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Motivation

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Applications of PDMPs
Engineering systems, operations research, management science,
economics, internet traffic, dependability and safety, neurosciences,
biology, . . .

I mode: nominal, failures, breakdown, environment, number of
individuals, response to a treatment, . . .

I Euclidean variable: pressure, temperature, time, size,
potential, protein level, . . .
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Motivation

Impulse control problem

Impulse control
Select

I intervention dates
I new starting point for the process at interventions

to minimize a cost function

I repair a component before breakdown
I change treatment before relapse
I . . .

[CD 89], [Davis 93], [dSDZ 14], . . .
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Motivation

If the jump times are not observed?

I [BdSD 12] Optimal stopping
I jump times observed
I post-jump locations observed through noise

Numerical approximation of the value function and ε-optimal
stopping time

I [BL 17] Continuous control
I jump times and post-jump locations observed through noise

Optimality equation, existence of optimal policies

No information on the jump times ⇒ very difficult problem
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Motivation

Change-point detection

Simplest special case
I only one jump of the mode variable
I discrete noisy observations of the continuous variable on a

regular time grid

Optimal stopping = Change-point detection

Aim: numerical approximation to
I detect the change-point at best (not too early/late)
I estimate the new mode after the jump
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Change-point detection problem

Simple PDMP model
I State space E × R = {0, 1, . . . , d} × R× R: mode, position,

time
I Starting point X0 = (0, x , 0), flow Φ0
I time-dependent Jump intensity λ0(x , u) = λ(u)

I Jump kernel: position and time continuous, switch to mode i
with probability pi

tT
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Φ0

Φ1

Φ2
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Change-point detection problem

Observations

I Observation times tn = δn
I Noisy observations of the positions Yn = F (xtn ) + εn

t
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Change-point detection problem

Partially observed optimal stopping problem
I Finite horizon δN

I Admissible stopping times τ : FY -measurable
I Admissible decisions A: {0, 1, . . . , d} valued, FY

τ -measurable
I Cost per stage before stopping

I c(0, x , y) = 0 rightfully not stopped
I c(m 6= 0, x , y) = βδ lateness penalty

I Terminal cost at stopping
I C(m, x , y , 0) = c(m, x , y) no stopping before the horizon
I C(0, x , y , a 6= 0) = α early stopping penalty
I C(m 6= 0, x , y , a = m) = 0 good mode selection
I C(m 6= 0, x , y , a 6= 0,m) = γ wrong mode penalty

Cost of admissible strategy (τ,A)

J(τ,A, (m, x , y)) = E(m,x ,y)

(τ−1)∧N∑
n=0

c(Xn,Yn) + C(Xτ∧N ,Yτ∧N ,A)
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Change-point detection problem

Fully observed optimal stopping problem

I Filter process Θn(A× B) = P(0,x ,y)(Xδn ∈ A× B|FY
n )

I (Θn,Yn) time inhomogeneous Markov chain with explicit
transition kernels R ′n on P(E )× R

I cost functions c ′(θ, y) =
∫
c(m, x , y)dθ(m, x),

C ′(θ, y , a) =
∫
C(m, x , y , a)dθ(m, x)

Fully observed optimal stopping problem
Minimize over all admissible strategies (τ, a)

J ′(τ,A, (θ, y)) = E(θ,y)

(τ−1)∧N∑
n=0

c ′(Θn,Yn) + C ′(Θτ∧N ,Yτ∧N ,A)
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Change-point detection problem

Aim of the talk

I numerical approximation of the value function
I computable strategy

Difficulties
I measure-valued filter process
I curse of dimensionality
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Numerical approximation

Dynamic programming

Value function

V ′(θ, y) = inf
(τ,A)

J ′(τ,A, (θ, y))

= inf
(τ,A)

E(θ,y)

(τ−1)∧N∑
n=0

c ′(Θn,Yn) + C ′(Θτ∧N ,Yτ∧N ,A)


