
Clustered Information Filter
for Markov Jump Linear

Systems

Eduardo F Costa Benoı̂te de Saporta
Univ. São Paulo Univ. Montpellier
efcosta@icmc.usp.br Benoite.de-Saporta@umontpellier.fr

• Support by Inria associate team CDSS, ANR grant Piece,
• FAPESP, FAPESP/FAPs/INRIA/INS2i-CNRS and CNPq



PROBLEM - BASIC FORMULATION



MARKOV CHAIN

{θ(k), k ≥ 0} (1)

• Finite state space {1,2, . . . ,N}

• Initial distribution π0 = [Pr(θ(0) = 1) · · ·Pr(θ(0) = N)].

• Partition S1, . . . ,SNC for its state space.

• ρ(k) marks the partition visited ρ(k) =
∑NC

m=1 m × 1{θ(k)∈Sm}.



DYNAMICAL SYSTEM

xk+1 = Aθ(k)xk + Gθ(k)wk

yk = Lθ(k)xk + Hθ(k)wk , k ≥ 0
(2)

• x0 : E [x0] = x̄ and E [x0x ′0] = Ψ.

• w noise, independent from x0 and the Markov chain θ.
E [wk ] = 0 and E [wk w ′k ] is the identity matrix for all k .

• GiH ′i = 0 and HiH ′i > 0, 1 ≤ i ≤ N.

• Aθ(k) = Ai whenever θ(k) = i , Ai belonging to a given set of
matrices, and similarly for the other matrices.



LUENBERGER OBSERVERS (AS USUAL!)

x̂k+1 = Aθ(k)x̂k + Mk (yk − Lθ(k)x̂k ) (3)

• Mk is referred to as the filter gain.

• The initial estimate is given by x̂0 = x̄ .

• This produces an estimation error x̃ = x − x̂ satisfying

x̃k+1 = (Aθ(k) −Mk Lθ(k))x̃k + (Gθ(k) −Mk Hθ(k))wk , (4)

and x̃0 = x0 − x̄ ∼ N(0,Ψ).



CLUSTERED INFORMATION STRUCTURE:

y(k), θ(k)available at each timek .

• However, we do not take into account θ(0), . . . , θ(k − 1) when
calculating the gain Mk (to avoid an excessive number of

branches):

Mk = hk (ρ(0), . . . , ρ(k − 1), θ(k)), (5)

for measurable functions hk .



OBJECTIVE FUNCTION:

min
M0,...,Ms

E{‖xs − x̂s‖2|Rs}, s.t. (5), (6)

where Rs = {ρ(0), . . . , ρ(s), y(0), . . . , y(s), θ(s)}.



MAIN POINT



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

It is easy to check that X (k) := E{x̃(k)x̃(k)} satisfies:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Thus X (k) forms a stochastic process, with some nice
properties:



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• If the gains Mt are given 0 ≤ t ≤ s, then (X (k), θ(k)) is a Markov
process

• More importantly, given X (k) and θ(k), the variable X (k + 1)
depends on Mk only



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• This allows us to “control the flux of information” via Mk .

• For instance, if Mk depends on the whole realization
θ(0), . . . , θ(k), then X (k + 1) will do so - in this case yielding the

classic Kalman filter (loosing Markovianity of (X , θ)).



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Now, if Mk depends on π0, θ(k), then X (k + 1) will do so, leading
to the “classic” linear minimum mean square estimator (LMMSE)

for Markov jump linear systems [2, 3]. Here, (X , θ) is Markov.



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Generalizing both examples above: if Mk depends on
π0, ρ(0), . . . , ρ(k − 1), ρ(k), then X (k + 1) will do so, leading to
estimators lying in the between the Kalman and the LMMSE.



FORMULAS



SOME PROBABILITIES:

p`0,...,`k−1,i,k := Pr(ρ(0) = `0, . . . , ρ(k − 1) = `k−1, θ(k) = i)

can be computed recursively via:

p`0,...,`k−1,i,k =
∑
j∈S̃

pjip`0,...,`k−2,j,k−1

where we denote S̃ = {j ∈ S`k : p`0,...,`k−2,j,k−1 6= 0},

The initial condition is

p`0,i,1 =
∑

j∈S`0

pjiπ0,j



PRE-COMPUTING OPTIMAL “CONDITIONED” ERROR
COVARIANCES:

Y`0,...,`k−1,i,k := E(x̃k x̃ ′k1{ρ(0)=`0,...,ρ(k−1)=`k−1,θ(k)=i}). can be computed
recursively via Riccati-like equations:

Y`0,...,`k−1,i,k
=



0, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji
[
Aj Y`0,...,`k−2,j,k−1A′j + p`0,...,`k−2,j,k−1Gj G

′
j

− Aj Y`0,...,`k−2,j,k−1L′j
(
Lj Y`0,...,`k−2,j,k−1L′j

+ p`0,...,`k−2,j,k−1Hj H
′
j
)−1Lj Y`0,...,`k−2,j,k−1A′j

]
,

otherwise.

(7)

The initial condition is

Yi,0 = π0,i Ψ.



