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Abstract

The shape of a drop pinned on an inclined substrate is a long-standing
problem where the complexity of real surfaces, with heterogeneities and
hysteresis, makes it complicated to understand the mechanisms behind
the phenomena. Here we consider the simple case of a drop pinned on
an incline at the junction between a hydrophilic half-plane (the top half)
and a hydrophobic one (the bottom half). Relying on the equilibrium
equations deriving from the balance of forces, we exhibit three scenarii
depending on the way the contact line of the drop on the substrate either
simply leans against the junction or overfills (partly or fully) into the hy-
drophobic side. We draw some conclusions on the geometry of the overlap
and the stability of these tentative equilibrium states. In the correspond-
ing retention force factor, we find that a major role is played by the wetted
length of the junction line, in the spirit of Furmidge’s observations. The
predictions of the theory are compared with extensive molecular dynamics
simulations.

1 Introduction

As first described by Thomas Young [30] in his essay on cohesion of fluids in
1805, the competition between the cohesion of a fluid to itself and its adhesion
to a solid gives rise to an angle of contact θ0 between the liquid and the solid
that is specific to a given system at equilibrium. This is now well known as the
Young equation:

γ cos θ0 = γSV − γSL (1)
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where θ0 is the equilibrium contact angle and γSV and γSL are the Solid-Vapor
and Solid-Liquid surface tensions, respectively. It has been proven recently
that this equation holds down to the nanometric scale [7, 27, 10]. In practice
however, this equation holds for pure liquids on flat glasses or silica wafers.
For real heterogeneous surfaces, chemically or physically, the situation is more
complex. We have to introduce the advancing (θA), the receding (θR) static
contact angles and the difference between both, which is called the hysteresis
and arises from surface roughness and/or heterogeneity [29, 15, 17, 16, 23]. The
contact angle of a sessile drop actually observed will lie between θA to θR and
is function of the process of reaching the particular equilibrium state. See [11]
for background and references.

The variety of possible processes and motions makes the prediction of the
final static contact angle challenging. No generally applicable correlation be-
tween hysteresis and roughness features is known for a given surface. When the
corresponding substrate is tilted by a small angle α, the drop usually deforms
its shape but remains pinned on the substrate. It is only when the tilt angle α
becomes large enough, above the value αc, that the drop starts to slide. It has
been proposed by Furmidge [14], Eq. 5, that

mg sinαc =
k

2
wγ(cos θR − cos θA) (2)

where m is the mass of the drop, g the gravity constant, θR and θA the reced-
ing and the advancing contact angles, w the width of the drop in the direction
perpendicular to inclination. The dimensionless retention-force factor k is close
to 2 according to [14], Table 2, but its value has been reexamined since then
([6] Eq. 27; [12] Eq. 1, [13] Eq. 1, [22] Eq. 3, [28] Eq. 4 and [9] Eqs. 1 and 2),
concluding to k varying in the range π/2 ≤ k ≤ 2, depending on the physical
situation. Several studies have been devoted to this equation through experi-
ments [1], numerical or theoretical calculations [24]. Mostly, all these studies
differ by their hypothesis concerning the shape of the contact line or different
conditions for the experiments.

We are herewith studying the basic case where there is a chemical step in
the substrate. Experimentally this is a difficult situation simply because the dif-
ference of wettability will be associated to a zone and not to a line. To explore
in details the validity of equations like Eq. (2) avoiding unnecessary hypoth-
esis, it is interesting to revisit this problem using large scale molecular dynamics.

The problem of a drop on an incline at the junction between a hydrophilic
half-plane and a hydrophobic half-plane has been addressed previously, notably
by simulation with Surface Evolver. See [2], [3] and references therein. An
inclined chemical step has also been considered in [25]. The incline has also
been replaced by a wettability gradient [19].

The paper is organized as follows. The theoretical aspects are given in
Section 2. Then we present the corresponding molecular dynamics simulations
in Section 3. Section 4 is devoted to a comparison between the two approaches.
Finally, some concluding remarks are presented in Section 5.
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Figure 1: Scheme of the liquid drop on incline plane close to the boundary
between two solids under an external force F0.

