Clustered Information Filter for Markov Jump Linear Systems

Eduardo F Costa Benoîte de Saporta Univ. São Paulo Univ. Montpellier efcosta@icmc.usp.br Benoite.de-Saporta@umontpellier.fr

- Support by Inria associate team CDSS, ANR grant Piece,
- FAPESP, FAPESP/FAPs/INRIA/INS2i-CNRS and CNPq

PROBLEM - BASIC FORMULATION

$$\{\theta(k), k \ge 0\} \tag{1}$$

• Finite state space {1, 2, ..., *N*}

• Initial distribution $\pi_0 = [\Pr(\theta(0) = 1) \cdots \Pr(\theta(0) = N)].$

• Partition S_1, \ldots, S_{N_c} for its state space.

• $\rho(k)$ marks the partition visited $\rho(k) = \sum_{m=1}^{N_c} \overline{m \times \mathbb{1}_{\{\theta(k) \in S_m\}}}$.

DYNAMICAL SYSTEM

$$egin{aligned} & \kappa_{k+1} &= A_{ heta(k)} x_k + G_{ heta(k)} w_k \ & y_k &= L_{ heta(k)} x_k + H_{ heta(k)} w_k, \qquad k \geq 0 \end{aligned}$$

• $x_0 : E[x_0] = \bar{x}$ and $E[x_0 x'_0] = \Psi$.

w noise, independent from x₀ and the Markov chain θ.
 E[*w_k*] = 0 and *E*[*w_kw'_k*] is the identity matrix for all *k*.

• $G_i H'_i = 0$ and $H_i H'_i > 0, 1 \le i \le N$.

*A*_{θ(k)} = *A_i* whenever θ(k) = i, *A_i* belonging to a given set of matrices, and similarly for the other matrices.

LUENBERGER OBSERVERS (AS USUAL!)

$$\widehat{x}_{k+1} = A_{\theta(k)}\widehat{x}_k + M_k(y_k - L_{\theta(k)}\widehat{x}_k)$$
(3)

- *M_k* is referred to as the filter gain.
- The initial estimate is given by $\hat{x}_0 = \bar{x}$.
- This produces an estimation error $\tilde{x} = x \hat{x}$ satisfying

$$\widetilde{x}_{k+1} = (A_{\theta(k)} - M_k L_{\theta(k)}) \widetilde{x}_k + (G_{\theta(k)} - M_k H_{\theta(k)}) w_k, \qquad (4)$$

CLUSTERED INFORMATION STRUCTURE:

$y(k), \theta(k)$ available at each time k.

 However, we do not take into account θ(0),..., θ(k – 1) when calculating the gain M_k (to avoid an excessive number of branches):

$$M_k = h_k(\rho(0), \dots, \rho(k-1), \theta(k)), \tag{5}$$

for measurable functions h_k .

OBJECTIVE FUNCTION:

$$\min_{M_0,\ldots,M_s} E\{\|x_s - \widehat{x}_s\|^2 | \mathcal{R}_s\}, \quad \text{s.t. (5)},$$
where $\mathcal{R}_s = \{\rho(0), \ldots, \rho(s), y(0), \ldots, y(s), \theta(s)\}.$
(6)

It is easy to check that $X(k) := E\{\tilde{x}(k)\tilde{x}(k)\}$ satisfies:

 $egin{aligned} X(k+1) &= (A_{ heta(k)} - M_k L_{ heta(k)}) X(k) (A_{ heta(k)} - M_k L_{ heta(k)})' \ &+ (G_{ heta(k)} - M_k H_{ heta(k)}) (G_{ heta(k)} - M_k H_{ heta(k)}), \end{aligned}$

 Thus X(k) forms a stochastic process, with some nice properties:

$$egin{aligned} X(k+1) &= (m{A}_{ heta(k)} - m{M}_k L_{ heta(k)}) X(k) (m{A}_{ heta(k)} - m{M}_k L_{ heta(k)})' \ &+ (m{G}_{ heta(k)} - m{M}_k H_{ heta(k)}) (m{G}_{ heta(k)} - m{M}_k H_{ heta(k)}), \end{aligned}$$

• If the gains M_t are given $0 \le t \le s$, then $(X(k), \theta(k))$ is a Markov process

• More importantly, given X(k) and $\theta(k)$, the variable X(k + 1) depends on M_k only

 $egin{aligned} X(k+1) &= (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k L_{ heta(k)}) X(k) (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k L_{ heta(k)})' \ &+ (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k H_{ heta(k)}) (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k H_{ heta(k)}), \end{aligned}$

• This allows us to "control the flux of information" via M_k .

