Clustered Information Filter

for Markov Jump Linear

Systems
Eduardo F Costa Benoite de Saporta
Univ. Sao Paulo Univ. Montpellier
efcosta@icmc.usp.br Benoite.de-Saporta@umontpellier.fr

e Support by Inria associate team CDSS, ANR grant Piece,
e FAPESP, FAPESP/FAPs/INRIA/INS2i-CNRS and CNPq

PROBLEM - BASIC FORMULATION

MARKOV CHAIN

{0(k), k = 0} (1)

e Finite state space {1,2,...,N}
e Initial distribution o = [Pr(#(0) = 1) --- Pr(6(0) = N)].
o Partition Sy, ..., Sy, for its state space.

o p(k) marks the partition visited p(k) = ngﬂ m x Liokyesy}-

DYNAMICAL SYSTEM

X1 = Agky Xk + Go(k) Wi
Yk = Loy Xk + Hogky Wk, k>0

e Xo: E[xo] = X and E[xoxg] = V.

e W noise, independent from xp and the Markov chain 6.
E[wk] = 0 and E[w,w;] is the identity matrix for all k.

e GH/=0and HH, >0,1<i<N.

o Ayk) = Ai Wwhenever 0(k) = i, A; belonging to a given set of
matrices, and similarly for the other matrices.

LUENBERGER OBSERVERS (AS USUAL!)

Xk+1 = Aay Xk + Mi(Yk — Loy X))

e My is referred to as the filter gain.
e The initial estimate is given by Xy = X.

e This produces an estimation error X = x — X satisfying

X1 = (Aogky — MicLogry)Xic + (Goky — MicHowo) Wi, (4)

CLUSTERED INFORMATION STRUCTURE:

y(k), 6(k)available at each timek.

e However, we do not take into account 6(0),...,60(k — 1) when
calculating the gain M (to avoid an excessive number of
branches):

Mk — hk(p(0)7 te e ,p(k - 1)50(/()) (5)

for measurable functions hy.

OBJECTIVE FUNCTION:

JMin, E{lxe —%[?[Rs}. st.(5),)

.....

where Rs = {p(0),...,n(s),¥(0),. .., ¥(s), 0(s)}-

THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

It is easy to check that X(k) := E{X(k)X(k)} satisfies:

X(k +1) = (Agky — MiLok)) X(K)(Agk)y — MkLogky)'
+ (Gogk) — MkHoky)(Goky — MikHpky),

e Thus X(k) forms a stochastic process, with some nice
properties:

THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X(k+1) = (Agk) — Mk Lo(k)) X(K)(Agky — MkLogiy)'
+ (Gogk) — MkHeky)(Goky — MkHy k),

o |f the gains M; are given 0 < t < s, then (X(k),0(k)) is a Markov
process

e More importantly, given X (k) and 6(k), the variable X(k + 1)
depends on My only

THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X(k+1) = (Ag) — ML) X (K)(Aaky — Mk Lo(ky)'
+ (Goky — MkHak))(Gogky — MkcHo (k)

e This allows us to “control the flux of information” via M.

e For instance, if Mk depends on the whole realization
6(0),...,0(k), then X(k + 1) will do so - in this case yielding the
classic Kalman filter (loosing Markovianity of (X, 9)).

THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X(k+1) = (Agky — MiLo(k)) X (K)(Agky — MkLogiy)'
+ (Gogk) — MkHeky)(Goky — MkHp k),

e Now, if M, depends on o, 8(k), then X(k + 1) will do so, leading
to the “classic” linear minimum mean square estimator (LMMSE)
for Markov jump linear systems [2, 3]. Here, (X, 6) is Markov.

THE USUAL ERROR COVARIANCE MATRIX OF THE FILTER
FORMS A STOCHASTIC PROCESS:

X(k+1) = (Agky — MiLo(k)) X (K)(Agky — MkLogiy)'
+ (Gogk) — MkHeky)(Goky — MkHp k),

e Generalizing both examples above: if M, depends on
70, p(0), ..., p(k — 1), p(k), then X(k + 1) will do so, leading to
estimators lying in the between the Kalman and the LMMSE.

SOME PROBABILITIES:

p@g,...,ék,hﬂk = Pr(p(o) = 607 9o 7p(k - 1) = £k71) 9(k) = I)
can be computed recursively via:

Py, tx_1,ik = ijipzo,...,ek,z,j,kq
jes
where we denote S = {j € Sy, : py,,....0c_»jk—1 7 0},
The initial condition is

Peo,it = Z PjiTo,j

JESe,

PRE-COMPUTING OPTIMAL “CONDITIONED” ERROR
COVARIANCES:

Yio,..tivik = EQUXL{p(0)=to,.... p(k—1)=t,_1.0(k)=i})- CaN be computed
recursively via Riccati-like equations:

0, itPeg,... 00 _q.ik =05

’ otherwise.

7y —1 U
+ Pty _p k=1 HH) T L Yeg o jk—1A7]

The initial condition is

Yio = mo,V.

