
HAL Id: hal-01563303
https://hal.science/hal-01563303

Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing and Integrating Complex Systems: Be Agile
Through Liveness Verification and Abstraction

Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Thanh-Liem Phan

To cite this version:
Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Thanh-Liem Phan. Designing and Inte-
grating Complex Systems: Be Agile Through Liveness Verification and Abstraction. Complex Systems
Design & Management (CSD&M) , Nov 2015, Paris, France. pp.69 - 81, �10.1007/978-3-319-26109-
6_5�. �hal-01563303�

https://hal.science/hal-01563303
https://hal.archives-ouvertes.fr


Designing and integrating complex systems: be

agile through liveness verification and

abstraction

Thomas Lambolais1, Anne-Lise Courbis1, Hong-Viet Luong2, Thanh-Liem
Phan3

1. LGI2P école des mines d’Alès, Site de Nı̂mes, Parc Scientifique Georges Besse,
30 035 Nı̂mes cedex 1, France.

2. M2M-NDT, 1 rue de Terre Neuve, Miniparc du Verger, btiment H, 91 940, Les Ulis,
France.

3. LSEI, CEA INES, 50 avenue du lac Léman, BP 258, 73 375 Le Bourget du Lac,
Cedex, France.

Abstract. Model Driven Architecture (MDA) is recognised as a strong
way to develop high-quality systems, and specifically reactive systems.
Within MDA, models are in the center of a stepwise development based
on extensions, refinements and transformation. Systems Engineering ad-
dresses the problem of complex system development in a holistic way,
however, there is a lack of tools to verify models from a behavioural
point of view at the earlier stage of the development, taking into ac-
count that the specifications are evolving during the system develop-
ment. We propose IDF, a framework for Incremental Development of
Compliant Models, which is constituted with a set of relations based on
the verification of liveness properties. It is computed on abstract mod-
els automatically set up from behavioural specifications of the system or
its component. These relations detect non-conformance of models during
their evolution (extension or refinement) such as the non-interoperability
of sub-components belonging to an architecture.

1 Introduction

Model Driven Architecture (MDA) [22] is recognised as a strong way to develop
high-quality systems, and specifically reactive systems which are event-driven
systems that must continuously react to external stimuli. Such systems include
for instance embedded controllers for automotives, avionics, train, telephony, but
also communication network.

Within MDA, models are in the center of a stepwise development based on
model extensions, refinements and transformations, from an abstract incomplete
specification to a concrete complete model. By this way, models serve both as a
description of the problem domain, i.e. a requirement, and a specification for the
implementation, bridging the gap between problem and solution. Many methods
and tools have been proposed to support model development based on standard
modelling languages such as UML or SysML. Methodologies are also necessary



in order to deal with complex systems. Systems Engineering [1] addresses this
challenge in a holistic way considering both business and technical aspects of
a system design, integrating all stakeholders at the early stage of the develop-
ment, starting from the user requirements and the definition of the environment
of the system to be designed in order to produce high-quality systems. Many
methodologies and many standards have been proposed to follow these recom-
mendations as it is shown in the survey proposed in [8]. Our area of interest
focuses on the definition and the analysis of the behavioural view of the system,
expressed by a functional or organic architecture whose components are defined
by a behavioural view or an architectural one. The target activities are there-
fore the functional analysis, the functional verification and the synthesis in the
IEEE 1220 Process model [2]. Our experience in system modelling highlighted
that architecture definition, behavioural abstraction and refinement are the core
activities of system design. Designing a system consists not only in modelling
its architecture, but also in evaluating its behavioural models and that of its
components at the beginning of the modelling process, although the model is
incomplete and non-deterministic. These features have to be considered as a
support for designers and architects. It means that such verifications have not
to be postponed at the end of the modelling process. They have to be integrated
in the incremental development of the system and its components.