For instance, if M_k depends on the whole realization
 θ(0),...,θ(k), then X(k + 1) will do so - in this case yielding the classic Kalman filter (loosing Markovianity of (X, θ)).

$$egin{aligned} X(k+1) &= (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k oldsymbol{L}_{ heta(k)}) X(k) (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k oldsymbol{L}_{ heta(k)})' \ &+ (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k oldsymbol{H}_{ heta(k)}) (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k oldsymbol{H}_{ heta(k)}), \end{aligned}$$

Now, if *M_k* depends on π₀, θ(k), then X(k + 1) will do so, leading to the "classic" linear minimum mean square estimator (LMMSE) for Markov jump linear systems [2, 3]. Here, (X, θ) is Markov.

$$egin{aligned} X(k+1) &= (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k oldsymbol{L}_{ heta(k)}) X(k) (oldsymbol{A}_{ heta(k)} - oldsymbol{M}_k oldsymbol{L}_{ heta(k)})' \ &+ (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k oldsymbol{H}_{ heta(k)}) (oldsymbol{G}_{ heta(k)} - oldsymbol{M}_k oldsymbol{H}_{ heta(k)}), \end{aligned}$$

• Generalizing both examples above: if M_k depends on $\pi_0, \rho(0), \ldots, \rho(k-1), \rho(k)$, then X(k+1) will do so, leading to estimators lying in the between the Kalman and the LMMSE.

SOME PROBABILITIES:

 $\overline{\rho_{\ell_0,\ldots,\ell_k}}_{i=1,i,k} := \Pr(\rho(\overline{0}) = \ell_0,\ldots,\rho(k-1) = \ell_{k-1},\overline{\theta}(k) = i)$ can be computed recursively via:

$$p_{\ell_0,\ldots,\ell_{k-1},i,k} = \sum_{j\in\widetilde{S}} p_{ji} p_{\ell_0,\ldots,\ell_{k-2},j,k-1}$$

where we denote $\widetilde{S} = \{j \in S_{\ell_k} : p_{\ell_0,...,\ell_{k-2},j,k-1} \neq 0\},\$

The initial condition is

$$p_{\ell_0,i,1} = \sum_{j \in \mathcal{S}_{\ell_0}} p_{jj} \pi_{0,j}$$

PRE-COMPUTING OPTIMAL "CONDITIONED" ERROR COVARIANCES:

 $Y_{\ell_0,...,\ell_{k-1},i,k} := E(\widetilde{x}_k \widetilde{x}'_k \mathbb{1}_{\{\rho(0)=\ell_0,...,\rho(k-1)=\ell_{k-1},\theta(k)=i\}}).$ can be computed recursively via Riccati-like equations:

$$Y_{\ell_0,\ldots,\ell_{k-1},i,k} = \begin{cases} 0, & \text{if } \rho_{\ell_0,\ldots,\ell_{k-1},i,k} = 0, \\ \\ \sum_{j \in \widehat{S}} \rho_{ji} [A_j Y_{\ell_0,\ldots,\ell_{k-2},j,k-1} A_j' + \rho_{\ell_0,\ldots,\ell_{k-2},j,k-1} G_j G_j' \\ \\ -A_j Y_{\ell_0,\ldots,\ell_{k-2},j,k-1} L_j' (L_j Y_{\ell_0,\ldots,\ell_{k-2},j,k-1} L_j' & \text{otherwise.} \\ \\ + \rho_{\ell_0,\ldots,\ell_{k-2},j,k-1} H_j H_j')^{-1} L_j Y_{\ell_0,\ldots,\ell_{k-2},j,k-1} A_j'], \end{cases}$$

The initial condition is

$$Y_{i,0}=\pi_{0,i}\Psi.$$

PRE-COMPUTING OPTIMAL GAINS:

$$M_{k}^{\star} = \begin{cases} 0, \\ A_{\theta(k)} Y_{\rho(0), \dots, \rho(k-1), \theta(k), k} L_{\theta(k)}' \\ \cdot (L_{\theta(k)} Y_{\rho(0), \dots, \rho(k-1), \theta(k), k} L_{\theta(k)}' \\ + \Pr(\rho(0), \dots, \rho(k-1), \theta(k)) H_{\theta(k)} H_{\theta(k)} \end{cases}$$

Proof: see Theorem 3 in [1].