2 Drop on incline at hydrophilic-hydrophobic
junction: theory

2.1 Drop pinned on inhomogeneous incline

We first study the case of a drop pinned on an arbitrary inhomogeneous in-
cline. While considering the total capillary force, the gravity force and the total
pressure force acting upon the drop sum up to zero at equilibrium, we obtain,
while projecting on each axis relative to the incline, a system of three equations
relating the gravity force components to contour integrals along the contact line
and with a pressure contribution in the direction perpendicular to the incline.
In more details we consider an incline of angle α with respect to the horizontal.
The x-axis is along the slope downhill, the y-axis is horizontal, the z-axis is
perpendicular to the incline. The corresponding orthonormal basis is ex, ey, ez
as in Fig. 1. The basis of the drop is denoted Ω and its boundary, the contact
line ∂Ω, is assumed piecewise differentiable, and n is the outer normal to the
contact line in the substrate plane. The contact angle θ is assumed piecewise
continuous on ∂Ω. The total capillary force F upon the drop is

F = γ

∮
∂Ω

dl (n cos θ − ez sin θ) (3)

The gravity force upon the drop is

mg = (mg sinα, 0, −mg cosα)
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Figure 2: Contact line at hydrophilic-hydrophobic junction, gravity increased
from (a) to (c): (a) stable equilibrium, Eq. (9); (b) tentative equilibrium, Eq.
(12); (c) unstable equilibrium, Eq. (13).

The total pressure force upon the drop is

ez

∫
Ω

dxdy (p(x, y, 0)− patm) (4)

These formulae remain valid if the contact line has a slow motion so that the
drop profile is always in the equilibrium shape conditioned by the instantaneous
contact line. The pinning and depinning of the contact line depend upon γSV −
γSL, where γSV and γSL are the local Solid-Vapor (air) and Solid-Liquid (water)
surface tensions, which typically are not smooth functions, and which play a
role in (3) only through the choice of the contact line ∂Ω. Therefore, in these
formulae, the contact angle θ can be any angle between the local advancing (θA)
and receding (θR) angles.

At equilibrium the forces upon the drop sum up to zero, on each axis:

0 = mg sinα+ γ

∮
∂Ω

dln · ex cos θ (5)

0 =

∮
∂Ω

dln · ey cos θ (6)

0 = −mg cosα− γ
∮
∂Ω

dl sin θ +

∫
Ω

dxdy (p(x)− patm) (7)

where p(x) = p(x, y, 0) = p(0, 0, 0) + ρgx sinα from the law of hydrostatics.
Equation (6) will be automatically satisfied for a drop symmetric with respect
to the plane y = 0, where n(x, −y) · ey = −n(x, y) · ey and θ(x,−y) = θ(x, y).

2.2 Drop pinned at hydrophilic-hydrophobic junction

We next consider the same problem but specifically for a drop pinned on an
incline at the junction between a hydrophilic half-plane (the top half) and a
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hydrophobic one (the bottom half). In this context, we discuss three scenarii:
(a) one for which the contact line partly follows the junction line on a segment
of width L, (b) one for which part of the contact line goes into the hydrophobic
half-plane in a central protuberance while keeping two side overlaps with the
junction line and (c) one for which part of the contact line crosses straight into
the hydrophobic half-plane. See Fig. 2.

The three cases may be viewed as the ones obtained while successively in-
creasing the angle of the incline, or gravity or the volume of the drop, in short
increasing the Bond number Bo. The first case can be a stable equilibrium, the
second might be a stable equilibrium and the third is an unstable equilibrium.

In this hydrophilic/hydrophobic junction setup, we derive the new version
of the equilibrium equations deriving from the balance of forces. For case (a),
equation (5) along the axis of the slope downhill equates the projection of the
gravity force to a simple integral of the cosine of the contact angle over the over-
lap segment of unknown length L; observing that the contact angle is maximal
in the middle of the overlap segment and bounded above by the Young angle
in the hydrophobic side, a lower bound of L is supplied. For case (b), the same
equation equates the projection of the gravity force to the sum of two contri-
butions: one similar to the previous one but restricted to the overlap junction
line/contact line and one relative to the protuberance involving the difference
between the Young angle cosines in the hydrophilic/hydrophobic half-planes
times the length of the junction line covered by the protuberance. Finally, for
case (c), there is only one contribution to the balance equation involving the
difference between the Young angle cosines in the hydrophilic/hydrophobic half-
planes times the full length of the junction line covered by the drop. Let us now
formulate and justify this in details.

