatory variables are the same as in Model A) where brand-specific coefficients are assumed and cross-effects are directly modeled. It corresponds to the following model:

		S1	S2	S3	S4
		(Citroen) (Peugeot) (Renault) (Others)
	(Intercept)	0.1300	0.2114	0.2502	0.4084
	Mt-1		0.0267		
	Mt-2		0.0241		
	Mt-3		0.0264		
	Pt		1.2217		
	SI	0.2610	0.2523	0.2086	0.2780
	4.2 Brand-specific impact of media investments (Model B)

Table 5 :

 5 Estimated parameters on ILR coordinates -Model B

		S * 1	S * 2	S * 3
		(Peu. vs Cit.) (Reu. vs Cit.,Peu.) (Oth. vs Cit.,Peu.,Reu.)
	(Intercept)	0.3686 * * *	0.3637 * * *	0.6940 * * *
	M * t-1,1	0.0193.	-0.0052	0.0081
	M * t-1,2	0.0162	0.0319 *	-0.0245
	M * t-1,3	-0.0069	0.0009	0.0279
	M * t-2,1	0.0208.	-0.0093	0.0205.
	M * t-2,2	0.0151	0.0361 * *	-0.0259.
	M * t-2,3	-0.0197	-0.0338 .	0.0278
	M * t-3,1	0.0289 * *	-0.0115	0.0278 *
	M * t-3,2	0.0104	0.0206 *	-0.0274.
	M * t-3,3	-0.0114	0.0064	0.0323.
	P * 1	0.8854.	-0.5981	1.9138 * * *
	P * 2	0.0151	0.2615	0.6509
	P * 3	-0.6442	-0.3729	2.4717 * * *
	SI *	-0.0394	-0.2088 * * *	0.2070 * * *
	Adjusted R2	0.3353	0.3255	0.3269
	Nb param.	42		
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

Table 8 :

 8 Average elasticity of market-shares relative to media investments Mt-1

	e(Sjt, Ml,t-1 )		Model A			Model B
		MC,t-1	MP,t-1	MR,t-1	MZ,t-1	MC,t-1	MP,t-1	MR,t-1	MZ,t-1
	SCitroen,t	0.0235 -0.0056 -0.0063 -0.0116 0.0204 -0.0028 -0.0097 -0.0078
	SP eugeot,t	-0.0032 0.0211 -0.0063 -0.0116 -0.0054 0.0099	0.0119	-0.0163
	S Renault,t	-0.0032 -0.0056 0.0204 -0.0116 -0.0043 -0.0173 0.0327 -0.0111
	S Others,t	-0.0032 -0.0056 -0.0063 0.0151 -0.0008	0.0054	-0.0208 0.0161

C: Citroen; P: Peugeot; R: Renault; Z: Others. Figures in bold: direct elasticities.

Table 9 :

 9 Cross-validated quality measures

		Model A Model AB Model B
	Adj. R 2	0.9250	0.9274	0.9310
	R 2 T	0.3183	0.4002	0.4513
	RMSE	0.0326	0.0913	0.0322

Table 10 :

 10 Elasticity of ratios of market-shares where l = j, j and S C/Z means S Citroen,t /S Others,t for example.

	Sjt S j t	relative to media investments Ml,t-1

* 

Table 11 :

 11 Odds ratios of market-shares for an increase of 10% in media investments Ml,t-1

				Model A						Model B		
		For ∆ = 10%		Mt-1		MC,t-1		MP,t-1		MR,t-1		MZ,t-1
	OR	S jt S j t	, Mj,t-1, ∆		1.0025	S C/P	1.0025	S P/C	1.0012	S R/C	1.0045	S Z/C	1.0022
	OR OR	S jt S j t S jt S j t	, Mj ,t-1 , ∆ , Ml,t-1 , ∆	*	0.9975 0	S C/R S C/Z	1.0024 1.0020	S P/R S P/Z	1.0030 1.0007	S R/P S R/Z	1.0026 1.0054	S Z/P S Z/R	1.0031 1.0028
													

* where l = j, j and S C/Z means S Citroen,t /S Others,t for example.

Table 12 :

 12 Elasticity of ratios

		Model A				Model B		
						MC/g(-C)	MP/g(-P )	MR/g(-R)	MZ/g(-Z)
	e	S jt g(S -jt ) , Mj,t-1		0.0267	S C/g(-C) S P/g(-P )	0.0239 -0.0106	-0.0022 0.0148	-0.0176 0.0112	-0.0040 -0.0154
	e	S jt g(S -jt ) , Ml,t-1	*	0	S R/g(-R) S Z/g(-Z)	-0.0090 -0.0043	-0.0215 0.0089	0.0389 -0.0324	-0.0085 0.0279

Sjt

g(S-jt) relative to Ml,t-1

Or in R D in the case of the CLR transformation.

We denote by cross-effect the effect of a variation of X l on S j , where l = j.

It can be surprising to see that in the attraction form of Model A, the variable Z is powering the intercept c j , but this corresponds to the term Zt c.

Note that in bold denotes the Hadamard product whereas denotes the power transformation.

See equation (12.13), p.168, in[START_REF] Pawlowsky-Glahn | Compositional data analysis: Theory and applications[END_REF].

ilr(S) (j) 1 denotes the first ILR coordinate of S where S j is in the first position; ilr( X)(l) 1 denotes the first ILR coordinate of Xwhere Xl is in the first position.

Inside a segment, a brand generally supplies only one main vehicle. Thus, we can consider that the alternatives for a consumer inside a particular segment coincide with the available brands in this segment.

We decide to ask the question in terms of market-shares instead of in terms of sales volumes because one can suppose that at time t, brands have to share a market for which the size is mainly determined by the demand.

The B segment is the most important segment in terms of sales in France (around 40% of new passenger car sales).

NB: here we take an example for an arbitrary share of 25% using the average elasticity. However, the only way to ensure that the sum of the modified shares D m=1 S mt is equal to 1 is to use the corresponding elasticities calculated at the same time t, not the average elasticities.

As long as the direct elasticity is positive (the cross elasticity is of opposite sign of the direct elasticity by construction).

The out-of-sample computation process is the same than in[START_REF] Morais | Using compositional and dirichlet models for marketshare regression[END_REF].

For Model B, the adjusted R 2 is computed on the transformed model which uses dummy variables for estimations, as in Model A and Model AB.

Note that in bold denote the Hadamard product whereas denote the power transformation.
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In Model B, when brand-specific effects and cross-effects are taken into account, the direct elasticity of Renault market-share in the B segment relative to its corresponding media investments (0.0327) is much higher than for other brands, see for example Peugeot which has the lowest (0.0099). Note that positive cross-effects (synergies) are possible in Model B: for example when Renault invests more in media, it tends to help its own market-share a lot, but also to raise a little bit the share of Peugeot, and to have a negative impact on Citroen and Others. Then, after closure and depending on the considered values of Sj, an increase in Renault media investments in the B segment can increase or decrease the Peugeot market-share.

Taking the same example as previously, according to Model B, if Renault increases its media investments Mt-1 of about 1%, the average elasticity on the studied period suggests that its market-share should increase by 0.0327% to reach 25.008% and that competitors market-shares should respectively decrease by 0.0097%, increase by 0.0119% and decrease by 0.0208% to reach respectively 9.999%, 25.003% and 39.992.

As shown in Figure 4, the estimated direct elasticities are quite stable across time. However, as elasticities in Model A are computed using the same parameter b for all brands, they are closer to each other than in Model B where they are computed using different parameters b jl . The direct elasticity of Renault is larger than those