 $\Pr(
ho(0),\ldots,
ho(k-1), heta(k))=0,$ otherwise.

PRE-COMPUTING OPTIMAL CONDITIONED ERROR COVARIANCES:

 $X_{\ell_0,\ldots,\ell_{k-1},i,k} := E(\widetilde{x}_k \widetilde{x}'_k | \rho(0) = \ell_0,\ldots,\rho(k-1) = \ell_{k-1}, \theta(k) = i).$ can be computed recursively via Riccati-like equations:

$$X_{\ell_{0},...,\ell_{k-1},i,k} = \begin{cases} \text{arbitrary}, & \text{if } p_{\ell_{0},...,\ell_{k-1},i,k} = 0, \\ \\ \sum_{j \in \tilde{S}} \frac{p_{ji} p_{\ell_{0},...,\ell_{k-2},j,k-1}}{p_{\ell_{0},...,\ell_{k-1},i,k}} [A_{j} X_{\ell_{0},...,\ell_{k-2},j,k-1} A_{j}' + G_{j} G_{j}' \\ \\ -A_{j} X_{\ell_{0},...,\ell_{k-2},j,k-1} L_{j}' (L_{j} X_{\ell_{0},...,\ell_{k-2},j,k-1} L_{j}' \\ \\ +H_{j} H_{j}')^{-1} L_{j} X_{\ell_{0},...,\ell_{k-2},j,k-1} A_{j}'], \end{cases}$$
 otherwise.

PRE-COMPUTING OPTIMAL GAINS:

$$M_{k}^{\star} = \begin{cases} 0, & \Pr(\rho(0), \dots, \rho(k-1), \theta(k)) = 0, \\ A_{\theta(k)} X_{\rho(0), \dots, \rho(k-1), \theta(k), k} L_{\theta(k)}' \\ \cdot (L_{\theta(k)} X_{\rho(0), \dots, \rho(k-1), \theta(k), k} L_{\theta(k)}' \\ + H_{\theta(k)} H_{\theta(k)}')^{-1}, \end{cases}$$
(10)

The above is very similar (in form) to the Kalman gain.

ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR COVARIANCES:

The gains and error covariances can be computed during the system operation - we do not need to store all branches of $X_{\ell_0,...,\ell_{k-1},i,k}$ and respective gains.

Given a realization $\ell_0, \ldots, \ell_{k-1}, \ell_k$ and $\theta(k) = i$, if we denote $X(k, i) = X_{\ell_0, \ldots, \ell_{k-1}, i, k}$ then the formula above yields:

$$X(k, i) = \begin{cases} \text{arbitrary,} & \text{if } \rho_{\ell_0, \dots, \ell_{k-1}, i, k} = 0\\ \sum_{j \in \tilde{S}} \frac{p_{ji} \rho_{\ell_0, \dots, \ell_{k-2}, j, k-1}}{\rho_{\ell_0, \dots, \ell_{k-1}, i, k}} \left[A_j X(k-1, j) A'_j + G_j G'_j \\ & \text{otherwise.} \right] \\ - A_j X(k-1, j) L'_j \left(L_j X(k-1, j) L'_j + H_j H'_j \right)^{-1} L_j X(k-1, j) A'_j \end{bmatrix}, \end{cases}$$

ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR COVARIANCES:

$$X(k,i) = \begin{cases} \text{arbitrary}, & \text{if } \rho_{\ell_0, \dots, \ell_{k-1}, i, k} = 0 \\ \sum_{j \in \widetilde{S}} \frac{p_{ji} \rho_{\ell_0, \dots, \ell_{k-1}, i, k}}{\rho_{\ell_0, \dots, \ell_{k-1}, i, k}} \left[A_j X(k-1, j) A'_j + G_j G'_j \\ & \text{otherwise.} \\ - A_j X(k-1, j) L'_j \left(L_j X(k-1, j) L'_j + H_j H'_j \right)^{-1} L_j X(k-1, j) A'_j \right], \end{cases}$$

Note that the term inside the sum (where the gains come from) is a standard Riccati. In a sense, we are optimizing in the same way a Kalman filter does, however we take into account a "restricted information" error covariance process X(k, i). We use this to prevent an excessive branching of X.