The upper half-plane {x < 0} is a relatively hydrophilic substrate, of Young
angle θ1, while the lower half-plane {x > 0} is less hydrophilic, of Young angle
θ2 > θ1. The contact line is either ∂Ω = ∂Ω1 ∪ ∂Ω12 where ∂Ω1 ⊂ {x < 0}
and ∂Ω12 = [−L2 ,

L
2 ] ⊂ {x = 0} for some L > 0, see Fig. 2(a), or else it may be

∂Ω = ∂Ω1∪∂Ω2∪∂Ω12 where ∂Ω2 ⊂ {x > 0} and ∂Ω12 = [−y1,−y2]∪ [y2, y1] ⊂
{x = 0} for some 0 < y2 ≤ y1, see Fig. 2(b). On ∂Ω1 the contact angle is the
Young angle θ1 (ideal substrate, no hysteresis), on ∂Ω2 the contact angle is the
Young angle θ2 (ideal substrate, no hysteresis). The contact angle along ∂Ω12

is a continuous function θ(y) with θ1 ≤ θ(y) ≤ θ2. The drop is symmetric under
y → −y, and the function θ(y) is decreasing on ∂Ω12 ∩ {y ≥ 0}.

Case (a) in Fig. 2, ∂Ω2 = ∅ certainly occurs, by continuity, for small α, with
L = L(α) increasing with α from L(0) = 0. For small α, the function θ(y) is
independent of θ2 and reaches a maximum θ(0) < θ2.

Denoting t the unit tangent vector and Rπ/2 a rotation by π/2, we have∮
∂Ω

dln = −Rπ/2
∮
∂Ω

dl t = −Rπ/2
∮
∂Ω

dr = 0 (8)
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which allows to write (5) as

0 = mg sinα+ γ

∮
∂Ω

dln · ex (cos θ − cos θ1)

= mg sinα+ γ

∫ L/2

−L/2
dy (cos θ − cos θ1) (9)

which implies

L >
mg sinα

γ (cos θ1 − cos θ2)
(10)

Upon increasing α or g or m, the configuration with ∂Ω2 = ∅ becomes unstable
when θ(0) reaches θ2, with a transition to ∂Ω2 6= ∅, Fig. 2(b). One may expect
a continuous transition, with y2 small at the onset.

For the part of the contact line on the hydrophobic side, we have∫
x>0

dln = −Rπ/2
∫
x>0

dr = −Rπ/22y2ey = 2y2ex (11)

which allows to write (5) as

0 = mg sinα+ γ

∮
∂Ω

dln · ex (cos θ − cos θ1)

= mg sinα+ 2γy2(cos θ2 − cos θ1) + 2γ

∫ y1

y2

dy (cos θ − cos θ1) (12)

A second transition, perhaps the roll-off, may be expected when y2 ap-
proaches y1.

In the case of Fig. 2(c), Equation (5) remarkably simplifies and takes the
form

0 = mg sinα+ γL (cos θ2 − cos θ1). (13)

This corresponds to the Furmidge formula (2) with α any angle less or equal αc,
with k = 2, and L taking the role of the width w and the angles θ1, θ2 taking
the roles of the receding and advancing angles θR, θA.

2.3 Smoothness of equilibrium contact lines

We herewith discuss the question of the smoothness of the contact line where
the contact line meets the junction line. By smoothness, it is meant that the
tangent vector to the contact line is continuous all along the contact line. We
give strong arguments in favor of smoothness showing that a discontinuity would
violate that the surface, as a solution of the Laplace-Young equation, must have
a bounded mean curvature. Counter-examples of “quasi-corners” that cannot
be droplet equilibrium shapes are supplied. Corners and cusps of the contact
line have been observed in moving droplets, [20], not in equilibrium.
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Figure 3: Quasi-corners: (a) h(r, ϕ) = r sinϕ cosϕ; (b) h(r, ϕ) = (r log r +
1/e) sinϕ cosϕ.

The contact lines shown on Fig. 2 may be smooth, with t and n continuous
everywhere, or perhaps t and n could have jumps at y = ±L/2 (Fig. 2,(a) or
y = ±y1,±y2 (Fig. 2,(b)). Also the contact line could cross the junction with
the contact angle jumping from θ1 to θ2, as in Fig. 2,(c). An argument in favor
of smoothness of the contact line and continuity of the contact angle goes as
follows. For definiteness consider Fig. 2(a), and assume 0 < θ1 < π. Consider
the drop as a three-dimensional body, solution of the Laplace-Young equation
with the given boundary conditions. The drop surface is smooth except on the
contact line: the tangent plane below the drop is the substrate plane; the tangent
plane on the liquid vapor interface is well defined, and has a limit of slope tan θ
at the contact line wherever the contact angle is well defined: everywhere except
possibly at y = ±L/2. On the contact line, except possibly at y = ±L/2, there
are exactly two limiting tangent planes, limits from above with slope tan θ and
from below with slope 0 (the slopes are defined with respect to the xy-plane).
The contact line is a sharp edge.

