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∗Université de Lorraine, CRAN, UMR 7039, France
∗∗ CNRS, CRAN, UMR 7039, France

{ying.tang, romain.postoyan}@univ-lorraine.fr
∗∗∗Department of Mathematics, Universidad National Autónoma de
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Abstract: Motivated by neuroscience applications, we introduce the concept of qualitative
estimation as an adaptation of classical parameter estimation to nonlinear systems characterized
by i) the presence of possibly many redundant parameters, ii) a small number of possible qual-
itatively different behaviors, iii) the presence of sharply different characteristic timescales and,
consequently, iv) the generic impossibility of quantitatively modeling and fitting experimental
data. As a first application, we illustrate these ideas on a class of nonlinear systems with a single
unknown sigmoidal nonlinearity and two sharply separated timescales. This class of systems is
shown to exhibit either global asymptotic stability or relaxation oscillations depending on a
single ruling parameter and independently of the exact shape of the nonlinearity. We design
and analyze a qualitative estimator that estimates the distance of the ruling parameter from
the unknown critical value at which the transition between the two behaviors happens without
using any quantitative fitting of the measured data.

Keywords: parameter estimation, relaxation oscillator, singular perturbation, neuroscience,
nonlinear system, Lyapunov method

1. INTRODUCTION

Online parameter estimation of dynamical models of neu-
ronal activity might lead to new perspectives in neuro-
sciences. In epilepsy for instance, having access in real-time
to the gains governing the excitation/inhibition balance
within populations of neurons might provide important in-
formation about the on-going electrophysiological activity,
and thus help developing new strategies to detect or even
predict seizures. This task is challenging because of the
redundancy and the large variability of biophysical param-
eters across populations of neurons and neuronal circuits
exhibiting similar activity patterns. Disparate combina-
tions of biophysical parameters are indeed known to lead
to the same activity pattern at the cellular level Gold-
man et al. (2001). The same degenerated parametrization
property propagates at the neuronal circuit level Marder
(2011). In addition, biophysical parameters slowly vary,
inducing sharp transitions between qualitatively different
activity modes (spiking or bursting, healthy or epileptic,
etc.) at the crossing of critical parameter sets. In this
context, quantitative modeling and fitting of experimental
data generically constitute an ill-posed problem and a new
estimation approach is therefore needed.

Online parameter estimation for dynamical systems has
been widely studied, in particular for linear systems, see
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e.g., Ioannou and Sun (1996); Ljung (1999). Online estima-
tion technique for nonlinear systems is still a developing
field and the available results are more scarce, see e.g.,
Bastin and Gevers (1988); Farza et al. (2009); Adetola
and Guay (2008); Besançon (2007); Mauroy and Goncalves
(2016); Moles et al. (2003). Recently, results have appeared
in the context of neurosciences. For instance, in Schiff
and Sauer (2008), the authors have applied unscented
nonlinear Kalman filters to estimate the states and the
parameters of a spatiotemporal model of the cortex. Other
stochastic filtering methods such as Monte Carlo schemes
and Bayesian approach have also been considered for
computational neuroscience applications Brockwell et al.
(2004); David et al. (2006). While these methods can
provide very interesting results, these also have a high
computational cost in general, may be difficult to tune,
and there is usually no convergence proof. On the other
hand, deterministic schemes motivated by neuroscience
applications have recently been provided in Tyukin et al.
(2013); Chong et al. (2015), in which the estimation errors
are ensured to converge to the origin under persistency
of excitation conditions. All the estimation approaches
reviewed in this introduction rely on some type of quanti-
tative fitting of the measured data, which questions their
applicability in the neuronal context.