For this propose, we have defined IDF, an Incremental Development Frame-
work. It is defined by a set of relations computed on an abstract formalism (LTS
for Labelled Transition System), allowing models to be evaluated during their
development. The environment of the system to be designed can be at its turn
modelled taking into account its uncertain or non-deterministic behaviour. By
this way, incompatibility or non-interoperability can be detected at early stages
of the design process. The framework is supported by a tool, named IDCM (Incre-
mental Development of Compliant Models). Experiments have been conducted
on UML models. Our work is inspired by techniques of model checking [5]. Such
verifications aims at:

– supporting the stepwise realisation of systems by applying refinement and
extension operations

– analysing the interaction of the system with its environment, with respect
to non-deterministic scenarios

– insuring the interoperability of the system components
– insuring the evolution of the system by substituting a component by a new

one

This paper gives an overview of the concepts of IDF and tools we have de-
veloped to support IDF. The following section presents modelling concepts of
architectures and behavioural components through an incremental development
process in order to point out topics being addressed. Section 2 introduces def-
inition of liveness and abstraction models allowing UML/SysML models to be
analysed. Section 3 gives an overview of relations we have implemented to sup-
port IDF. Section 4 shows main functionalities of the tool IDCM for supporting
IDF concepts. A presentation of our future work will close this article.



2 The architectural paradigms

In this section, we present main useful concepts to understand our proposal for
incremental development of architectural models. We focus on the verification of
behavioural specifications of a system all along its design life cycle. Figure 1 gives
an overview of the useful operations for the development of a system based on a
MDA approach. We suppose that the first step starts by defining a behavioural
specification of the system (behav1 in Figure 1) at a high abstraction level.
Such a specification may evolve and be extended (behav2 in Figure 1) until an
agreement is reached between the various stakeholders of the system development
(client, end-users, designers). This agreement may however evolve during the
system design process and at every step, it will be necessary to be able to take
into account new specifications.

When the system is complex, its design is structured into components that
may represent functional components or physical components depending on the
stage of the design process. Components defined according to a structural view
are called architectures. For example, in Figure 1, the first architecture is named
archi1; it is extended into archi2 whose components have to be refined. Ar-
chitectures can be seen as a hierarchical tree whose leaves are behavioural com-
ponents. Architectures may represent logical architectures or physical ones.

B� �������

����	
��	
���

���	��	��
���

���	��	��
���

������� ��	��
�


B� ������

A2 �����������������

����

��

��

��

A� ������

��

��

��

�
�
�
��
�
�
�

�
�
�
�
�	
�	

A� ������

��

��

��

������	 
���	
�


��

����

�� �
���
� ��

�� 
��
��� ��

��

����

������	 
���	
�


��

�� �
���
� ��

���
��

���������	
���
�
�������	
���

Fig. 1. Overview of an incremental development through refinement and extension
operations.

Extensions means that new behaviours are introduced into the design, for
whatever reasons: the system is too complex to be defined in one shot, the client



changes is mind, there is an already developed COTS whose specification is
closed of the required one that could be integrated with lower cost, a product
line has already be tested and its enhancement is expected by introducing new
requirements, and so on.

Refinements aim at adding details and reducing non-determinism in order to
get a concrete model closer to the final implantation of the system.

Developments of components may be processed by separate teams, by means
of a collaborative platform, that increase the complexity of the process. One
main concern of component designers is to develop components that meet their
specification. Components are supposed to be defined for a given context, except
that this context is evolving since it is itself under development. One goal of the
architect is to verify the behavioural consistency of the models being developed.
This task is critical since sub-systems have their own development life cycle. Nev-
ertheless, the architect cannot wait until the final implantation model to check
the consistency analysis of the system. He/she has to maintain the functional
consistency of the system model under development whatever the abstractions
of sub-system models. We characterize consistency by the following properties:

– conformance: the behavioural specification of the architecture that is de-
duced from the interaction of its components fulfils the mandatory parts of
the specification [12].

– interoperability: the system is deadlock free; whatever point of interaction
may be reached, communication will not be blocked and each part will reach
one of its final states [4].

