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PROBLEM - BASIC FORMULATION



MARKOV CHAIN

{θ(k), k ≥ 0} (1)

• Finite state space {1,2, . . . ,N}

• Initial distribution π0 = [Pr(θ(0) = 1) · · ·Pr(θ(0) = N)].

• Partition S1, . . . ,SNC for its state space.

• ρ(k) marks the partition visited ρ(k) =
∑NC

m=1 m × 1{θ(k)∈Sm}.



DYNAMICAL SYSTEM

xk+1 = Aθ(k)xk + Gθ(k)wk

yk = Lθ(k)xk + Hθ(k)wk , k ≥ 0
(2)

• x0 : E [x0] = x̄ and E [x0x ′0] = Ψ.

• w noise, independent from x0 and the Markov chain θ.
E [wk ] = 0 and E [wk w ′k ] is the identity matrix for all k .

• GiH ′i = 0 and HiH ′i > 0, 1 ≤ i ≤ N.

• Aθ(k) = Ai whenever θ(k) = i , Ai belonging to a given set of
matrices, and similarly for the other matrices.



LUENBERGER OBSERVERS (AS USUAL!)

x̂k+1 = Aθ(k)x̂k + Mk (yk − Lθ(k)x̂k ) (3)

• Mk is referred to as the filter gain.

• The initial estimate is given by x̂0 = x̄ .

• This produces an estimation error x̃ = x − x̂ satisfying

x̃k+1 = (Aθ(k) −Mk Lθ(k))x̃k + (Gθ(k) −Mk Hθ(k))wk , (4)

and x̃0 = x0 − x̄ ∼ N(0,Ψ).



CLUSTERED INFORMATION STRUCTURE:

y(k), θ(k)available at each timek .

• However, we do not take into account θ(0), . . . , θ(k − 1) when
calculating the gain Mk (to avoid an excessive number of

branches):

Mk = hk (ρ(0), . . . , ρ(k − 1), θ(k)), (5)

for measurable functions hk .



OBJECTIVE FUNCTION:

min
M0,...,Ms

E{‖xs − x̂s‖2|Rs}, s.t. (5), (6)

where Rs = {ρ(0), . . . , ρ(s), y(0), . . . , y(s), θ(s)}.



MAIN POINT



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

It is easy to check that X (k) := E{x̃(k)x̃(k)} satisfies:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Thus X (k) forms a stochastic process, with some nice
properties:



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• If the gains Mt are given 0 ≤ t ≤ s, then (X (k), θ(k)) is a Markov
process

• More importantly, given X (k) and θ(k), the variable X (k + 1)
depends on Mk only



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• This allows us to “control the flux of information” via Mk .

• For instance, if Mk depends on the whole realization
θ(0), . . . , θ(k), then X (k + 1) will do so - in this case yielding the

classic Kalman filter (loosing Markovianity of (X , θ)).



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Now, if Mk depends on π0, θ(k), then X (k + 1) will do so, leading
to the “classic” linear minimum mean square estimator (LMMSE)

for Markov jump linear systems [2, 3]. Here, (X , θ) is Markov.



THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X (k + 1) = (Aθ(k) −Mk Lθ(k))X (k)(Aθ(k) −Mk Lθ(k))′

+ (Gθ(k) −Mk Hθ(k))(Gθ(k) −Mk Hθ(k)),

• Generalizing both examples above: if Mk depends on
π0, ρ(0), . . . , ρ(k − 1), ρ(k), then X (k + 1) will do so, leading to
estimators lying in the between the Kalman and the LMMSE.



FORMULAS



SOME PROBABILITIES:

p`0,...,`k−1,i,k := Pr(ρ(0) = `0, . . . , ρ(k − 1) = `k−1, θ(k) = i)

can be computed recursively via:

p`0,...,`k−1,i,k =
∑
j∈S̃

pjip`0,...,`k−2,j,k−1

where we denote S̃ = {j ∈ S`k : p`0,...,`k−2,j,k−1 6= 0},

The initial condition is

p`0,i,1 =
∑

j∈S`0

pjiπ0,j



PRE-COMPUTING OPTIMAL “CONDITIONED” ERROR
COVARIANCES:

Y`0,...,`k−1,i,k := E(x̃k x̃ ′k1{ρ(0)=`0,...,ρ(k−1)=`k−1,θ(k)=i}). can be computed
recursively via Riccati-like equations:

Y`0,...,`k−1,i,k
=



0, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji
[
Aj Y`0,...,`k−2,j,k−1A′j + p`0,...,`k−2,j,k−1Gj G

′
j

− Aj Y`0,...,`k−2,j,k−1L′j
(
Lj Y`0,...,`k−2,j,k−1L′j

+ p`0,...,`k−2,j,k−1Hj H
′
j
)−1Lj Y`0,...,`k−2,j,k−1A′j

]
,

otherwise.