Now assume that t and n are discontinuous at y = ±L/2. Then at this
point there are three limiting tangent planes, corresponding to the limits from
below (slope 0), from above along the contact line on the x < 0 side (slope
tan θ1, n 6= ex) and from above along the contact line on the x = 0 side (slope
tan θ(L/2), n = ex). Let us call quasi-corner such a point with three limiting
tangent planes but only two limiting edges. For definiteness let us take the basis
of the drop at the corner as {(x, y) ∈ [0,∞)× [0,∞)}, as on Figs. 3 and use also
polar coordinates with x = r cosϕ, y = r sinϕ. Let N denote the normal vector
to the fluid surface, which is well defined except at the corner, here the origin.
Let N1 be the limit of N when approaching the origin along the x-axis and N2

the limit of N when approaching the origin along the y-axis. For simplicity we
take N1 and N2 constant along the corresponding axis, like equilibrium Young
angles against two different but homogeneous substrates. Consider a geodesic on
the fluid surface going from (ε, 0, 0) to (0, ε, 0) and denote s is the corresponding
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curvilinear abscissa. On this path

N2 −N1 =

∫
ds
dN

ds
(14)

Assuming the drop surface continuous on the closed domain, including the ori-
gin, the total length of the path is less than 2ε and thus goes to zero as ε goes to
zero, while the left-hand-side is constant. Therefore dN/ds must go to infinity.
If r ∼ ε along the geodesic, then dN/ds ∼ 1/r. At least one of the principal cur-
vatures is O(1/r). But the surface is a solution of the Laplace-Young equation,
so that the mean curvature is bounded. Therefore the other principal curvature
must be also O(1/r), with opposite sign in order to cancel the divergence as
r ↘ 0. The radial direction is likely to coincide with the corresponding princi-
pal direction, orthogonal or near to the orthogonal to the geodesic. Therefore
dN/dr ∼ 1/r, or, for each ϕ,

(1 + h′(r)2)−3/2h′′(r) ∼ 1/r (15)

Taking the primitives on both sides:

(1 + h′(r)2)−1/2h′(r) ∼ log r + const. (16)

Hence a contradiction because the left-hand-side is bounded in absolute value
by 1 whereas the right-hand-side diverges as r ↘ 0. The contradiction can be
seen more concretely as follows:

h′(0) = h′(1)−
∫ 1

0

drh′′(r) ∼

h′(1)−
∫ 1

0

dr(1 + h′
2
)3/2/r = −∞, (17)

where (15) was used. This is incompatible with h ≥ 0 and h(0) = 0.
We conclude that t and n should be continuous all along the contact line,

which therefore should be tangent to the y-axis at ±L/2, ±y1, ±y2 on Fig. 2.
And the contact angle itself should be continuous, implying θ(±L/2) = θ(±y1) =
θ1 and θ(±y2) = θ2, forbidding y1 = y2, as in Fig. 2(c).

Examples of quasi-corners are shown on Fig. 3. They cannot be droplet equi-
librium shapes. The surface shown on Fig. 3(a) has mean curvature diverging
as 1/r as r ↘ 0. The surface shown on Fig. 3(b) has principal curvatures di-
verging as ±1/(r| log r|3) as r ↘ 0, and mean curvature diverging as | log r| as
r ↘ 0. It is not continuous at the origin, and the geodesic used in the argument
above has a length O(1) instead of O(ε) as ε↘ 0.

3 Molecular dynamics simulation

To study the mechanism behind pinning, we have performed molecular dynamic
(MD) simulations of a liquid drop on top of an inclined solid plate (α = 30◦
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with respect the horizontal) in the proximity of a junction line perpendicular to
the inclination. The plate is divided in two half-planes with different wetting
properties (more hydrophilic on top of the junction and less hydrophilic below)
and subject to a vertical force F0. See Fig. 1. Initially, this external force is
equal to zero (F0 = 0), with the droplet deposited on the more hydrophilic solid
and close to the junction. Once the system reaches the equilibrium, defined by
a constant energy and a constant value of the local contact angle around the
contact line, equal to the equilibrium contact angle, we introduce a force F0 6= 0
acting over all the liquid atoms. As a consequence, the liquid drop approaches
the junction and the shape of the contact line is altered. Depending on the value
of F0, three different scenarii are possible in the simulation: (a) the base of the
drop can be totally on the hydrophilic side of the solid, (b) part of the contact
line can cross over to the hydrophobic solid or (c) the drop can cross completely
the junction and roll over the hydrophobic substrate. We have selected a range
of F0 to analyze the three regimes. For each value of F0 used in the simulation,
we compute the length of the intersection between the contact line and the
junction (L) as well as the value of the local contact angles at several points pi
along the contact line, θ(pi). Once we have the length L and the contact angles
θ(pi), it is possible to compare the simulation results and the new versions of
the equilibrium equations obtained through the balance of forces.