PRE-COMPUTING OPTIMAL GAINS:

M?k =



0, Pr(ρ(0), . . . , ρ(k − 1), θ(k)) = 0,
Aθ(k)Yρ(0),...,ρ(k−1),θ(k),k L′θ(k)

·
(
Lθ(k)Yρ(0),...,ρ(k−1),θ(k),k L′θ(k)

+ Pr(ρ(0), . . . , ρ(k − 1), θ(k))Hθ(k)H
′
θ(k)

)−1
,

otherwise,
(8)

Proof: see Theorem 3 in [1].



PRE-COMPUTING OPTIMAL CONDITIONED ERROR
COVARIANCES:

X`0,...,`k−1,i,k := E(x̃k x̃ ′k |ρ(0) = `0, . . . , ρ(k − 1) = `k−1, θ(k) = i).

can be computed recursively via Riccati-like equations:

X`0,...,`k−1,i,k
=



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X`0,...,`k−2,j,k−1A′j + Gj G

′
j

− Aj X`0,...,`k−2,j,k−1L′j
(
Lj X`0,...,`k−2,j,k−1L′j

+ Hj H
′
j
)−1Lj X`0,...,`k−2,j,k−1A′j

]
,

otherwise.

(9)



PRE-COMPUTING OPTIMAL GAINS:

M?
k =


0, Pr(ρ(0), . . . , ρ(k − 1), θ(k)) = 0,
Aθ(k)Xρ(0),...,ρ(k−1),θ(k),k L′θ(k)
·
(
Lθ(k)Xρ(0),...,ρ(k−1),θ(k),k L′θ(k)

+ Hθ(k)H
′
θ(k)
)−1

,

otherwise,

(10)

The above is very similar (in form) to the Kalman gain.



ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

The gains and error covariances can be computed during the system
operation - we do not need to store all branches of X`0,...,`k−1,i,k and

respective gains.

Given a realization `0, . . . , `k−1, `k and θ(k) = i , if we denote
X (k , i) = X`0,...,`k−1,i,k then the formula above yields:

X(k, i) =



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X(k − 1, j)A′j + Gj G

′
j

− Aj X(k − 1, j)L′j
(
Lj X(k − 1, j)L′j + Hj H

′
j
)−1Lj X(k − 1, j)A′j

]
,

otherwise.



ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

X(k, i) =



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X(k − 1, j)A′j + Gj G

′
j

− Aj X(k − 1, j)L′j
(
Lj X(k − 1, j)L′j + Hj H

′
j
)−1Lj X(k − 1, j)A′j

]
,

otherwise.

Note that the term inside the sum (where the gains come from) is a
standard Riccati. In a sense, we are optimizing in the same way a

Kalman filter does, however we take into account a “restricted
information” error covariance process X (k , i).

We use this to prevent an excessive branching of X .



PARTICULAR CASES - KALMAN AND LMMSE



KALMAN FILTER:

Consider each cluster contains a separate θ, e.g.
S1 = 1,S2 = 2, . . . ,SN = N. Then

Xρ(0),...,ρk−1,θ(k),k = Xθ(0),...,θ(k−1),θ(k),k

is the classic covariance matrix of a Kalman filter.

Getting back to the formula in the preceding slide, the term
pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k
reduces to 1, moreover S̃ reduces to θ(k − 1) and we

retrieve the classic Riccati of filtering.

X (k + 1, θ(k)) = AjX (k − 1, θ(k − 1))A′j + GjG′j

− AjX (k − 1, θ(k − 1))L′j
(
LjX (k − 1, θ(k − 1))L′j + HjH ′j

)−1

· LjX (k − 1, θ(k − 1))A′j



LMMSE:

Consider only one cluster S1 = {1,2, . . . ,N}. Then

Xρ(0),...,ρk−1,θ(k),k = X1,...,1,θ(k),k

does not branch at all - they can be stored as a set of matrices for
each time k .

Note also that p`0,...,`k−1,i,k = Pr(θ(k = i)) and substituting this in (7)
one obtains the formulas of the LMMSE given in [2, 3].



EXAMPLES



(ACADEMIC) PLANT GIVEN IN [4]:
Table: Mean square error, CPU time to compute the gains and the
number of gains for every cluster configuration.

Clusters E(‖x̃10‖2) CPU time n. gains
{1,2,3,4} 0.6699 2.24 · 10−2 40
{1,2},{3,4} 0.6690 3.32 4, 092
{1,3},{2,4} 0.6680 3.34 4, 092
{1,4},{2,3} 0.6689 3.37 4, 092
{1},{2,3,4} 0.6696 3.34 4, 092
{2},{1,3,4} 0.6685 3.35 4, 092
{3},{1,2,4} 0.6678 3.34 4, 092
{4},{1,2,3} 0.6691 3.33 4, 092
{1,2},{3},{4} 0.6675 1.14 · 103 118, 096
{1,3},{2},{4} 0.6675 1.14 · 103 118, 096
{1,4},{2},{3} 0.6672 1.14 · 103 118, 096
{1},{2,3},{4} 0.6687 1.14 · 103 118, 096
{1},{2,4},{3} 0.6674 1.14 · 103 118, 096
{1},{2},{3,4} 0.6682 1.14 · 103 118, 096
{1},{2},{3},{4} 0.6618 1.35 · 104 1, 398, 100



MAGNETIC SUSPENSION SYSTEM

Figure: Schematics of the Magnetic levitator.



