
HAL Id: hal-01563328
https://hal.science/hal-01563328

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Incremental Development of UML Architectures
Anne-Lise Courbis, Thomas Lambolais, Nguyen Thanh-Hung

To cite this version:
Anne-Lise Courbis, Thomas Lambolais, Nguyen Thanh-Hung. Safe Incremental Development of UML
Architectures. 29th international conference on Software Engineering and Knowledge Engineering,
Jul 2017, Pittsburgh, United States. �10.18293/SEKE2017-033�. �hal-01563328�

https://hal.science/hal-01563328
https://hal.archives-ouvertes.fr

Safe Incremental Design of UML Architectures

Anne-Lise Courbis1, Thomas Lambolais1, and Thanh-Hung Nguyen2

1LGI2P, IMT Mines Alès, France. firstName.lastName@mines-ales.fr
2Hanoi University of Science and Technology, Hanoi, Vietnam. hungnt@soict.hust.edu.vn

Abstract

IDF is an Incremental Development Framework which
supports the development and the verification of UML mod-
els for reactive systems. IDF offers refinement and exten-
sion techniques allowing liveness properties to be preserved
during the model developments. Here, we improve the
framework in order to analyze models from a safety point
of view. For this purpose, we associate IDF with the expe-
rienced tools of safety analysis based on the BIP language
by translating UML models into BIP. We demonstrate on a
basic example the complementarity of liveness and safety
analyses.

Keywords: UML composite components, BIP architec-
tures, conformance analysis, safety analysis, refinement, in-
cremental development.

1. Introduction

Designing UML models of software intensive reactive
systems is recognized to be a tricky and crucial task. Re-
activity means that such systems must continuously react to
their environment, at a speed defined by this environment.
It implies liveness properties, stating that the system will
eventually react as it must. These systems are also depend-
able, so that reliability, availability and robustness are of
primary importance. This implies safety properties, stating
that undesired behaviors of the system will never happen.

There is a lack of support for UML designers in the pro-
cesses of both setting up models and evaluating them. The
novelty of our proposed approach is to consider at early
steps of the design both liveness and safety properties. In a
previous work [8, 15, 14], we have presented our Incremen-
tal Development Framework (IDF) and its associated tool
IDCM (Incremental Development of Conformance Mod-
els). IDF supports the development and the evaluation of

UML models for reactive systems. It deals with UML com-
posite components whose parts are composite or primitive
components. Primitive component behaviors are described
by UML state machines. IDF allows models to be devel-
oped step by step. At every step of the design, the model
is verified as being consistent with the model obtained at
the previous step. A step is a model evolution which can be
of four kinds: extension, refinement, increment or substitu-
tion. The verification of these four kinds of model evolu-
tion is based on a conformance relation [16], which ensures
that liveness properties of the former modeling step are pre-
served. However, this work has its own shortcomings: ex-
plicit verification of safety properties is not addressed. This
article aims at enhancing IDF in order to be able to model
and check explicit safety properties. This way, all tempo-
ral properties are considered, since the safety/liveness spec-
trum covers all linear temporal logic properties.

We present in section 2 an example pointing out an in-
cremental development of a model whose liveness analy-
sis is demonstrated using IDCM, but suffering from a lack
of safety analysis. Section 3 presents the BIP intermediate
format and the UML to BIP transformation in order to use
D-Finder tool to analyze safety properties. The IDCM tool
associated with IDF, as well as UML and BIP models pre-
sented in this article, may be downloaded on the website [7].
Section 4 presents related works. We conclude in section 5
and present our future directions.

2. Motivating example

Let us consider MUTEX, a mutual exclusion system that
performs two task execution orders in parallel: it has two
ports (Fig. 1), each of them allowing the reception of a
task execution (start operation of IUserIn interface) and the
transmission of an acknowledgement at the end (finish op-
eration of IUserOut interface). The high level specification
of MUTEX describes the system from an external point of

view. The resource is not represented yet. It is modeled
from a behavioral point of view by an atomic UML compo-
nent (named SpecMUTEX) whose behavior is specified by a
state machine with a concurrent state modeling two parallel
task processes (Fig. 1).