Dynamic programming
v ′N(θ, y) = min0≤a≤d C ′(θ, y , a)
v ′k(θ, y) = min

{
min1≤a≤d C ′(θ, y , a); c ′(θ, y) + R ′kv ′k+1(θ, y)

}
v ′0 = V ′
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Numerical approximation

Discretization

Xt = (my , xt , t)

E × R, P

Xn = (mtn , xtn )

E , Pn

(Xn,Yn)

E × R, Rn

observations Yn = F (Xn) + εn

(Θn,Yn)

P(E )× R, R ′n

v ′n(Θn,Yn)

filtering Ψ

dynamic
programming

(m̄tn , x̄tn ) = X̄n
Ωn, P̄nquantization

(X̄n, Ȳn)

Ωn × Y, R̄n

(Θ̄n, Ȳn)

P(Ωn)× Y, R̄ ′n

v̄ ′n(Θ̄n, Ȳn)

(Θ̂n, Ŷn)

Γn, R̂ ′nquantization

v̂ ′n(Θ̂n, Ŷn)
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P(Ωn)× Y, R̄ ′n

v̄ ′n(Θ̄n, Ȳn)
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Γn, R̂ ′nquantization

v̂ ′n(Θ̂n, Ŷn)
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Numerical approximation

Quantization

[P 98], [PPP 04], [PRS05], . . .

Quantization of a random variable X ∈ L2(Rq)

Approximate X by X̂ taking finitely many values such that
‖X − X̂‖2 is minimum

I Find a finite weighted grid Γ with |Γ| = NΓ

I Set X̂ = pΓ(X ) closest neighbor projection

Asymptotic properties
If E [|X |2+η] < +∞ for some η > 0 then

lim
NΓ→∞

N1/q
Γ min
|Γ|≤NΓ

‖X − X̂Γ‖2 = C
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Numerical approximation

Algorithms

There exist algorithms providing
I Γ

I law of X̂
I transition probabilities for quantization of Markov chains

Example: N (0, I2):
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Numerical approximation

Grids construction

Model −→ simulator of trajectories −→ grids

0 1 2 3 4 5 6
0

1

2

3

4

5

6
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Numerical approximation

Assets and drawbacks of quantization

Assets
I a simulator of the target law is enough to build the grids
I automatic construction of grids
I convergence rate for E[|f (X )− f (X̂ )|] if f lipschitz
I empirical error measure by Monte Carlo

Drawbacks
I computation time
I curse of dimension
I open questions of convergence of the algorithms
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Numerical approximation

Convergence
Technical assumptions

|v ′0(δ(0,x0), y0)− v̄ ′0(δ(0,x0), y0)| ≤
N−1∑
n=0

anE[|X̄n − Xn|]

= O(N−1
Ω )

|v̂ ′0(δ(0,x0), y0)− v̄ ′0(δ(0,x0), y0)|

≤
N∑

n=0
cn
(
E
[∣∣∣Ŷn − Ȳn

∣∣∣]+ E
[
‖Θ̂n − Θ̄n‖n,1

])
= O(N−1/NΩ

Γ )
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Numerical approximation

Candidate computable strategy

Dynamic programming
I v̂ ′N(θ̂, ŷ) = min0≤a≤d C ′(θ̂, ŷ , a)

I v̂ ′k(θ̂, ŷ) = min
{
min1≤a≤d C ′(θ̂, ŷ , a); c ′(θ̂, ŷ) + R̂ ′k v̂ ′k+1(θ̂, ŷ)

}
Set

I rN(·) = 0, aN(·) = 0 if v̂ ′N(projΓN (·)) = C ′(projΓN (·), 0)

I rN(·) = 1, aN(·) = i if v̂ ′N(projΓN (·)) = C ′(projΓN (·), i)
I rn(·) = 0 if v̂ ′n(projΓn (·)) = R̂ ′nv̂ ′n+1(projΓn (·))