In the present work, we cast the problem in a deterministic
setting and we propose a different approach. Indeed, our
objective is no longer to asymptotically estimate the un-
known parameters, but first to identify analytically those
which rule the type of behavior of the model, and second



to estimate the distance between these parameters and
critical values at which a change of activity occurs. We
illustrate these ideas on a class of nonlinear systems with
a single sigmoidal nonlinearity and two sharply separated
timescales. In order to capture salient properties of neu-
ronal dynamics, we suppose that the exact functional form
of the nonlinearity is unknown, as well as the timescale
separation. We firstly show that, independently of the
particular expression of the sigmoid nonlinearity, a single
parameter rules the transition between global asymptotic
stability and almost global convergence to a relaxation
limit cycle. This part of the paper is inspired by the work
in Drion et al. (2015). The parameter redundancy has
algebraically been tackled by extracting the few ruling
parameters governing neuronal dynamics and their critical
values. Those parameters define qualitative models that
provide a constructive geometric framework to analyze
modulation and robustness of neuronal activity in a prin-
cipled way Franci et al. (2014). Based on the assumption
that the input and the states of the system are known,
we subsequently design an online qualitative estimator
that estimates the distance of the ruling parameter to the
unknown critical value at which the rest/oscillation tran-
sition happens. The designed estimator therefore provides
online information about the system activity type and
whether a change of activity is prone to appear without
any quantitative fitting of the measured data. The esti-
mator design is guided by singularity theory Golubitsky
and Schaeffer (1985) and its convergence and robustness
properties are ensured by the joint use of Lyapunov anal-
ysis and geometric singular perturbation theory Fenichel
(1979). The idea of qualitative estimation is also related
to the problem of steering a system toward an a priori
unknown bifurcation point Moreau and Sontag (2003).

The proofs of the results are omitted for space reasons,
and these can be found in Tang et al. (2016).

Notation. The usual Euclidean distance is denoted by
| · |. For a function h : R>0 → R, the associated infinity
norm is denoted by ‖h‖[0,∞) = sups∈[0,∞) |h(s)|, when it

is well-defined. We use sgn(x) to denote the sign function
from R to {−1, 0, 1} with sgn(0) = 0. For any function
f : R → R, we denote the range of f as f(R) =
{z : z = f(x) for some x ∈ R}. Let A,B be two non-
empty subsets in Rn, their Hausdorff distance is noted by
dH(A,B) = max{supa∈A infb∈B |a−b|, supb∈B infa∈A |a−
b|}. A continuous function γ : R>0 → R>0 is of class K∞
if it is zero at zero, strictly increasing and unbounded.

2. PROBLEM STATEMENT

2.1 A class of two-time-scale nonlinear systems

We consider the nonlinear system{
ẋf = −xf + S(βxf + u− xs),
ẋs = ε(xf − xs),

(1a)

(1b)

where xf , xs ∈ R are the state variables, β ∈ R is an
unknown parameter, u ∈ R is the input, which is assumed
to be a known constant, and 0 < ε � 1 is a small
parameter, which is unknown. The mapping S : R→ R is
an unknown sigmoid function, which is assumed to satisfy
the following properties.

Assumption 1. The following properties hold.
a) S is smooth.
b) S(0) = 0.
c) S′(a) > 0 for all a ∈ R (monotonicity), and
argmaxa∈RS

′(a) = 0 (sector-valued).
d) sgn (S′′(a)) = −sgn(a) for all a ∈ R. 2

Standard sigmoid functions such as a 7→ c1 tanh(c2a),
a 7→ c1 arctan(c2a), a 7→ c1

1+e−c2a − c1
2 with suitable

c1, c2 ∈ R, verify Assumption 1.

Due to the small parameter ε, system (1) evolves accord-
ing to two time scales. We follow the standard approach
of singular perturbation theory (Kokotović et al. (1986);
Fenichel (1979)) to decompose system (1) into two sub-
systems, which represent the fast dynamics and the slow
dynamics, respectively, called the layer and the reduced
subsystems. By setting ε = 0 in (1b), we obtain the layer
dynamics behavior{

ẋf = −xf + S(βxf + u− xs),
ẋs = 0.

(2a)

(2b)

In (2b), the slow variable xs is treated as a constant
parameter.

To account for slow variations of xs, we rescale time as
τ = εt, hence d

dt = ε ddτ . Then system (1) becomes{
εx′f := −xf + S(βxf + u− xs),
x′s = xf − xs,

(3a)

(3b)

where ′ stands for d
dτ . Setting ε = 0 in (3a), we obtain the

reduced dynamics{
0 = −xf + S(βxf + u− xs),
x′s = xf − xs.

(4a)

(4b)

The reduced dynamics evolves in the slow time τ and is
an algebro-differential equation. In particular it defines a
one-dimensional vector field over the critical manifold

S0
u,β := {(xs, xf ) ∈ R2 : −xf + S(βxf + u− xs) = 0}.