3.1 Setup

We consider an incline of angle α = 30◦ with respect to the horizontal axis as
shown in Fig. 1. The x-axis is along the slope downhill, the y-axis is horizontal.
The upper half-plane (x < 0) is a relatively hydrophilic substrate S1, while the
lower half- plane (x > 0) is a less hydrophilic solid S2. The drop profile is
z = h(x, y) measured perpendicular to the slope. Close to the S1/S2 junction,
we put a liquid droplet. An external vertical force f0 = f0 sinαex − f0 cosαez
is acting over each liquid atom and then, the total force acting over the liquid
drop is equal to F0 = N f0 where N is the number of liquid atoms that compose
the droplet. We denote by F0 the modulus of F0 just like f0 is the modulus of
f0.

Full details of the simulation methods, base parameters and potentials have
been given in some previous publications (e.g., Ref. [8, 4] and work cited
therein). We recall here the key aspects. The liquids, the solids and their
interaction are modeled using Lennard-Jones potentials defined by:

V (rij) = 4εCAB

((
σ

rij

)12

−
(
σ

rij

)6
)

(18)

Here, rij is the distance between any pair of atoms i and j. The coupling
parameter CAB enables us to control the relative affinities between the different
types of atoms. The parameters ε and σ are related, respectively, to the depth
of the potential wells and an effective atomic diameter. For both solid and
liquid atoms the diameter σ is equal to 0.35 nm, and ε = kBT where kB is the
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Boltzmann constant and T = 33 K is the temperature, which is kept constant
by a thermostat based on velocity scaling. The pair potential is set to zero for
rij > 2.5σ. CAB is given the value 1 for both liquid-liquid (LL) and solid-solid
(SS) interactions.

T = 33 K is indeed a very low temperature, because our simulated liquid
is a simple toy model liquid. In order to model wetting in molecular dynamics
using just Lennard-Jones interactions, we need to work with a system of atoms
in a liquid state with a very low viscosity, able to diffuse in short periods of
time (of the order of ns). More realistic systems can be considered but the time
cost of these simulations will be huge. The chosen parameters for the Lennard-
Jones interaction between the linear chains correspond to a liquid system with
a low viscosity and low surface tension that allows us to study the wetting
dynamic in the scale of few nanoseconds which is reasonable from a computation
point of view. This allows us to understand the mechanism behind the physical
process and then, use this knowledge in a real system where we expect that
the same mechanism will be present. For this particular set of parameters,
we have studied drop spreading, [8, 4], capillary bridges, [5], [10], wetting of
nanofibers, [27], and in all cases the behaviour of the simulated liquids mimic
well what we can measure in the laboratory. Then, we consider that a common
mechanism is shared between both systems, the real one and the molecular
dynamics simulation. Of course, realistic simulations can be done to model
a specific liquid, but more complex interactions must be added with effective
parameters measured experimentally. From a fundamental point of view, it is
thus easier to work with the simpler system that has the phenomena that one
wants to study.

The solid plate is constructed as 66102 atoms distributed in a rectangular,
square-planar lattice having three atomic layers whose normal is parallel to
the z axis. The distance between nearest-neighbor solid atoms is set to 21/6σ
(0.393 nm), i.e., the equilibrium distance given by the Lennard-Jones potential.
The atoms can vibrate around their initial equilibrium positions according to a
harmonic potential defined by VH(r) = k|r− r0|2 where k = 1000ε/σ2, r is the
instantaneous position of a given solid atom and r0 its initial position. The plane
x = 0 splits the solid plate into two half-planes that we use to model the two
solid phases characterized by two different solid-liquid couplings: CLS1

= 0.8
for the hydrophilic substrate S1 which corresponds to a Young angle θ1 = 72◦,
while CLS2 = 0.4 is set for the less hydrophilic solid corresponding to a Young
angle θ2 = 135◦ > θ1. Then, the value of the local contact angle along the
contact line of a drop trapped between the S1/S2 junction will be contained in
the interval [72◦, 135◦] which allows a large window of analysis.