I rn(·) = 1, an(·) = i if v̂ ′n(projΓn (·)) = C ′(projΓn (·), i)

SIAM Conference on Control and Its Applications Pittsburgh, USA July 2017 19/25



Numerical approximation

Candidate computable strategy
n ← 0
y ← y0
θ̄ ← δ(0,x0)

r ← r0(θ̄, y)

Observation y0

r = 1 ?
Stop at time n

Choose decision a = an(θ̄, y)

yes

n = N ?

no

Choose decision a = 0
yes

n ← n + 1
y ← yn

θ̄ ← Ψn−1(θ̄, y)
r ← rn(θ̄, y)

no

Observation yn
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Numerical results

Example 1
I d = 3, pi = 1/3, x0 = 1
I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t

I β = 1 (late detection), γ = 1.5 (wrong mode), δ = 1/6
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I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t

I β = 1 (late detection), γ = 1.5 (wrong mode), δ = 1/6
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Numerical results

Example 1
I d = 3, pi = 1/3, x0 = 1
I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t

I β = 1 (late detection), γ = 1.5 (wrong mode), δ = 1/6

Moving Average Kalman PDMP
α σ2 threshold=2

window threshold Nb grid points
2 3 4 5 0.5 0.75 0.9 cal 30 50 75 100

0.1 0.40 0.40 0.40 0.41 2.34 0.61 0.42 0.42 0.70 0.70 0.70 0.70
3 0.5 0.93 0.81 0.76 0.73 1.44 0.54 0.51 0.49 0.78 0.79 0.77 0.76

1 1.73 1.42 1.29 1.16 1.18 0.58 0.63 0.62 0.99 1.04 0.98 1.01
0.1 0.40 0.40 0.40 0.41 3.06 0.69 0.42 0.42 0.69 0.71 0.69 0.68

4 0.5 0.95 0.81 0.76 0.73 1.76 0.56 0.51 0.50 0.73 0.71 0.72 0.72
1 2.05 1.57 1.39 1.22 1.36 0.60 0.63 0.62 0.92 0.92 0.95 0.95

0.1 0.40 0.40 0.40 0.41 3.78 0.78 0.42 0.42 0.68 0.69 0.67 0.69
5 0.5 0.97 0.81 0.76 0.73 2.08 0.59 0.51 0.50 0.72 0.69 0.72 0.72

1 2.37 1.73 1.48 1.28 1.54 0.61 0.63 0.62 0.92 0.94 0.93 0.92
0.1 0.40 0.40 0.40 0.41 4.50 0.86 0.42 0.43 0.68 0.68 0.68 0.69

6 0.5 0.98 0.82 0.76 0.73 2.40 0.62 0.51 0.50 0.70 0.70 0.70 0.69
1 2.69 1.88 1.57 1.35 1.72 0.63 0.63 0.62 0.90 0.89 0.91 0.89
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Numerical results

Example 2
I d = 1, x0 = (0, 0)
I Φ0((x , u), t) = (sin(3π(u + t)), u + t),

Φ1((x , u), t) = (sin(5π(u + t)), u + t)
I δ = 1/6, noise variance 1
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delta = 0.1 ; signal variance = 1
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Numerical results

Example 3
I d = 2, x0 = (0, 0)

I Φ0((x , u), t) = (sin(3π(u + t)), u + t),
Φ1((x , u), t) = (sin(3π(u + t))+0.5t, u + t),
Φ2((x , u), t) = (sin(3π(u + t))+1.5t, u + t)

I δ = 1/6, noise variance 1
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Conclusion and perspectives

Conclusion and perspectives

I Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

I For general flows but dimension 1 (+ time)

To be done
I Real data applications
I Theoretical validity of the stopping rule
I Allow to stop between observations
I Several jumps
I Stop and restart the process from a new point
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Conclusion and perspectives
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