(5)

The critical manifold S0
u,β depends on u and β. However,

since we assume u and β constant, for simplicity we omit
the index u and β in the rest of the paper. The critical
manifold will therefore simply be denoted by S0. Let

βc :=
1

S′(0)
, (6)

which is well-defined according to item c) of Assumption
1. This parameter will play a key role in the sequel.

2.2 Stability analysis

We first state stability properties for system (1) in the next
proposition.

Proposition 1. Consider system (1), the following holds.

(1) For any β − βc < 0 and any constant input u, there
exists ε̄ > 0 such that, for all ε ∈ (0, ε̄], system (1) has
a uniformly globally exponentially stable fixed point.
Moreover, all trajectories converge in an O(ε)-time
to an O(ε)-neighborhood of the critical manifold S0

defined in (5).
(2) a) For all 0 < β − βc < 1, there exists ū > 0,

such that, for any constant input u in (−ū, ū),



there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄],
system (1) possesses an almost globally attractive
and locally exponentially stable periodic orbit
P ε. In particular, for any initial condition, except
that in the unique unstable fixed point of (1),
the solution converges to P ε. Moreover, P ε is
strongly attractive, i.e. any solution in a neigh-
borhood of the periodic orbit P ε converges to
it exponentially fast with decay rate e−K/ε, for
some constant K > 0.

b) Let T ε be the period of P ε and p : R→ P ε, with
p(t) = p(t + T ε) for all t ∈ R, be the associated
periodic solution of (1). Let P 0 be the singular
limit of P ε. The Hausdorff distance between P ε

and P 0 verifies dH(P ε, P 0) = O(ε2/3). Moreover,
for all t0 ∈ R, there exists δT ε ⊂ [t0, t0 +T ε) and
|δT ε| = O(ε)T ε, such that |p(t)− S0| < O(ε) for
all t ∈ [t0, t0 + T ε) \ δT ε. 2

Proposition 1 indicates that the solution to system (1)
converges either to a stable fixed point or to a stable limit
cycle. The transition between the two behaviors depends
only on the single parameter β − βc and not on the exact
expression of the sigmoid S.

Remark 1. The proof of Proposition 1 relies on dif-
ferential geometry arguments ((Fenichel, 1979, Theorem
1,2,3), (Krupa and Szmolyan, 2001b,a, Theorem 2.1)). We
mention that the approach in Kokotović et al. (1986);
Khalil (2002) for singularly perturbed nonlinear systems
is not applicable in the context of this work because,
when β > βc, the critical manifold of system (1) possesses
singularities, which implies that (4a) no longer has isolated
roots as often assumed. 2

2.3 Objective

Our objective is to detect online in which type of activity
system (1) is, that is, whether solutions converge to a fixed
point or a limit cycle (oscillation) and whether we are close
to a change of activity. According to Proposition 1, the
two types of behaviors depend only on the value of β.
In the simple, academic setting of this paper, we might
approximate the sigmoid function S by Taylor expansion
up to some order and quantitatively estimate the expan-
sion coefficients together with ε and β. However, due to
the generic impossibility of quantitatively modeling and
fitting experimental neuronal data, this approach would
not overcome, in a real experimental setting, the limitation
of quantitative estimation reviewed in the introduction.
Instead, we aim at qualitatively estimating the distance of
the ruling parameter β from critical value without using
any type of quantitative fitting. Indeed, this distance is
all we need to assess online whether the system exhibits
oscillation or has a globally exponentially stable fixed
point and whether it is near to a change of activity.

Proposition 1 proves that almost all trajectories of sys-
tem (1) converge to an O(ε)-neighborhood of the critical
manifold S0 in both the fixed point and the limit cycle
cases, at least for most time in the latter case. Based on
singularity theory Golubitsky and Schaeffer (1985), Franci
and Sepulchre (2014) and in view of Assumption 1, the
qualitative shape of the critical manifold S0 is the same as
that of the set

{(xf , xs) : −x3
f + (β − βc)xf + u− xs = 0}, (7)

whose definition is independent of S. Qualitatively, the
shape of this set, as well as of S0, is fully determine by the
sign of β − βc (see Fig.1). When β < βc, it is the graph
of a monotone decreasing function. For β = βc, it has
a point of infinite slope, corresponding to the hysteresis
singularity, and, when β > βc, it is S-shaped. We exploit
this information in the next section to design and analyze
the estimator.