The liquid is modeled as 5000 of 8-atom molecular chains (N = 40000
atoms), with adjacent atoms linked by a confining potential Uconf(rij) = Ar6

ij

where A is set to ε/σ6. This chain length reduces considerably the evaporation
(the vapor phase is effectively here vacuum) and allows to use more efficiently all
the considered molecules to study pinning over the time scale of the simulation.
The masses of all the atoms are equated to that of carbon (12 g/mol) to allow
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f0 (×10−3 pN) F0 = Nf0 (pN) Bo
0.17 6.64 0.12
0.50 19.92 0.36
0.83 33.21 0.61
11.62 46.48 0.85
16.61 66.41 1.22
19.93 79.69 1.46
24.91 99.62 1.82

Table 1: Conversion between simulation units and real units for the external
vertical force, and corresponding Bond number.

comparison with physical systems.
The dimensions of the simulation box are Lx = Ly = Lz = 70 nm and we

impose periodical boundary conditions in the x and y directions. A sketch of
the simulation geometry is shown in Fig. 1.

Table 1 shows the values for the external force per atom, f0, the total force F0

and the corresponding Bond number associated to this force, Bo = F0R
2/(V γ),

where V is the volume of the liquid drop and R is the radius of the initial circular
contact line, [21]. The range of the Bond numbers showed in this table are
similar to the ones measured by other authors in experiments on the shape and
motion of millimetre-size drops of silicon oil sliding down over an homogeneous
plane [18] and of glycerol-water mixtures over a substrate decorated with linear
chemical steps [26].

In a first step, the molecules of the liquid are distributed in a spherical
region on top of the solid S1 and far from the S1/S2 junction meanwhile the
temperature of the liquid and the solid is kept constant by rescaling the atoms
velocities. After 106 time steps, the system reaches the equilibrium characterized
by a stable value of the energy and a constant contact angle θ1 = (70±3)◦ along
the contact line defined by the intersection between the liquid, the solid S1 and
the vacuum. Then, we introduce an external vertical force f0 acting over all
liquid atoms to model a liquid drop. Depending on the magnitude of this force,
the drop can be stuck completely on top of the S1 solid or it can get pinned in the
S1/S2 interface where there appears a segment of length L as the intersection
between the contact line and the junction. As a third possibility, the liquid
drop can cross completely the junction and roll-off over the S2 solid. These
three possible behaviors have been observed in our simulations when the value
for the total external force was varied from 6 (drop stuck inside S1) to 100 pN
(the limit where the drop rolls off over S2). We therefore select a range of F0

between these two limits, F0 = 6.6, 19.9, 33.2, 46.5, 66.4, 79.7 and 99.6 pN. For
each value of this force we restart the simulation from the previous equilibrated
configuration and we let the system evolve during 5 × 106 time steps, time
long enough to reach a stationary regime characterized by the fluctuation of
the energy and the local contact angles around constant values. After that, we
run an additional 5 × 106 time steps where we decompose the liquid in cubic
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cells with side 0.1 nm to calculate the average density inside each cell every
106 time steps to have 5 independent density computations for each value of F0

that we will use to compute the average values and their errors for the different
magnitudes calculated in this work.

During the application of the external force, the thermostat for scaling of the
velocities is only applied to the solid atoms but the collisions between the solid
and the liquid atoms are enough to maintain constant the liquid temperature.

3.2 Contact line and intersection length L

Figure 4: Averaged contact line for (a) F0 = 6.6 pN, (b) F0 = 33.2 pN, (c)
F0 = 46.5 pN, (d) F0 = 66.4 pN, (e) F0 = 79.7 pN and (f) F0 = 99.6 pN. The
dashed line located at x = 0 represents the location of the S1/S2 junction.

To extract the position of the contact line, it is necessary firstly to determine
the location of the liquid-vacuum (L/V ) interface that we define as the locus
where the liquid density is 50% of the density of the liquid in the bulk (i.e.
the equimolar surface). To measure the local distribution of this density, we
subdivide the available volume of the drop into cubic cells of size dx, dy, dz = 0.3
nm and calculate the average number of atoms per cell over 500 configurations
at intervals of 103 time steps to extract 10 independent density profiles, which
we use to establish the location of the interface, the position of the contact-line,
the local contact angles, and the associated errors. Then, the drop is sliced
into k layers parallel to the L/S interface. The density in each slice depends
on the x-y coordinates, so we decompose the slice into bins perpendicular to
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Figure 5: Length L of the segment defined as the intersection between the
contact line and the junction, versus F0 sinα.

the x axis and calculate the density profile along the y coordinate. Finally,
this profile is split into two symmetrical regions about the x axis and we fit
sigmoidal functions to determine the position of the interface where the density
falls to half that of the bulk. This is done for each slice in the z direction to
locate the complete liquid-vacuum interface. The contact line is obtained from
the intersection between the L/V interface and the solid plate. Fig. 4 shows the
different equilibrium contact lines for each value of F0 used in this work.