PRE-COMPUTING OPTIMAL GAINS:

0, . Pr(p(0), . - -, p(k —1),0(k)) =0,
Ao k) Yp(0),...,p(k—1),6(k),kLo(k)
Mk* = ’ " (8)
 (Lo(k) Yp(0).....pk—1),0(k).k Lok otherwise,
+Pr(p(0), . . -, p(k — 1), 8(k)) Hg (i) Hogky) ~

Proof: see Theorem 3 in [1].

PRE-COMPUTING OPTIMAL CONDITIONED ERROR
COVARIANCES:

X€07---7£k—17i7k = E(}k}“p(O) = fo, 000 ,p(k — 1) = gk_1,9(k) = I)
can be computed recursively via Riccati-like equations:

arbitrary, ifpeov___,ék_w,‘k =,

! /
t_p.ik—14j + GG

’ , otherwise.
= AiXeg, .ty oik—1L (L Xeg, .. e o.jk—1L

N\ —1 ’
+HH) T LiXeg oo k=141

PRE-COMPUTING OPTIMAL GAINS:

0, / Pr(p(0), .., p(k —1),0(K)) = O,
Ao k) Xo(0),...,p(k—1),0(k),k Lo (k)
“ (Loy Xp(0).....p(k—1),0(k),k Loy otherwise,

4F He(k)H(;(k))71> _

The above is very similar (in form) to the Kalman gain.

ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

The gains and error covariances can be computed during the system
operation - we do not need to store all branches of Xy, ., _,.ixand
respective gains.

Given a realization 4y, ..., ¢x_1, ¢ and 6(k) = i, if we denote
X(k,i) = Xu,,...0,_,.i.k then the formula above yields:

arbitrary, it Pog, . tp_q ik =05

. PjiPey, ..., Ly_o,jk—1 .
X(k,i) = 8 S0 T OKERIT (A X(k — 1,))A] + GG
jes Peg,.. b_1,ik otherwise.

" . —1 .
— AiX(k — 1,)L} (LiX(k — 1,)L + HiH) T X (k — 1, AT],

ONLINE COMPUTATION OF OPTIMAL CONDITIONED ERROR
COVARIANCES:

arbitrary, it Pog, .. tp_q,ik =05

PjiPeg, ... 00 o,j,k—1
ORI [AX(k — 1,)A] + GG
jes Plosti—1iik otherwise.

. . -1 .
— AiX(k — 1,)L} (LiX(k — 1,))Lj + HiH) = LiX(k — 1,)AT],

Note that the term inside the sum (where the gains come from) is a
standard Riccati. In a sense, we are optimizing in the same way a
Kalman filter does, however we take into account a “restricted
information” error covariance process X(k, i).

We use this to prevent an excessive branching of X.

PARTICULAR CASES - KALMAN AND LMMSE

KALMAN FILTER:

Consider each cluster contains a separate 6, e.qg.
S = 1,82:2,...,SN: N. Then
Xo(0),....0x—1,0(k).k = X0(0),...,0(k—1),0(k),k

is the classic covariance matrix of a Kalman filter.

Getting back to the formula in the preceding slide, the term

pip
W reduces to 1, moreover S reduces to 6(k — 1) and we
k—1-!

retrieve the classic Riccati of filtering.

X(k+1,0(k)) = AX(k —1,0(k —1))A + G,G]
— AX(k —1,60(k = 1)L} (LiX(k —1,0(k — 1)L} + HH))
~L,-X(k— ,e(k 1)A;

—1

/\ z—\

LMMSE:

Consider only one cluster Sy = {1,2,...,N}. Then

Xo(0),-..spr—1,0(K) .k = X1,...1,0(k) .k

does not branch at all - they can be stored as a set of matrices for
each time k.

Note also that py,. ... ¢, ik = Pr(6(k = i)) and substituting this in (7)
one obtains the formulas of the LMMSE given in [2, 3].

(ACADEMIC) PLANT GIVEN IN [4]:

Table: Mean square error, CPU time to compute the gains and the
number of gains for every cluster configuration.

Clusters E(][x10]®) | CPUtime | n. gains

{1,2,34} 0.6699 | 2.24-10 2 40
[1,21,{34F | 0.6690 3.32 4,092
{1,3},{2,4} | 0.6680 3.34 4,092
{1,41,{2,3} | 0.6689 3.37 4,092
{1},{2,3,4} | 0.6696 3.34 4,092
{2}.{1,34} | 0.6685 3.35 4,092
{3},{1,24} | 0.6678 3.34 4,092
{4},{1,2,3} | 0.6691 3.33 4,092

14-.10° 118,096
14108 118,096
14108 118,096
14.10° 118,096

{1,2},{3},{4} | 0.6675
{1,3},{2},{4} | 0.6675
{1,4},{2},{3} | 0.6672
{1},{2,3},{4} | 0.6687
{1},{2,4},{3} | 0.6674 14.10° | 118,096
{11,{2},{3,4} | 0.6682 14.10° | 118,096
{1},{2},{3},{4}| 0.6618 | 1.35-10° [1,398,100

—_

MAGNETIC SUSPENSION SYSTEM

equations:

L/
2a(1+z,/a)’
Lz:t =—Ri +u,

my,=mg-—

Figure: Schematics of the Magnetic levitator.