Architectures and behavioural components are defined from an external point
of view, by a set of ports useful for establishing connections and a set of inter-
faces defining required and provided operations (or services). In order to illus-
trate concepts of architecture modelling, we will take as example the V76 case
study proposed by [7], which is a simplified version of the protocol described
in the ITU V.76 recommendation, based on LAPM (Link Access Procedure for
Modems). Figure 2(a) represents an abstract external view of an architecture
named V76-DL which represents the communication between two components
that implement the protocol V76 and Figure 2(b) is a more detailed external
view.

The internal view of an architecture is defined by its components and their
interconnections. For example, Figure 3 illustrates the internal view of architec-
ture V76-DL: it is constituted with two components of type V76 whose external
view is given in Figure 4. The architecture allows two users to communicate
through the ports u1 and u2.

The internal view of a behavioural component is defined by a behavioural
specification defined according to its ports, the operations of its external view
and private internal operations. Many formalisms may be used for behavioural
specification depending on the system features and the progress of the develop-
ment: sequence diagrams, state machines, functional flow block diagrams. For
example, Figure 5(a) shows a simplified specification of the architecture V76-



Fig. 2. External view of two points of view of architecture V76-DL.

Fig. 3. Internal view of architecture V76-DL.

Fig. 4. External view of component V76.



DL from the transmitting user point of view and Figure 5(b) shows the state
machine of component V76 belonging to architecture V76-DL.

Fig. 5. Behavioural specifications: (a) sequence diagram associated with the abstract
architecture V76-DL (b) state machine of component V76.

Analysing the consistency of an architecture during its development requires
specific mechanisms and tools that are usually not proposed by CASE (Computer-
Aided Software Engineering) tools. These mechanisms are divided into two
groups:

– model verifications: adequate relations have to be defined to capture confor-
mance, refinement, extension and interoperability

– model abstraction: adequate models have to be set up from the model under
construction in order to capture behavioural specification from an external
point of view and an appropriate abstraction in order to compare models
defined at different abstraction levels.

These mechanisms are defined according to liveness properties that have to
be preserved during development. This property is the liveness. Next section
gives definition of liveness and motivates this choice.

3 The use of liveness and abstraction as a design

guideline

Liveness and safety properties allow systems to be analysed with respect to their
behavioural specification as observed by their environment. This behaviour is
observed by traces which are partial sequences of interactions (events or actions)
starting from the initial state of the system. There are several ways to define
safety and liveness, some of them being contradictory about the classification
of deadlock property. We have selected definitions proposed by [14]: a safety



property asserts that the system always stays within some allowed set of finite
behaviours, in which nothing “bad” happens. The violation of such properties
occurs after a finite execution of the system. A liveness property asserts that
the system eventually reaches a good set of states, that means it will eventually
react as it should after some given traces. A liveness property represents what
the system must do, while a safety represents what the system has not to do.
When reasoning on models, liveness properties can only be established under
some fairness assumption, stating that the system is not allowed to continuously
favour certain choices at the expense of others [25]. The fairness assumption
implies that the system will eventually accept an event occurring infinitely often.
Lastly, we consider that deadlock freedom is a liveness property, as proposed
in [23] since a deadlock means that the system refuses any input event.

Many formal methods addressing complex system development advocate re-
finement techniques [13, 27] such as B method [3] or Object-Z [26]. They focus on
the preservation of safety properties all along the process of development. Such
methods are adequate when the specification of the component or the complete
system is definitive and not being defined or evolved. Another way to support
designers during model development is to preserve the liveness properties as
mentioned in [11]: liveness properties act as a design guideline for developing
systems.

Liveness is crucial for reactive systems and is complementary to safety to
support designers during an incremental development: observing liveness allows
specification to be enriched, starting from a “draft” model that is completed by
a stepwise approach in a non-regressive way.

It is therefore necessary to provide designers with tools to compare mod-
els according to their liveness properties, taking into account that they sub-
components can be defined at different abstraction levels. For example, how en-
suring that architecture V76-DL fulfils the behavioural specification expressed by
the sequence diagram? Are components of architecture V76-DL interoperable?