Fig. 1: Geometrical form of the critical manifold

3. QUALITATIVE ESTIMATOR

3.1 Estimator design

In the following, we construct the estimate of β − βc
based on the sole information provided by (7) about the
qualitative shape of the critical manifold. We first make
the following assumption.

Assumption 2. Both the fast xf and the slow xs variables
are measured in system (1) and the control input u is
known and constant. 2

We propose the following nonlinear parameter estimator

˙̂
β = −kxf (−x3

f + β̂xf + u− xs) := f̂(β̂, xf , u− xs), (8)

where k > 0 is a design parameter. We note that f̂ is
independent of S and ε, its expression is only related to
the set (7). The influence of the design parameter k and
the robustness of the estimator will be briefly discussed in
Section 4.

3.2 Steady-state properties of the qualitative estimator

Steady-state of β̂ satisfies −x3
f + β̂xf +u−xs = 0. Hence,

we implicitly define the function β̂∗(xf , xs, u) such that

−x3
f + β̂∗(xf , xs, u)xf + u− xs = 0, (9)

for u, β ∈ R and xf , xs on S0, i.e. xf , xs are related by the
critical manifold equation

−xf + S(βxf + u− xs) = 0. (10)

Recalling that the sigmoid function S is invertible on S(R)
according to item c) of Assumption 1, we can explicitly
invert (10) as follows

xs = −S−1(xf ) + βxf + u. (11)

Replacing this expression for xs in (9), we obtain the

explicit expression of β̂∗(xf , xs, u)



β̂∗(xf , xs, u) =
x3
f − S−1(xf ) + βxf

xf
. (12)

We see that β̂∗ depends only on xf and β. We therefore

write β̂∗(xf , β) in the following.

The next lemma provides important properties of β̂∗(xf , β).

In particular, it ensures that β̂∗(xf , β) is well-defined when
xf = 0. Furthermore it formally characterises in which

sense β̂∗ provides qualitative information about β − βc.
Lemma 1. The following holds.

1) β̂∗ is smooth on S(R)× R.

2) For all β ∈ R,
∂β̂∗(xf ,β)

∂β > 0 when β < βc and

xf ∈ S(R), while
∂β̂∗(xf ,β)

∂β > 0 when 0 < β − βc < 1

and xf is in a neighborhood of the origin.

3) β̂∗(xf , β) = β − βc + O(x2
f ) for any xf ∈ S(R) and

β ∈ R. 2

Lemma 1 is informative about the qualitative dependence

of β̂∗ on β − βc. According to item 2) of Lemma 1, β̂∗ is
strictly increasing in β, and hence in β−βc, in the resting
activity (i.e. β < βc). If a change of activity is prone to
appear (i.e. β is close to βc), then necessarily xf will lie in
a neighborhood of the origin (for u small), which relates to
the point of infinite slope, corresponding to the hysteresis

singularity of the critical manifold. In this case, β̂∗ will
change its sign from negative to positive according to item
3) of Lemma 1, and then it will grow according to the
second part of item 2) of Lemma 1. The same holds in

the other direction, meaning that if β̂∗ goes from positive

to negative values. Hence, β̂∗ allows to detect a change of

activity in system (1). If β̂ converges to β̂∗ as time tends
to infinity, then we can distinguish the different behaviors

of the system based on β̂. This is the purpose of the next
subsection.

3.3 Stability analysis

Firstly, we discuss stability property of (8) with (xf , xs, u)
as input in Lemma 2. Then we study the different behav-
iors of the three-dimensional overall system, i.e. system (1)
and estimator (8) in Proposition 2. Finally, we show the

link between β̂ and β̂∗ in Theorem 1.

The next lemma states an incremental input-to-state sta-
bility property (in the semiglobal sense) of system (8)
with (xf , xs, u) as input. In the sequel we use the triplet
(xf , xs, u) to denote a solution to system (1) with arbitrary
initial condition and input u.