MAGNETIC SUSPENSION SYSTEM

• We take the parameters of a real-world maglev system, discretized with
sampling period 0.1, linearized at around an operation point; the
components of state x are x = [z ż i] (position, speed, current),

leading to the following state space model (irrespective of the jump
parameters):

xk+1 =

 3917 87.38 −41.05
175600 3917 −1840

0 0 4742× 10−4

 xk+

0 0 −9.152× 10−4 0 0
0 0 −4.106× 10−2 0 0
0 0 2.612× 10−5 0 0

wk



MAGNETIC SUSPENSION SYSTEM

• There are sensors for the position and coil current, with measurement
noise. In “Normal” mode θ = 1 we have

yk =

[
1 0 0
0 0 1

]
xk +

[
0 0 0 0.01 0
0 0 0 0 0.01

]
wk



MAGNETIC SUSPENSION SYSTEM

• We assume that there are two possible types of failures - leading to
complete loss of observation of the current and increasing the

measurement noise;

• We have modeled the failures via a Markov chain, so that when θ = 1
all sensors are operating normally; θ = 2 describes loss of current
readings; θ = 3 describes both loss of current reading and higher

measurement noise.

• We have considered the following transition probabilities:

P =

0.9 0.05 0.05
0.1 0.9 0
0.2 0 0.8





MAGNETIC SUSPENSION SYSTEM

• We start with a small horizon s = 5 so that (7) can be computed quickly.
We have considered all possible partitions and obtained the following

errors.

Table: Mean square error for every cluster configuration.

Clusters E(‖x̃5‖2)

{1,2,3} 2.276868× 103

{1,2},{3} 2.276866× 103

{1,3},{2} 2.276798× 103

{2,3},{1} 2.276800× 103

{1},{2},{3} 2.276798× 103

• This suggests that the configuration {1, 3}, {2} provides a good
performance (very close to the KF) with a relatively small complexity.



MAGNETIC SUSPENSION SYSTEM

• Taking the results with small s as a guideline, we select the cluster
configuration {2, 3}, {1} and simulate the filter for time horizon s = 100
(now using the formulas for online computation). Results are as follows,

based on Monte Carlo simulation with 1000 repeats.

Table: Estimated mean square error for every cluster
configuration, with horizon s = 100.

Clusters E(‖x̃100‖2)

{1,2,3} 2930
{1,2},{3} 2450
{1,3},{2} 335
{2,3},{1} 2430
{1},{2},{3} 178

• Again, the configuration {1, 3}, {2} is appealing for approximating the
Kalman filter performance with a smaller complexity.



CONCLUDING REMARKS



• We have explored the stochastic process formed by the error
covariance matrix X (k) = E{x̃(k)x̃(k)} in the context of Markov

jump linear systems.

• X (k) is conditionally independent from X (k − 2),X (k − 3), ... and
past values of θ given X (k − 1), θ(k − 1), allowing us to choose

what information is relevant to compute it via the gains Mk .



• Using clustered gains in the form
Mk = hk (ρ(0), . . . , ρ(k − 1), θ(k)) and choosing the clusters, we
can “control” the complexity of the filter in terms of number of

gains to be pre-computed, and at same time the performance of
the filter.

• Taking few clusters makes pre-computation/computation easy,
and yields a low accuracy filter for x .

• The task of finding a suitable choice of the clusters might be
complex, taking into account that the CPU time and memory

requirements are prohibitive for large horizons s >> 1 and large
number of clusters; however, even a small s might help in this

task, as illustrated in the maglev example.



• A direct extension/adaptation of our results allows to make the
cluster configuration dependent on time k ; e.g. one might use

the LMMSE during a time interval (by choosing a single cluster)
and shift to the Kalman filter later on, by adopting N clusters.

This gives extra flexibility to seek for the best computable filter.

• Future work will look into a continuous-time version. We believe
that finding detectability-like conditions for keeping the process
X average-bounded is an interesting topic. One might also look

for other types of indirect observation of θ, possibly further
generalizing the filter.



COSTA, E. F., AND DE SAPORTA, B.
Linear minimum mean square filters for Markov jump linear
systems.
IEEE Transactions on Automatic Control 62, 7 (July 2017),
3567–3572.

COSTA, O. L. V.
Linear minimum mean square error estimation for
discrete-time Markovian jump linear systems.
IEEE Transactions on Automatic Control 39, 8 (1994),
1685–1689.

COSTA, O. L. V., AND TUESTA, E. F.
Finite horizon quadratic optimal control and a separation
principle for Markovian jump linear systems.
IEEE Trans. Automat. Control 48 (2003).

ZHANG, L., AND BOUKAS, E.-K.
Mode-dependent H∞ filtering for discrete-time Markovian
jump linear systems with partly unknown transition
probabilities.
Automatica 45, 6 (2009), 1462–1467.



THANK YOU.