Fig. 4(a)(b)(c) clearly corresponds to Fig. 2(a). Fig. 4(f) clearly corresponds
to Fig. 2(c). Fig. 4(d)(e) may correspond to Fig. 2(b). The question is the
depth of the protuberance into the hydrophobic side (of order 2 nm in the MD
simulation) and the tentative y1y2 segment (of length also a few nanometers):
do these lengths scale with the size of the drop or remain of the order of the
fluctuations independently of the drop size?

Once the contact line is determined, we compute the intersection between
the contact line and the S1/S2 junction located at x = 0. For this, we first
locate the two pairs of consecutive points of the contact line that lie on opposite
sides with respect to the junction. Then, we determine the two intersections
between the two straight lines defined by each one of these pairs of points and
the junction. From the distance between these two intersection points we obtain
the length of the segment L shown in Fig. 5, the values of which are presented
in Table 2.

3.3 Contact angles

For the computation of the local contact angles, we calculate the normal to the
contact line in each one of the points of this contact line. Then, we compute the
intersection of translates of this normal line with the L/V interface at different
heights z as it is sketched in Fig. 6(a). This gives us the profile associated to
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Figure 6: (a) Calculation of the L/V profile at a given point of the contact line.
The extremes of the contact line along the y-axis are located at x = xm. (b)
L/V profile and circular fitting used to obtain the local contact angle. (c) Local
contact angle versus y for x < xm (open symbols) and z > xm (full symbols).
All figures correspond to F0 = 99.6 pN.
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Figure 7: Average value of the local contact angle for x < xm, and maximum
of local contact angle along the contact line for x > xm, versus F0 sinα.

each point pi of the contact line. We fit a circular arc to this profile and from the
slope of this fitted circle at its intersection with the solid we compute the local
contact angle at the point pi, θ(pi), as it is shown in Fig. 6(b). The extremes
in y along the contact line are located at x = xm, y = ±ym; we use this to split
the contact line in two sets of points for which x > xm and x < xm.

Fig. 6(c) shows an example of the dependence of the local contact angle with
the y coordinate for x < xm and x > xm for F0 = 99.6 pN. The contact line
points at x < xm are located on top of the solid S1 and they exhibit a constant
contact angle equal to θ1, i.e., to the equilibrium contact angle between this
liquid and S1. However, for x > xm the contact angle depends on y and varies
between θ1 and a maximum value θmax. As the external force is increased, θmax

also increases until it reaches the maximum value θmax = θ2, as can be seen in
Table 2. The average value of the contact angle for x < xm and its maximum
value for x > xm are shown in Fig. 7.

In cases (b)(c), θmax = θ2 while in case (a), θmax depends upon the Bond
number and is significantly less than θ2 in agreement with the data in Fig. 7
and Fig. 8 for F0 sinα < 30 pN.

As can easily be observed in Fig. 7, when the applied force is small enough,
we do observe a significant difference between θ2 and θmax. This is due to the
fact that the corresponding contact line is in the vicinity of the S1/S2 junction,
leading to a clear modification of the density of the liquid in contact with the
solid. Indeed, we do observe an increase of the density ρS2

of the liquid able to
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F0 sinα (pN) θmax (◦) L (nm) ρS2
(atoms/nm3)

3.32 87.5 3.6 0.6
9.96 96.1 9.7 3.4
16.61 104.1 12.8 6.9
23.24 108.4 14.4 11.1
33.21 120.7 16.7 18.0
39.85 124.1 19.5 19.6
49.81 127.2 20.2 20.1

Table 2: θmax, L and density of the first layer of liquid on top of the solid S2

for the different values of the external force F0 considered in this work. The
value of this density if the liquid is totally immersed in S2 (no S1/S2 junction)
is ρ0

S2
= 21.4 atoms/nm3.

cross the S1/S2 junction, as F0 is increased until it reaches the characteristic
density of the liquid deposited on top of an homogeneous S2 solid (ρ0

S2
= 21.4

atoms/nm3). This can be seen in Table 2 where ρS2
< ρ0

S2
and θmax < θ2.

4 Comparison between simulation results and
model

Once we have measured the distribution of the local contact angle along the
contact line, it is possible to check the force balance parallel to the Solid-Liquid
interface, as given by Eq. (5). To do so, we compute numerically the integral
appearing in the modulus F = −γ

∮
∂Ω

dln ·ex cos θ of the downhill component
of capillary force upon the drop, using a simple trapezoidal method. In practice,
we select a set of points around the contact line where we compute the value of
the local contact angle θ and the term n · ex inside the contour integral. Fig. 8
shows F versus F0 sinα, the downhill component of volume (weight) force. We
observe a very good agreement between the simulation results and the model
in the full range. Therefore, it is clear that the general Eq. (5) can be used
to determine the total force parallel to the Solid-Liquid interface knowing a
distribution of points along the contact line and the local contact angle on these
points for any value of the external force.