Lemma 2. Let ∆ > 0 and S∆ be the set of solutions
(xf , xs, u) to system (1) such that: (i) max

(
‖xf‖[0,+∞),

‖xs‖[0,+∞), ‖u‖[0,+∞)

)
6 ∆; (ii) there exist t∗(∆) > 0 and

a(∆) > 0, such that for any t > t∗(∆),∫ t

t∗(∆)

x2
f (τ) dτ > a(∆) (t− t∗(∆)). (13)

Then, for (xf1, xs1, u1), (xf2, xs2, u2) ∈ S∆, for any M >

0 and |β̂1(0)|, |β̂2(0)| 6 M , there exist strictly positive
constants `∆,M , ω∆,M and K∞ function γ∆,M , such that

the corresponding solutions β̂1, β̂2 to system (8) satisfy for
any t > 0

|β̂1(t)− β̂2(t)| 6 `∆,Me
−ω∆,M t|β̂1(0)− β̂2(0)|

+γ∆,M

(
‖xf1 − xf2‖[0,t) + ‖xs1 − xs2‖[0,t)

+‖u1 − u2‖[0,t)
)
. (14)

2

Similar to semiglobal ISS with respect to inputs as defined
in Angeli et al. (2000), property (14) indicates that the
estimator (8) is semiglobal incremental ISS with respect
to initial conditions and inputs. Condition (13) is similar
to a persistency of excitation condition. In the present
paper, we assume it and we verify it online in simulations.
Conditions on the initial states of system (1) and its input
to ensure it a priori will be investigated in future work.

To finalize the analysis, we consider the overall system,
that is (1) and (8), which is three-dimensional and given
by 

˙̂
β = −kxf (−x3

f + β̂xf + u− xs),
ẋf = −xf + S(βxf + u− xs),
ẋs = ε(xf − xs).

(15a)

(15b)

(15c)

Note that system (15) is a cascade of system (15b)-(15c)
with (15a). We state the convergence property of system
(15) in the next proposition.

Proposition 2. Consider system (15).

(1) For any β − βc < 0, there exists ε̄ > 0 such that for
any ε ∈ (0, ε̄], xf (0), xs(0) ∈ R and constant input
u such that the corresponding solution (xf , xs, u) to
(15b)-(15c) is in the set S∆ for some ∆ > 0, and for

any β̂(0) ∈ R, the corresponding solution to system
(15) asymptotically converges to a fixed point.

(2) For any 0 < β − βc < 1, there exists ε̄ > 0 such that
for any ε ∈ (0, ε̄], xf (0), xs(0) ∈ R and constant input
u such that the corresponding solution (xf , xs, u)
to (15b)-(15c) is in the set S∆ for some ∆ > 0,

and for any β̂(0) ∈ R, the corresponding solution
to system (15) asymptotically converge to a periodic
limit cycle. 2

Proposition 2 ensures that the estimate β̂ converges either
to a fixed point or to a limit cycle depending on the sign
of β − βc. Now we are ready to state the link between the

estimate β̂ and β̂∗ defined by (12) in the following theorem.

Theorem 1. Consider system (15).

(1) For any β − βc < 0, let u and ε be defined as in item
(1) of Proposition 2, and let x∗f be the xf -component

of the fixed point of (15). Then β̂(t) converges to

β̂∗(x∗f , β) as time goes to infinity.

(2) For any 0 < β − βc < 1, let u and ε be defined as
in item (2) of Proposition 2, and let xlcf (t+ θ) be the

T ε-periodic asymptotic orbit of xf (t) along the limit
cycle to which converges xf . Then, for all t0 > 0, there
exists δT ε ⊂ [t0, t0 + T ε) with |δT ε| = O(ε)T ε, such

that β̂(t)− β̂∗(xlcf (t+θ), β) = O(ε) for all t ∈ [t0, t0 +

T ε) \ δT ε. 2



When β < βc, according to item 1) of Proposition 2, the
estimate converges to a fixed point as time increases, and

item 1) of Theorem 1 specifies that its value is β̂∗. When
0 < β − βc < 1, the estimate converges to a periodic limit
cycle in view of item 2) of Proposition 2, and item 2) of
Theorem 1 indicates that the estimate value is in an O(ε)-

neighborhood of β̂∗ for all the time, after a sufficiently
long time, except during jumps and each is of length

|δT ε| = O(ε)T ε. We see that β̂∗ is not a constant in
this case but a state-dependent signal, which is unusual
in parameter estimation. In practice, we can average the

obtained value of β̂ over a sliding window.