To answer these questions, we have defined two mechanisms: model abstrac-
tion and model analysis based on a liveness analysis.

Model Abstraction

With model abstraction, a simplified behaviour is extracted from models to be
analysed. This extraction takes into account several criteria: the abstraction
levels of models to be compared, the type of relation to be analysed (extension,
refinement or interoperability), and of course, the goal of the analysis that is
based on the analysis of the interaction of system (or one of its sub-system) and
its environment. Abstract models are formalised by LTS (Labelled Transition
System) [20]. Reasoning on such a formalism has many advantages: the system
analysis is independent from the modelling formalism chosen by the designer;
models can thus be compared even if their application domain is different, that
is usual in System Engineering; existing relations already defined on LTS can be
used for our purpose.



We do not formally introduce LTS and the process to abstract state machines
into LTS. You can refer to [15] and [18] to get details about the transformation.
Figure 6(a) illustrates the LTS generated from the state machine of component
V76, and Figure 6(b) the LTS associated with the sequence diagram of the ar-
chitecture V76-DL. The transformation does not handle data; it only focuses
on provided and required events (or services) offered by the component under
analysis. When the component is an architecture, we have defined a transforma-
tion [24] which computes all combinations of internal events between components
and reduces the LTS to observable events by hiding internal synchronisations and
internal operations. Hidden actions are noted i in the LTS. For example, the LTS
associated with the architecture of Figure 3 handles operations defined on its
interfaces given in Figure 2(b). Operations defined on interfaces of internal com-
ponents, that is interfaces DataLinkIN and DataLinkOUT, are hidden. The LTS
is built by synchronising the two LTS of Figure 6 on their internal connector. It
contains 84 transitions and 54 states.

Fig. 6. (a) LTS associated with the state machine of component V76. (b) LTS associ-
ated with the sequence diagram of the simplified specification of architecture V76-DL.

When models to be compared do not belong to the same abstraction level,
their interfaces may be different. For example, there are more operations in in-
terfaces of component V76-DL than those of the specification of V76 protocol
given by the sequence diagram. Comparison needs to align the abstraction lev-
els. For this purpose, we use a hiding mechanism and a renaming mechanism,
when operations are refined. For example, to compare V76-DL and the sequence



diagram, internal operations of the architecture (ua, i, sabme, and disc) are hid-
den such as the operations belonging to the port u2, which correspond with the
user receiving the data. By this mechanism, the LTS associated with V76-DL
architecture will be comparable to the abstract specification.

The main feature of this abstract model is that it captures what the system
must do and what the system may do. That is crucial for liveness properties as
we point out below.

Liveness analysis

There exists a specific relation, which lonely goal is to preserve liveness. This
relation is conformance relation conf [6, 17]. Conformance testing methodolo-
gies proposed by ISO and ETSI [12] are designed to compare an implementation
model with a standard specification. Standard specifications or recommendations
serve to define both the mandatory and optional parts. The main idea behind
conformance is to verify agreement between an implementation and its specifi-
cation on required parts; informally speaking, an implementation conforms to a
standard if it has properly implemented all mandatory parts of the standard [21].

Fig. 7. Example of conf relation.

For instance, in Figure 7, we can deduce the following properties:

– spec1, spec2 and spec4 may accept releaseREQ or connectREQ after a se-
quence of connectREQ. As they may also refuse them, operations releaseREQ
or connectREQ are optional.

– spec3 must accept releaseREQ after connectREQ. releaseREQ is thus manda-
tory after the trace connectREQ.