PARTICULAR CASES - KALMAN AND LMMSE

KALMAN FILTER:

Consider each cluster contains a separate θ , e.g. $S_1 = 1, S_2 = 2, \dots, S_N = N$. Then

$$X_{
ho(0),\ldots,
ho_{k-1}, heta(k),k}=X_{ heta(0),\ldots, heta(k-1), heta(k),k}$$

is the classic covariance matrix of a Kalman filter.

Getting back to the formula in the preceding slide, the term $\frac{P_{j_l}\mathcal{P}_{\ell_0,\ldots,\ell_{k-2},j,k-1}}{\mathcal{P}_{\ell_0,\ldots,\ell_{k-1},i,k}}$ reduces to 1, moreover \widetilde{S} reduces to $\theta(k-1)$ and we retrieve the classic Riccati of filtering.

$$\begin{split} X(k+1,\theta(k)) &= A_j X(k-1,\theta(k-1)) A'_j + G_j G'_j \\ &- A_j X(k-1,\theta(k-1)) L'_j (L_j X(k-1,\theta(k-1)) L'_j + H_j H'_j)^{-1} \\ &\cdot L_i X(k-1,\theta(k-1)) A'_i \end{split}$$

LMMSE:

Consider only one cluster $S_1 = \{1, 2, ..., N\}$. Then

$$X_{\rho(0),\ldots,\rho_{k-1},\theta(k),k} = X_{1,\ldots,1,\theta(k),k}$$

does not branch at all - they can be stored as a set of matrices for each time k.

Note also that $p_{\ell_0,...,\ell_{k-1},i,k} = \Pr(\theta(k = i))$ and substituting this in (7) one obtains the formulas of the LMMSE given in [2, 3].

(ACADEMIC) PLANT GIVEN IN [4]:

Table: Mean square error, CPU time to compute the gains and the number of gains for every cluster configuration.

Clusters	$E(\ \widetilde{x}_{10}\ ^2)$	CPU time	n. gains
{1,2,3,4}	0.6699	$2.24 \cdot 10^{-2}$	40
{1,2},{3,4}	0.6690	3.32	4,092
{1,3},{2,4}	0.6680	3.34	4,092
{1,4},{2,3}	0.6689	3.37	4,092
{1},{2,3,4}	0.6696	3.34	4,092
{2},{1,3,4}	0.6685	3.35	4,092
{3},{1,2,4}	0.6678	3.34	4,092
{4},{1,2,3}	0.6691	3.33	4,092
$\{1,2\},\{3\},\{4\}$	0.6675	1.14 · 10 ³	118,096
$\{1,3\},\{2\},\{4\}$	0.6675	1.14 · 10 ³	118,096
$\{1,4\},\{2\},\{3\}$	0.6672	$1.14 \cdot 10^{3}$	118,096
$\{1\},\{2,3\},\{4\}$	0.6687	1.14 · 10 ³	118,096
{1},{2,4},{3}	0.6674	1.14 · 10 ³	118,096
$\{1\},\{2\},\{3,4\}$	0.6682	1.14 · 10 ³	118,096
$\overline{\{1\},\{2\},\{3\},\{4\}}$	0.6618	$1.35 \cdot 10^4$	1,398,100

Figure: Schematics of the Magnetic levitator.