Figure 1: SpecMUTEX component

MUTEX1 model represents the first internal view of the sys-
tem, i.e. two users sharing a resource. The resource pro-
vided interface has two operations: take and release. The
designer thus specifies SpecUser and SpecResource compo-
nents and their associated behaviors (Fig. 2a and b) in or-
der to match SpecMUTEX specification. MUTEX1 is a com-
posite component (Fig. 3a) which assembles two SpecUser

components (U1 and U2) and one SpecResource component
(R1) .

MUTEX2 model is a possible implementation model of
MUTEX1 architecture. MUTEX2 has the same architecture
than MUTEX1 (Fig. 3a) except that U1 and U2 are of type
User and R1 is of type Resource (Fig. 2c). User details are
not required to understand the example.

Both User and Resource are checked by IDCM as
conforming their specification SpecUser and SpecResource

(Fig. 3b). The conformance relation between an imple-
mentation model and a specification model guarantees that
actions that are mandatory after any trace of the specifi-
cation must also be accepted by the implementation af-
ter the same trace. This relation is implemented [16, 8]
with its variant, refines and extends. It requires models
to be transformed into LTS (Labelled Transition System).
This is automatically achieved using IDCM [15, 14] which
transforms the architecture into the EXP.OPEN formalism.

(a) SpecUser (b) SpecResource (c) Resource

Figure 2: MUTEX component state machines

Then, CADP [11] transforms EXP.OPEN into LTS. In the
following, we give an interpretation of these relations on the
MUTEX models (Fig. 3c). MUTEX2 component conforms
to MUTEX1: it is a suitable implementation of the specifi-
cation. MUTEX1 is a refinement of SpecMUTEX: it has no
extra traces and must realize all mandatory behaviors of the
specification.

(a) MUTEX1 and MUTEX2 architectures

(b) Implementation relations (c) Liveness relations

Figure 3: Incremental development of the MUTEX system

This example points out that MUTEX2 is a “good” real-
ization of the initial specification from a liveness point of
view, as defined by the ISO standard [12]. However, it does
not verify the safety property stating that the resource has
to be exclusive. This property states that U1 and U2 users
must not at the same time be in the Starting state, which is
the output state of the start/take transition, while R1 is in
the Busy state .

It is necessary to associate another tool with IDCM to
verify such a property.

3. Safety analysis of architectures

Our goal is to explicitly specify safety properties in or-
der to complement incremental techniques. We are look-
ing for a method which takes into account the incremen-
tal aspect of modeling in order to be integrated into IDF.
The BIP (Behavior, Interaction and Priority) modeling and
verification framework [2] is based on several principles
which match with IDF: development of correctness-by-
construction model, incrementality, compositionality and
composability. It includes many tools for safety property
analysis and model transformation from several languages
such as AADL and Lustre. To the best of our knowledge,
there is no available transformation tool from UML to BIP
taking into account both primitive and composite compo-

nent descriptions. We have thus developed a module of
IDCM that may be uploaded on the IDCM website [7]. We
present an overview of the transformation from UML to BIP
and the benefits for safety analysis of architectures.

3.1. From UML to BIP

BIP [1] is a powerful language for modeling heteroge-
neous real-time systems. Main classes of BIP meta-model
corresponding to UML concepts we deal with are: Com-
pound Type, Atomic Type, State, Transition, Port and Con-
nector. BIP describes compound components by a set of in-
teractions between atomic components whose behaviors are
represented by LTS. There is thus a direct mapping between
BIP and UML atomic components since we gave in [14] a
LTS semantics to UML models. Listing 1 gives the corre-
sponding BIP model automatically generated by the IDCM
module UMLtoBIP.

package Resource
atomic type Resource

export port Port PR TAKE
export port Port PR RELEASE
port Port i
place Pseudostate1 , i d l e , busy
i n i t i a l to Pseudostate1
on i from Pseudostate1 to i d l e
on PR TAKE from i d l e to busy
on PR TAKE from busy to busy
on PR RELEASE from busy to busy

end
end

Listing 1: Resource BIP model

There is a direct mapping between UML composite com-
ponent and BIP compound components: a UML compos-
ite component consists of a set of Parts which match BIP
Components. A UML assembly Connector matches a set of
BIP connectors. Indeed, a BIP connector is relative to the
synchronization of a single operation shared by two inter-
connected ports, while a UML connector is relative to the
synchronization of the set of operations belonging to inter-
faces associated with the interconnected ports. The Port of
a Part belonging to a delegate connector will be exported
and renamed by the name of the port of the compound com-
ponent. To illustrate this transformation, we give in List-
ing 2 the BIP code of the MUTEX2 architecture presented
in section 2. This code is automatically generated by the
transformation IDCM module UMLtoBIP.