4. NUMERICAL ILLUSTRATIONS

We analyze the results provided by the proposed quali-
tative estimator in simulations in this section. We first
consider the sigmoid function S : x 7→ tanh(x), for which
βc = 1. We choose ε = 0.001, u = −0.01. Figure 2
illustrates the time evolutions of the states xf , xs of system
(1) for different values of β−βc. We find that xf converges
to a constant value as time increases, as well as xs, when
β−βc < 0, which is consistent with item 1) of Proposition
1. Both xf and xs converge to an oscillatory behavior when
0 < β − βc < 1, which is in agreement with item 2) of
Proposition 1.

We have designed the estimator as in (8) with k = 5.
To check that the estimator is able to detect a change
of activity of the system, we use a step signal for β.
In particular, β = 0.9 on [0, 500] and β = 1.1 on
[500, 1000], which leads to a change of sign of β − βc at
t = 500. We observe in Fig. 3 that, when β − βc < 0, the
estimate converges to a constant value as time increases,
corresponding to the resting activity. When 0 < β −
βc < 1, the estimate tends to a periodic function, which is
strictly positive. Hence, it indicates the oscillation activity.
Moreover, the estimate value evolves from negative to
positive when the change of sign of β − βc occurs. This
implies the change of the system’s behavior. It could be
interpreted as, for example in epilepsy a change from rest
to seizure. We have tested different values of k in (8). The

simulations indicate that the speed of convergence of β̂
increases with k. However, this also leads to bigger spikes
at “jumps”, which may provide negative estimate value
during a very short interval.

To test the robustness of our approach, we next consider
the following sigmoid functions: S1 : x 7→ tanh(x), S2 :
x 7→ x√

1+x2
, S3 : x 7→ 1

1+e−x− 1
2 . The corresponding critical

values are βc1 = βc2 = 1 and βc3 = 4. We emphasize that
even though the nonlinearities are different, the estimator
remains the same as defined in (8). Figure 4 shows the

relationship between β̂ and β − βc for different input u
and perturbation parameter ε. Note that, when β−βc < 0,

the value of β̂ is chosen as the constant value, to which the
estimate converges. When 0 < β − βc < 1, the estimate

tends to a periodic behavior. Then β̂ is selected as the
average value of this periodic function (over a period). We

observe that for β−βc < 0, the estimate value β̂ is negative
and it increases as β−βc increases. When 0 < β−βc < 1,

β̂ is positive. Moreover, when β − βc = 0, the estimate

is around the origin. Hence the estimate β̂ qualitatively

infers the distance of β−βc to the origin. We remark that
the estimator works robustly to variations of the sigmoid
shape.

To further evaluate the robustness of the scheme, we
have added small additive measurement noises given by
dout(t) = 0.005 sin(50t) for xf , xs and din = 0.008 for
input u. It is found from Fig. 5 that the estimator still
provides good results in this case.

5. CONCLUSION

We have, to the best of our knowledge, introduced for
the first time the concept of qualitative estimation, which
allows to detect online the behavioral state of a multiple-
timescale nonlinear system, independently of large uncer-
tainties on the system nonlinearities and without using
any type of quantitative fitting. This is achieved by first
extracting the system ruling parameter(s) and by sub-
sequently designing an estimator of the distance of the
ruling parameter(s) to some critical value(s) at which the
behavioral transition happens. Timescale separation is in-
strumental in the estimator design, because it allows to re-
duce the qualitative estimation problem to the estimation
of the qualitative shape of the system critical manifold.
As a first illustration, we have focused on a class of two-
dimensional nonlinear systems with two time-scales and a
single nonlinearity either exhibiting resting or relaxation
oscillation behaviors.

Future extensions will focus on generalizing the theory to
higher-dimensional systems, different unknown nonlinear-
ities, and multiple possible qualitative behaviors. We will
also investigate the case where only the fast variable is
measured, and not the full state as done in the paper.
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