(7)

The initial condition is

Yi,0 = π0,i Ψ.



PRE-COMPUTING OPTIMAL GAINS:

M?k =



0, Pr(ρ(0), . . . , ρ(k − 1), θ(k)) = 0,
Aθ(k)Yρ(0),...,ρ(k−1),θ(k),k L′θ(k)

·
(
Lθ(k)Yρ(0),...,ρ(k−1),θ(k),k L′θ(k)

+ Pr(ρ(0), . . . , ρ(k − 1), θ(k))Hθ(k)H
′
θ(k)

)−1
,

otherwise,
(8)

Proof: see Theorem 3 in [1].



PRE-COMPUTING OPTIMAL CONDITIONED ERROR
COVARIANCES:

X`0,...,`k−1,i,k := E(x̃k x̃ ′k |ρ(0) = `0, . . . , ρ(k − 1) = `k−1, θ(k) = i).

can be computed recursively via Riccati-like equations:

X`0,...,`k−1,i,k
=



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X`0,...,`k−2,j,k−1A′j + Gj G

′
j

− Aj X`0,...,`k−2,j,k−1L′j
(
Lj X`0,...,`k−2,j,k−1L′j

+ Hj H
′
j
)−1Lj X`0,...,`k−2,j,k−1A′j

]
,

otherwise.

(9)



PRE-COMPUTING OPTIMAL GAINS:

M?
k =


0, Pr(ρ(0), . . . , ρ(k − 1), θ(k)) = 0,
Aθ(k)Xρ(0),...,ρ(k−1),θ(k),k L′θ(k)
·
(
Lθ(k)Xρ(0),...,ρ(k−1),θ(k),k L′θ(k)

+ Hθ(k)H
′
θ(k)
)−1

,

otherwise,

(10)

The above is very similar (in form) to the Kalman gain.



ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

The gains and error covariances can be computed during the system
operation - we do not need to store all branches of X`0,...,`k−1,i,k and

respective gains.

Given a realization `0, . . . , `k−1, `k and θ(k) = i , if we denote
X (k , i) = X`0,...,`k−1,i,k then the formula above yields:

X(k, i) =



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X(k − 1, j)A′j + Gj G

′
j

− Aj X(k − 1, j)L′j
(
Lj X(k − 1, j)L′j + Hj H

′
j
)−1Lj X(k − 1, j)A′j

]
,

otherwise.



ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

X(k, i) =



arbitrary, if p`0,...,`k−1,i,k
= 0,

∑
j∈S̃

pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k

[
Aj X(k − 1, j)A′j + Gj G

′
j

− Aj X(k − 1, j)L′j
(
Lj X(k − 1, j)L′j + Hj H

′
j
)−1Lj X(k − 1, j)A′j

]
,

otherwise.

Note that the term inside the sum (where the gains come from) is a
standard Riccati. In a sense, we are optimizing in the same way a

Kalman filter does, however we take into account a “restricted
information” error covariance process X (k , i).

We use this to prevent an excessive branching of X .



PARTICULAR CASES - KALMAN AND LMMSE



KALMAN FILTER:

Consider each cluster contains a separate θ, e.g.
S1 = 1,S2 = 2, . . . ,SN = N. Then

Xρ(0),...,ρk−1,θ(k),k = Xθ(0),...,θ(k−1),θ(k),k

is the classic covariance matrix of a Kalman filter.

Getting back to the formula in the preceding slide, the term
pji p`0,...,`k−2,j,k−1

p`0,...,`k−1,i,k
reduces to 1, moreover S̃ reduces to θ(k − 1) and we

retrieve the classic Riccati of filtering.

X (k + 1, θ(k)) = AjX (k − 1, θ(k − 1))A′j + GjG′j

− AjX (k − 1, θ(k − 1))L′j
(
LjX (k − 1, θ(k − 1))L′j + HjH ′j

)−1

· LjX (k − 1, θ(k − 1))A′j



LMMSE:

Consider only one cluster S1 = {1,2, . . . ,N}. Then

Xρ(0),...,ρk−1,θ(k),k = X1,...,1,θ(k),k

does not branch at all - they can be stored as a set of matrices for
each time k .

Note also that p`0,...,`k−1,i,k = Pr(θ(k = i)) and substituting this in (7)
one obtains the formulas of the LMMSE given in [2, 3].



EXAMPLES



(ACADEMIC) PLANT GIVEN IN [4]:
Table: Mean square error, CPU time to compute the gains and the
number of gains for every cluster configuration.