3.2. D-Finder: a toolbox for safety analysis

D-FINDER provides methods and tools to compute in-
variants of BIP models. Such invariants are interesting since
they preserve safety properties. There are two kinds of in-
variants: component invariants which are over approxima-
tions of reachable states, and interaction invariants which

model Mutex
include User . b ip
include Resource . b ip
connector type RDV(Port p1 , Port p2)

define [p1 p2] end
compound type MutexType

component Resource R1
component User U2 component User U2
connector RDV C1 release (U1 . P RELEASE, R1 .PR RELEASE)
connector RDV C1 take (U1 . P TAKE , R1 . PR TAKE)
connector RDV C2 release (U2 . P RELEASE, R1 .PR RELEASE)
connector RDV C2 take (U2 . P TAKE , R1 . PR TAKE)
export port Port PM1 FINISH i s U1 . PIN FINISH
export port Port PM1 START i s U1 . PIN START
export port Port PM2 FINISH i s U2 . PIN FINISH
export port Port PM2 START i s U2 . PIN START

end
component MutexType Mutex
end

Listing 2: Mutex BIP model

define global boolean constraints dealing with the synchro-
nization of components. D-FINDER is based on an abstrac-
tion technique allowing the state space to be reduced. Its
strength is to perform incremental constructions of mod-
els and incremental computations of invariants [2] allowing
large-scale systems to be checked. D-Finder uses the BDD
library for the symbolic computation of interaction invari-
ants, and then the SAT-solver tool Yices [9] for checking
satisfiability. Verifying a safety property consists in demon-
strating using Yices that the negation of the property is un-
satisfiable in a context defined by the set of invariant expres-
sions generated by D-Finder. The invariants are expressed
by Boolean Behavioral Constraints [17].

3.3. Illustration of a safety property for MUTEX

Let us consider MUTEX1 and MUTEX2 architectures
presented in section 2. We aim at checking the mutual ex-
clusion property. Equation (1) expresses the non expected
property: two users U1 and U2 can be both in Starting state
while the shared resource R1 is in busy state.

(and R1 busy- (and U1 Starting- U2 Starting-)) (1)

For MUTEX1, the property is unsatisfied: it means that
the resource mutual exclusion has been properly imple-
mented in this architecture. That is not the case for the
MUTEX2 architecture. Indeed, the Resource state machine
(Fig.2c) points out that it may be used concurrently by two
users. On this example, the error is obvious, but it is not the
case for large systems where components may be designed
by third parties according to a high specification level.

4. Discussion and Related work

To the best of our knowledge, no framework support
the incremental development of UML architecture mod-

els by analyzing both liveness and safety behavioral as-
pects. In particular, no framework is able to consider ab-
stract and non-deterministic UML models and few frame-
works are able to consider UML models partially covering
the requirements. Hence, even if some work addresses re-
finement of models, they do not focus on the reduction of
non-determinism, and most of them cannot analyze mod-
els the specification of which is extended, despite it is a
key action for designing complex systems and managing
model evolution. For example, [13] defines a UML pro-
file to transform models into Wright for using the FDR
model checker [10].[18] proposes to translate architectures
into IF/IFx models [5] allowing LTS models to be generated
and analyzed by the CADP model checker [11].Other ap-
proaches about AADL aims at transforming models into in-
termediate models such as FIACRE [6, 3] or BIP [6] to use
appropriate model checkers such as TINA [4] or Yices [9].

Refer to [14] to have more arguments and a complete
state of the art about formal verification of models.

These approaches are powerful from the safety point of
view but they are not able to integrate liveness analysis for
incremental development of models as it is done in IDCM.