We can verify: spec1 conf spec2, spec2 conf spec1, spec1 conf spec4. How-
ever, spec1 6conf spec3: from an observational standpoint, nothing distinguishes



spec1 from spec3 but conf relation detects non-determinism of spec3. In this
example, spec1 may refuse releaseREQ after a non-empty unbounded occur-
rences of connectREQ, whereas spec3, which is deterministic, cannot. spec1 and
spec3 are trace equivalent, yet not in conformance. Lastly, even if spec1 conf

spec4andspec4 conf spec1, we can verify that spec4 cannot substitute spec1.
Even though the conformance relation has been defined by [17], we are still

not aware of any published method to compute it. We have thus proposed an
implantation of this relation and pointed out how extension and refinement
relations can be defined from the conformance relation [18, 19]. In the same
way, we have implemented the procedure allowing to check if a component can
substitute another one, whatever its environment may be [24].

Next section gives an overview of the tool IDCM we have defined and imple-
mented to provide designers with a tool box to analyse models.

4 IDCM: Incremental Development of Compliant Models

IDCM is a tool box allowing models to be compared with respect to refinement,
extension and substitution relations. It is based on concepts of IDF focusing
on the analysis of liveness properties and abstraction of behavioural/functional
models. It is developed in Java. Its first release is integrated into TopCased
environment [9] and focus on UML state machines and composite component
analysis. When a model is loaded for verification, the set of its components is
proposed to be abstracted into LTS (see Figure 8).

Fig. 8. Interface to transform behavioural and architectural components into LTS.

Behavioural component transformation is performed by an ad-hoc algorithm
we have developed by parsing state machine xmi models. Composite components



transformation is done with two stages: the first one produces an intermediate
file in EXP.OPEN format [16] that is obtained by parsing composite component
xmi models; the second stage, consisting in transforming the intermediate file
into LTS, is performed by the CADP toolbox [10]. LTS associated with state ma-
chines and composite components are generated into CADP textual and binary
formats [10].

Fig. 9. Verdict of the conformance between the architecture V76-DL and its abstract
specification.

IDCM proposes a set of relations for model comparison. They are classified in
several families: relations for incremental development (extension or refinement),
relation for liveness verification to check the conformance between an implan-
tation and its specification, relations for assembling sub-components (compati-
bility) and lastly, relations to check if a component can substitute another one.
When a relation between two models does not hold, a verdict is given as a se-
quence of observable events leading to a failure. Designers are in charge to analyse
the trace, to execute it on the state machine, or in the architecture in order to
find the mistake and correct it. For example, we have found a mistake (Figure 9)
in the state machine of component V76 by comparing the architecture with its
abstract specification. There exists a deadlock after the action connectREQ when
the two users send together a connectREQ. We have corrected this mistake by
adding a state and transitions between wait− eu and wait− establish states in
the state machine of Figure 5(b).

5 Conclusion

Developing complex systems requires methodologies such as MDA and System
Engineering. Nevertheless, there is an actual difficulty for designers and archi-
tects for evaluating the behaviour of a system being designed during its develop-
ment. We have thus proposed a framework supported by a tool allowing models
to be developed through a stepwise methodology using extensions, refinements



and substitutions. The development guarantees the liveness properties of the
system. Our proposal is thus complementary to approaches of safety analysis
that must also be performed during the development of critical systems.

Our future work plans to extend the model transformation to other func-
tional formalisms than state machines such as sequence diagrams and eFFBD
(enhanced functional block diagram). We are also defining a UML profile for
incremental development.

References

1. Systems engineering handbook. INCOSE, 2006.
2. IEEE 1220-2005. Standard for Application and Management of the Systems Engi-

neering Process. IEEE Computer Society, 2005.
3. Jean-Raymond Abrial. Modeling in Event-B — System and Software Engineering.

Cambridge University Press, 2010.
4. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,

and Munidar P. Singh. Choice, interoperability, and conformance in interaction
protocols and service choreographies. In Sierra Decker, Sichman and Castelfranchi,
editors, 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009), May 2009. Budapest, Hungary.

5. Edmund M. Clarke. The birth of model checking. 25 Years of Model Checking;
Lecture Notes in Computer Science, 5000:1–26, 2008.