MAGNETIC SUSPENSION SYSTEM

o We take the parameters of a real-world maglev system, discretized with
sampling period 0.1, linearized at around an operation point; the
components of state x are x = [z Zz i] (position, speed, current),

leading to the following state space model (irrespective of the jump
parameters):

Xkp1 = | 175600 3917 —1840 0 0 —4106x1072 0 Of w

3917 87.38 —41.05 0 0 —-9152x107* 0 O
Xk+
0 0 4742 x 1074 0 0 2612x10° 0 O

MAGNETIC SUSPENSION SYSTEM

e There are sensors for the position and coil current, with measurement
noise. In “Normal” mode 6 = 1 we have

_[t oo, [oo0o0 o001 0],
Ye=1o 0 1/™T o o o o 001"

MAGNETIC SUSPENSION SYSTEM

e We assume that there are two possible types of failures - leading to
complete loss of observation of the current and increasing the
measurement noise;

o We have modeled the failures via a Markov chain, so that when 0 = 1
all sensors are operating normally; & = 2 describes loss of current
readings; 6 = 3 describes both loss of current reading and higher

measurement noise.

e We have considered the following transition probabilities:

0.9 0.05 0.05
P=101 0.9 0

02 0 0.8

MAGNETIC SUSPENSION SYSTEM

o We start with a small horizon s = 5 so that (7) can be computed quickly.
We have considered all possible partitions and obtained the following
errors.

Table: Mean square error for every cluster configuration.

Clusters E(][xs]”)
{1,2,3} 2.276868 x 10°
{1,2},{3} | 2.276866 x 10°
{1,3},{2} | 2.276798 x 10°
{2,3},{1} | 2.276800 x 10°
{11,{2},{3} | 2.276798 x 10°

e This suggests that the configuration {1, 3}, {2} provides a good
performance (very close to the KF) with a relatively small complexity.

e Taking the results with small s as a guideline, we select the cluster

configuration {2, 3}, {1} and simulate the filter for time horizon s = 100

(now using the formulas for online computation). Results are as follows,
based on Monte Carlo simulation with 1000 repeats.

Table: Estimated mean square error for every cluster
configuration, with horizon s = 100.

Clusters | E(|[X100][%)

1,23} 2930
121,03} 2450
{1,31,{2) 335

{2,3},{1} 2430
{1}.{2}.{3} 178

e Again, the configuration {1, 3}, {2} is appealing for approximating the
Kalman filter performance with a smaller complexity.

CONCLUDING REMARKS

e We have explored the stochastic process formed by the error
covariance matrix X (k) = E{X(k)X(k)} in the context of Markov
jump linear systems.

e X(k) is conditionally independent from X(k —2), X(k — 3), ... and
past values of 6 given X(k — 1),6(k — 1), allowing us to choose
what information is relevant to compute it via the gains M.

e Using clustered gains in the form
My = hk(p(0), ..., p(k — 1),6(k)) and choosing the clusters, we
can “control” the complexity of the filter in terms of number of
gains to be pre-computed, and at same time the performance of
the filter.

e Taking few clusters makes pre-computation/computation easy,
and yields a low accuracy filter for x.

e The task of finding a suitable choice of the clusters might be
complex, taking into account that the CPU time and memory
requirements are prohibitive for large horizons s >> 1 and large
number of clusters; however, even a small s might help in this
task, as illustrated in the maglev example.

o A direct extension/adaptation of our results allows to make the
cluster configuration dependent on time k; e.g. one might use

the LMMSE during a time interval (by choosing a single cluster)
and shift to the Kalman filter later on, by adopting N clusters.
This gives extra flexibility to seek for the best computable filter.

e Future work will look into a continuous-time version. We believe
that finding detectability-like conditions for keeping the process
X average-bounded is an interesting topic. One might also look
for other types of indirect observation of 6, possibly further
generalizing the filter.

E CosTA, E. F., AND DE SAPORTA, B.
Linear minimum mean square filters for Markov jump linear
systems.
IEEE Transactions on Automatic Control 62, 7 (July 2017),
3567-3572.

B CosTA, O.L.V.
Linear minimum mean square error estimation for
discrete-time Markovian jump linear systems.
IEEE Transactions on Automatic Control 39, 8 (1994),
1685-1689.

B CosTA, O. L. V., AND TUESTA, E. F.
Finite horizon quadratic optimal control and a separation
principle for Markovian jump linear systems.
IEEE Trans. Automat. Control 48 (2003).

E ZHANG, L., AND BOUKAS, E.-K.
Mode-dependent H., filtering for discrete-time Markovian
jump linear systems with partly unknown transition
probabilities.