5. Conclusion

In this article, we have pointed out the interest for in-
cremental development of UML models and the comple-
mentarity between safety and liveness analyses. We have
defined a transformation of UML models into the BIP for-
malism which is implemented into the tool IDCM we have
developed. By this way, the liveness and safety analyses
are automated. Safety properties are expressed by proposi-
tional calculus and requires designers to manipulate a spe-
cific syntax. Further steps consist in developing a support
to help designers to express the safety properties in terms of
UML concepts regardless the theorem prover syntax, and
studying their automatic rewording when UML models are
refined or extended.

Acknowledgement: This research was supported by IMT Mines
Alès–France through its mobility funding program and the Na-
tional Foundation for Science and Technology Development
(NAFOSTED) under Grant 102.03-2013.39: Automated verifica-
tion and error localization methods for component-based software.

References

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in BIP. In SEFM, pages 3–12, 2006.

[2] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis,
and R. Yan. Incremental component-based construction and
verification using invariants. In FMCAD, pages 257–266,
2010.

[3] B. Berthomieu and J.-P. Bodeveix. Formal Verification of
AADL models with Fiacre and Tina. In ERTS, 2010.

[4] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA:
Construction of abstract state spaces for Petri nets and time
Petri nets. International Journal of Production Research,
(14):2741–2756, 2004.

[5] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF
Toolset. In Formal Methods for the Design of Real-Time
Systems, volume 3185 of LNCS, pages 237–267. Springer
Berlin Heidelberg, 2004.

[6] M. Y. Chkouri and M. Bozga. Prototyping of distributed
embedded systems using AADL. ACESMB, pages 65–79,
2009.

[7] A.-L. Courbis, T. Lambolais, H.-V. Luong, and T.-L. Phan.
IDCM. http://idcm.wp.mines-telecom.fr. Ac-
cessed: 2017-05-05.

[8] A.-L. Courbis, T. Lambolais, H.-V. Luong, T.-L. Phan,
C. Urtado, and S. Vauttier. A formal support for incre-
mental behavior specification in agile development. In The
24th International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 694–699, 2012.

[9] B. Dutertre. Yices 2.2. In A. Biere and R. Bloem, editors,
CAV, volume 8559 of LNCS, pages 737–744. Springer, July
2014.

[10] Formal-Systems and Oxford-University-Computing-
Laboratory. Failures-Divergence Refinement (FDR2 User
Manual). Technical Report October, Formal System
(Europe) Ltd, 2010.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2011: a toolbox for the construction and analysis of dis-
tributed processes. International Journal on Software Tools
for Technology Transfer, 15(2):89–107, 2013.

[12] ISO/IEC9646. Information technology – open systems inter-
connection – conformance testing methodology and frame-
work – part 1: General concepts, 1991.

[13] M. Kmimech, M. T. Bhiri, and P. Aniorte. Checking compo-
nent assembly in ACME: an approach applied on UML 2.0
components model. In ICSEA, pages 494–499. IEEE, 2009.

[14] T. Lambolais, A.-L. Courbis, H.-V. Luong, and C. Perce-
bois. IDF: A framework for the incremental development
and conformance verification of UML active primitive com-
ponents. Journal of Systems and Software, 113:275–295,
2016.

[15] T. Lambolais, A.-L. Courbis, H.-V. Luong, and T.-L. Phan.
Designing and integrating complex systems: Be agile
through liveness verification and abstraction. In CSDM,
pages 69–81. Springer, 2015.

[16] H.-V. Luong, T. Lambolais, and A.-L. Courbis. Implemen-
tation of the Conformance Relation for Incremental Devel-
opment of Behavioural Models. In MoDELS, volume 5301
of LNCS, pages 356–370. Springer Berlin, 2008.

[17] T.-H. Nguyen. Constructive verification for component-
based systems. PhD thesis, Institut National Polytechnique
de Grenoble-INPG, 2010.

[18] I. Ober and I. Dragomir. Unambiguous UML composite
structures: the OMEGA2 experience. In SOFSEM, pages
418–430. Springer, 2011.

http://idcm.wp.mines-telecom.fr