6. Rance Cleaveland and Bernhard Steffen. A preorder for partial process specifica-
tions. In CONCUR ’90 Theories of Concurrency: Unification and Extension, pages
141–151, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

7. Laurent Doldi. UML 2 Illustrated: Developing Real Time & Communication Sys-
tems. TMSO, 2003.

8. Jeff A. Estefan. Survey of model-based systems engineering (mbse) methodologies.
Technical Report INCOSE-TD-2007-003-01, INCOSE MBSE Focus Group, 2008.

9. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
and M. Pantel. The TOPCASED project: a toolkit in open source for critical
aeronautic systems design. Ingénieurs de l’Automobile, 781:54–59, 2006.

10. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2010: A Toolbox for the Construction and Analysis of Distributed Processes. In
Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 6605 of Lecture Notes in Computer
Science, pages 372–387. Springer Berlin Heidelberg, Saarbrücken, 2011.

11. Simon Hudon and Thai Son Hoang. Systems Design Guided by Progress Concerns.
In Integrated Formal Methods, pages 16–30. Springer Berlin Heidelberg, 2013.

12. ISO/IEC9646. Information technology – open systems interconnection – confor-
mance testing methodology and framework – part 1: General concepts, 1991.

13. Amal Khalil and Juergen Dingel. Supporting the Evolution of UML Models in
Model Driven Software Development : A Survey. Technical Report 602, School of
computing, Queen’s University, Ontario, Canada, 2013.

14. Orna Kupferman and MY Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

15. Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, and Thanh-Liem Phan.
Interoperability analysis of systems. In 18th World Congress of the International
Federation of Automatic Control (IFAC 2011), pages 7879–7884, 2011.



16. Frédéric Lang. Exp. open 2.0: A flexible tool integrating partial order, composi-
tional, and on-the-fly verification methods. In Integrated Formal Methods, pages
70–88. Springer, 2005.

17. Guy Leduc. A framework based on implementation relations for implementing
LOTOS specifications. In Computer Networks and ISDN Systems, volume 25,
pages 23–41, 1992.

18. Hong-Viet Luong. Construction incrémentale de spécifications de systèmes cri-
tiques intégrant des procédures de vérification. PhD thesis, Université Paul Sabatier
Toulouse III, October 2010.

19. Hong-Viet Luong, Thomas Lambolais, and Anne-Lise Courbis. Implementation of
the Conformance Relation for Incremental Development of Behavioural Models.
In Krzysztof Czarnecki, editor, Proceedings of 11th International Conference on
Model Driven Engineering Languages and Systems (MoDELS), volume 5301 of
Lecture Notes in Computer Science, pages 356–370. Springer-Verlag, 2008.

20. Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.
21. Scott Moseley, Steve Randall, and Anthony Wiles. In Pursuit of Interoperabil-

ity. In Kai Jakobs, editor, Advanced Topics in Information Technology Standards
and Standardization Research, chapter 17, pages 321–323. Idea Group Publishing,
Hershey, 2006.

22. OMG MDA. Model Driven Architecture Foundatation Model. OMG ormsc/10-09-
06, 2006.

23. Oracle Corp. The Java Tutorials — Trial Essential Classes: Concurrency. Liveness.
http://docs.oracle.com/javase/tutorial/essential/concurrency/liveness.html/,
2015.

24. Thanh-Liem Phan. Développement incrémental de spécifications d’architectures en
UML intégrant des procédures de vérification. PhD thesis, Université Montpellier
II, 2013.

25. Antti Puhakka and Antti Valmari. Liveness and Fairness in Process-Algebraic
Verification. In Proceedings of the 12th International Conference on Concurrency
Theory, CONCUR ’01, pages 202–217, London, UK, 2001. Springer-Verlag.

26. Graeme Smith. The Object-Z Specification Language, volume 1 of Advances in
Formal Methods. Kluwer Academic Publishers, Boston, MA, 2000.

27. Muhammad Usman, Aamer Nadeem, Tai Hoon Kim, and Eun Suk Cho. A survey
of consistency checking techniques for UML models. In Proceedings of the 2008
Advanced Software Engineering and its Applications, pages 57–62, 2008.