The limitation of the system size in our MD simulations will inevitably affect
the amplitude of the contact line fluctuations. It will therefore be difficult to
identify case Fig. 2(b) and distinguish it from the end of case Fig. 2(a) or the
beginning of case Fig. 2(c). When the value of F0 is high enough to reach the
unstable configuration sketched in Fig. 2(c), it is possible to use the simplified
equation Lγ(cos θ1 − cos θ2) (Eq. (13)) where the only needed parameters are
the liquid-vapor surface tension (γ), the length of the intersection of the contact
line with the junction (L) and the values of the Young angles of the liquid
deposited on top of each one of the solids (θ1 and θ2). Fig. 8 shows that
this simple model agrees remarkably well for values of F0 sinα & 33 pN which

16



Figure 8: Modulus F of downhill component of capillary force upon drop, ver-
sus downhill component F0 sinα of volume (weight) force. Circles: numerical
integration of Eq. (3) projected onto the x-axis, corresponding to Eq. (5).
Triangles: heuristic formula in terms of wetted length L of junction line, corre-
sponding to Eq. (13). The dashed line represents the function F = F0 sinα.

Figure 9: Modulus F of downhill component of capillary force upon drop, versus
downhill component F0 sinα of volume (weight) force. Circles: same as in Fig. 8.
Stars: heuristic formula in terms of wetted length L of junction line, using the
maximum θmax of the contact angle along the contact line, approximating Eq.
(9).
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corresponds to the system represented in Fig. 4(d), (e) and (f) with F0 & 66
pN. Here the advancing contact angle approaches the Young angle of the liquid
on the more hydrophobic solid S2 as it can be seen in Fig. 7 and then, we are
in the situation sketched in Fig. 2(c) where Eq. (13) should hold. Finally, in
Fig. 9, it is shown that in the range F0 sinα . 33 pN, corresponding to the
situations sketched in Fig. 4(a), (b) and (c) with F0 . 66 pN, it is possible to
use the simplified equation Lγ(cos θ1 − cos θmax) involving the maximum value
θmax of the contact angle of the drop along the contact line. Concerning Fig.
9 in the thermodynamic limit, the formula for the black circles is exact while
the formula for the red stars comes from the approximation θ = θmax all along
the part of the contact line with x ≥ 0. Concerning Fig. 8, the formula for
the black triangles is exact in case (c) where F0 sinα > 80 (not shown on the
figure), assuming local equilibrium at any point on the contact line.

5 Conclusion

We have studied a drop pinned on an incline at the junction between a hy-
drophilic half-plane and a hydrophobic one. In spite of the discontinuity of the
S/L surface tension at the junction, we have shown that the contact line must
remain a differentiable curve. Based on the equilibrium equations derived from
the balance of forces, we have described theoretically three different scenarii:
(a) one for which the contact line partly follows the junction line on a segment
of width L, (b) one for which part of the contact line goes into the hydrophobic
half-plane in a central protuberance while keeping two side overlaps with the
junction line and (c) one for which part of the contact line crosses straight into
the hydrophobic half-plane (See Fig. 2).

In all three cases, we find a formula in the spirit of Furmidge formula Eq.
(2), namely:

mg sinα ' γ L (cos θ1 − cos θmax), (19)

where L is the wetted length of the junction line and θmax is the maximum of
the contact angle along the contact line, which is also the contact angle at the
front of the drop. In case (a): θmax < θ2 and θmax depends upon the Bond
number. In cases (b)(c): θmax = θ2.

To check the validity of the exact formula (5) and the approximate formula
(19), we have performed molecular dynamics simulations for different values of
the gravity force F0 = mg. We then extracted the local contact angle along
the contact line as well as the length L of the contact line intersection with
the junction. Then, we have used them to verify the exact full force balance
given by Eq. (5) showing excellent agreement. We also checked MD simulation
results against the approximate formula (19) in a wide range of F0 = mg show-
ing again an excellent agreement. We find a range of small F0 where scenario
(a) is observed and θmax < θ2, then a medium range of F0 where scenario (b)
is observed and θmax slightly smaller than θ2 and a range of larger F0 where
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scenario (c) is observed and θmax = θ2.
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