 We take the parameters of a real-world maglev system, discretized with sampling period 0.1, linearized at around an operation point; the components of state *x* are *x* = [*z* ż *i*] (position, speed, current), leading to the following state space model (irrespective of the jump parameters):

$$x_{k+1} = \begin{bmatrix} 3917 & 87.38 & -41.05 \\ 175600 & 3917 & -1840 \\ 0 & 0 & 4742 \times 10^{-4} \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 & -9.152 \times 10^{-4} & 0 & 0 \\ 0 & 0 & -4.106 \times 10^{-2} & 0 & 0 \\ 0 & 0 & 2.612 \times 10^{-5} & 0 & 0 \end{bmatrix} w_k$$

• There are sensors for the position and coil current, with measurement noise. In "Normal" mode $\theta = 1$ we have

$$y_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 & 0 & 0.01 & 0 \\ 0 & 0 & 0 & 0 & 0.01 \end{bmatrix} w_k$$

 We assume that there are two possible types of failures - leading to complete loss of observation of the current and increasing the measurement noise;

- We have modeled the failures via a Markov chain, so that when θ = 1 all sensors are operating normally; θ = 2 describes loss of current readings; θ = 3 describes both loss of current reading and higher measurement noise.
 - We have considered the following transition probabilities:

$$P = \begin{bmatrix} 0.9 & 0.05 & 0.05 \\ 0.1 & 0.9 & 0 \\ 0.2 & 0 & 0.8 \end{bmatrix}$$

• We start with a small horizon s = 5 so that (7) can be computed quickly. We have considered all possible partitions and obtained the following errors.

Table: Mean square error for every cluster configuration.

Clusters	$E(\ \widetilde{x}_5\ ^2)$
{1,2,3}	$2.276868 imes 10^3$
{1,2},{3}	$2.276866 imes 10^3$
{1,3},{2}	$2.276798 imes 10^{3}$
{2,3},{1}	$2.276800 imes 10^3$
{1},{2},{3}	$2.276798 imes 10^{3}$

 This suggests that the configuration {1,3}, {2} provides a good performance (very close to the KF) with a relatively small complexity.

• Taking the results with small *s* as a guideline, we select the cluster configuration $\{2,3\}, \{1\}$ and simulate the filter for time horizon s = 100 (now using the formulas for online computation). Results are as follows, based on Monte Carlo simulation with 1000 repeats.

Table: Estimated mean square error for every cluster configuration, with horizon s = 100.

Clusters	$E(\ \widetilde{x}_{100}\ ^2)$
{1,2,3}	2930
{1,2},{3}	2450
{1,3},{2}	335
$\{2,3\},\{1\}$	2430
$\{1\},\{2\},\{3\}$	178

• Again, the configuration {1,3}, {2} is appealing for approximating the Kalman filter performance with a smaller complexity.

CONCLUDING REMARKS

• We have explored the stochastic process formed by the error covariance matrix $X(k) = E\{\tilde{x}(k)\tilde{x}(k)\}$ in the context of Markov jump linear systems.

 X(k) is conditionally independent from X(k − 2), X(k − 3), ... and past values of θ given X(k − 1), θ(k − 1), allowing us to choose what information is relevant to compute it via the gains M_k. • Using clustered gains in the form $M_k = h_k(\rho(0), \dots, \rho(k-1), \theta(k))$ and choosing the clusters, we can "control" the complexity of the filter in terms of number of gains to be pre-computed, and at same time the performance of the filter.

• Taking few clusters makes pre-computation/computation easy, and yields a low accuracy filter for *x*.

 The task of finding a suitable choice of the clusters might be complex, taking into account that the CPU time and memory requirements are prohibitive for large horizons s >> 1 and large number of clusters; however, even a small s might help in this task, as illustrated in the maglev example.

- A direct extension/adaptation of our results allows to make the cluster configuration dependent on time k; e.g. one might use the LMMSE during a time interval (by choosing a single cluster) and shift to the Kalman filter later on, by adopting N clusters. This gives extra flexibility to seek for the best computable filter.
- Future work will look into a continuous-time version. We believe that finding detectability-like conditions for keeping the process X average-bounded is an interesting topic. One might also look for other types of indirect observation of θ, possibly further generalizing the filter.

COSTA, E. F., AND DE SAPORTA, B.

Linear minimum mean square filters for Markov jump linear systems. IEEE Transactions on Automatic Control 62, 7 (July 2017), 3567-3572.

📔 Costa, O. L. V.

Linear minimum mean square error estimation for discrete-time Markovian jump linear systems. IEEE Transactions on Automatic Control 39, 8 (1994), 1685-1689.

COSTA, O. L. V., AND TUESTA, E. F. Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems. IEEE Trans. Automat. Control 48 (2003).

ZHANG, L., AND BOUKAS, E.-K. Mode-dependent H_{∞} filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities.

THANK YOU.