Clusters E(‖x̃10‖2) CPU time n. gains
{1,2,3,4} 0.6699 2.24 · 10−2 40
{1,2},{3,4} 0.6690 3.32 4, 092
{1,3},{2,4} 0.6680 3.34 4, 092
{1,4},{2,3} 0.6689 3.37 4, 092
{1},{2,3,4} 0.6696 3.34 4, 092
{2},{1,3,4} 0.6685 3.35 4, 092
{3},{1,2,4} 0.6678 3.34 4, 092
{4},{1,2,3} 0.6691 3.33 4, 092
{1,2},{3},{4} 0.6675 1.14 · 103 118, 096
{1,3},{2},{4} 0.6675 1.14 · 103 118, 096
{1,4},{2},{3} 0.6672 1.14 · 103 118, 096
{1},{2,3},{4} 0.6687 1.14 · 103 118, 096
{1},{2,4},{3} 0.6674 1.14 · 103 118, 096
{1},{2},{3,4} 0.6682 1.14 · 103 118, 096
{1},{2},{3},{4} 0.6618 1.35 · 104 1, 398, 100



MAGNETIC SUSPENSION SYSTEM

Figure: Schematics of the Magnetic levitator.



MAGNETIC SUSPENSION SYSTEM

• We take the parameters of a real-world maglev system, discretized with
sampling period 0.1, linearized at around an operation point; the
components of state x are x = [z ż i] (position, speed, current),

leading to the following state space model (irrespective of the jump
parameters):

xk+1 =

 3917 87.38 −41.05
175600 3917 −1840

0 0 4742× 10−4

 xk+

0 0 −9.152× 10−4 0 0
0 0 −4.106× 10−2 0 0
0 0 2.612× 10−5 0 0

wk



MAGNETIC SUSPENSION SYSTEM

• There are sensors for the position and coil current, with measurement
noise. In “Normal” mode θ = 1 we have

yk =

[
1 0 0
0 0 1

]
xk +

[
0 0 0 0.01 0
0 0 0 0 0.01

]
wk



MAGNETIC SUSPENSION SYSTEM

• We assume that there are two possible types of failures - leading to
complete loss of observation of the current and increasing the

measurement noise;

• We have modeled the failures via a Markov chain, so that when θ = 1
all sensors are operating normally; θ = 2 describes loss of current
readings; θ = 3 describes both loss of current reading and higher

measurement noise.

• We have considered the following transition probabilities:

P =

0.9 0.05 0.05
0.1 0.9 0
0.2 0 0.8





MAGNETIC SUSPENSION SYSTEM

• We start with a small horizon s = 5 so that (7) can be computed quickly.
We have considered all possible partitions and obtained the following

errors.

Table: Mean square error for every cluster configuration.

Clusters E(‖x̃5‖2)

{1,2,3} 2.276868× 103

{1,2},{3} 2.276866× 103

{1,3},{2} 2.276798× 103

{2,3},{1} 2.276800× 103

{1},{2},{3} 2.276798× 103

• This suggests that the configuration {1, 3}, {2} provides a good
performance (very close to the KF) with a relatively small complexity.



MAGNETIC SUSPENSION SYSTEM

• Taking the results with small s as a guideline, we select the cluster
configuration {2, 3}, {1} and simulate the filter for time horizon s = 100
(now using the formulas for online computation). Results are as follows,

based on Monte Carlo simulation with 1000 repeats.

Table: Estimated mean square error for every cluster
configuration, with horizon s = 100.

Clusters E(‖x̃100‖2)

{1,2,3} 2930
{1,2},{3} 2450
{1,3},{2} 335
{2,3},{1} 2430
{1},{2},{3} 178

• Again, the configuration {1, 3}, {2} is appealing for approximating the
Kalman filter performance with a smaller complexity.



CONCLUDING REMARKS



• We have explored the stochastic process formed by the error
covariance matrix X (k) = E{x̃(k)x̃(k)} in the context of Markov

jump linear systems.

• X (k) is conditionally independent from X (k − 2),X (k − 3), ... and
past values of θ given X (k − 1), θ(k − 1), allowing us to choose

what information is relevant to compute it via the gains Mk .



• Using clustered gains in the form
Mk = hk (ρ(0), . . . , ρ(k − 1), θ(k)) and choosing the clusters, we
can “control” the complexity of the filter in terms of number of

gains to be pre-computed, and at same time the performance of
the filter.

• Taking few clusters makes pre-computation/computation easy,
and yields a low accuracy filter for x .

• The task of finding a suitable choice of the clusters might be
complex, taking into account that the CPU time and memory

requirements are prohibitive for large horizons s >> 1 and large
number of clusters; however, even a small s might help in this

task, as illustrated in the maglev example.



• A direct extension/adaptation of our results allows to make the
cluster configuration dependent on time k ; e.g. one might use

the LMMSE during a time interval (by choosing a single cluster)
and shift to the Kalman filter later on, by adopting N clusters.

This gives extra flexibility to seek for the best computable filter.

• Future work will look into a continuous-time version. We believe
that finding detectability-like conditions for keeping the process
X average-bounded is an interesting topic. One might also look

for other types of indirect observation of θ, possibly further
generalizing the filter.
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