
HAL Id: hal-01563212
https://hal.science/hal-01563212

Submitted on 27 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven reliability evaluation for MPSoC design
Tien Thanh Nguyen, Anthony Mouraud, Mathieu Thevenin, Gwenolé Corre,

Olivier Pasquier, Sébastien Pillement

To cite this version:
Tien Thanh Nguyen, Anthony Mouraud, Mathieu Thevenin, Gwenolé Corre, Olivier Pasquier, et al..
Model-driven reliability evaluation for MPSoC design. Conference on Design and Architectures for Sig-
nal and Image Processing, Sep 2017, Dresden, Germany. pp.8122115, �10.1109/DASIP.2017.8122115�.
�hal-01563212�

https://hal.science/hal-01563212
https://hal.archives-ouvertes.fr

Model-driven reliability evaluation
for MPSoC design

Tien Thanh Nguyen∗, Anthony Mouraud∗, Mathieu Thevenin†, Gwenole Corre†,
Olivier Pasquier‡ and Sebastien Pillement‡

∗ CEA/CTREG/DPLOIRE, 5 rue de l’Halbrane, 44340 Bouguenais, France; Email: firstname.lastname@cea.fr
† CEA Saclay, 91191 Gif-Sur-Yvette, Essonne Cedex, France; Email: firstname.lastname@cea.fr

‡ IETR, Ecole Polytechnique, 44306 Nantes Cedex, France; Email: firstname.lastname@univ-nantes.fr

Abstract—When designing a Multi-Processor System-on-Chip
(MPSoC), a very large range of design alternatives arises from
a huge space of possible design options and component choices.
Literature proposes numerous Design-Space-Exploration (DSE)
approaches thats mainly focus on cost optimization. In this paper,
we present a DSE approach which focuses on the reliability of the
whole design. This approach is based on a meta-model of Multi-
Processor System-on-Chips (MPSoCs) integrated the reliability
evaluation. We develop a tool that allows designers to describe
and optimize their platform based on the proposed meta-model.
The obtained results of an MPSoC is presented including the
improved overall reliability of the system thanks to the automatic
selection of the fault tolerance strategies for each component.

I. INTRODUCTION

In the design process of a Multi-Processor System-on-Chip
(MPSoC), a huge space of alternative solutions emerges from
different design solutions. A design is built by a system
architect to match specific objectives such as cost and/or
performance. This work is based on the designer experience,
consequently, the huge number of possibilities of the design
space are not explored. The use of Design Space Exploration
approaches (DSE) is mandatory to ensure an optimal explo-
ration.

However, fast-growing technology scaling as well as work-
ing in harsh environments have made systems increasingly
vulnerable to faults [1]. Beside the efforts to improve the
hardware reliability, a need to use fault tolerance strategies
to diminish the faults impact is rising. Moreover, reliability
becomes one of the most important properties in embedded
systems.

The fault tolerance requirements of the design imply a new
dimension to the DSE, which makes almost impossible for
a designer to manually select the optimal design under cost,
performance and reliability constraints. Therefore, designers
need a comprehensive methodology that defines the DSE
of alternative solutions and integrates the system reliability
evaluation into the early phase of design.

Model Driven Engineering (MDE) can provide effective
ways to address needs of DSE. MDE approaches are at a high
abstraction level and provide mechanisms to reuse, maintain
and operate models [2]. A model represents an abstraction of
a system as well as elements of that system from a particular
design point of view. Mechanisms for the construction of valid
models are specified in meta-models. The meta-model needs to

be constructed in a suitable way at a high level of abstraction
in order to cover the design alternatives as much as possible.

Many works provided meta-models for structures and be-
havior of MPSoC platforms [3]–[6]. However, these proposed
meta-models are designed for specific purposes such as archi-
tectures with time-triggered execution paradigm, performance
estimation or code generation for simulation, what make
them difficult to reuse. In another aspect, some meta-models
are defined at a low abstraction level [3], which limits the
exploration capability. In any case, the meta-models presented
in the literature are not developed for the reliability evaluation.

We propose in this work to develop a new platform meta-
model that aims at integrating the reliability evaluation, a
custom developed software which automatically performs the
DSE and the optimization process of the platform design.

The paper is organized as follows: the next section intro-
duces related works. Section III presents our proposal of meta-
model which integrates the reliability elements. In Section IV,
the modeling tool is introduced and its optimization abilities
are illustrated through an example. Finally, Section V draws
main conclusions and introduces further coming works.

II. RELATED WORK

Several meta-models were proposed in the MPSoC design
research effort using the MDE approach. Within the Graphical
Array Specification for Parallel and Distributed Computing
(GASPARD) framework [3], the authors propose meta-models
corresponding to several design abstraction levels. The first
one describes the hardware architecture at the Cycle-Accurate
Bit-Accurate (CABA) level and the second is at the Timed
Programmer’s View (TPV) level. The CABA level meta-model
is described at the signal level which hinders the discovery
of new design options. The TPV meta-model is at a higher
abstraction level which focuses on the performance estimation
of a platform. Both meta-models are used to generate the
simulation models while fault tolerance is not considered.

The Data Parallelism to Real Time (DaRT) [4] project also
proposes meta-models for SoC design. It mainly focuses on
code generation for simulation at Transaction-Level Model
(TLM) and Register Transfer Levels (RTL) for the particular
case of intensive signal processing applications. Moreover,
only the hardware aspect of the DSE is taken into account
and the fault tolerance is not considered.

978-1-5386-3534-6/17/$31.00 c©2017 IEEE

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

In [5], the authors present a framework that provides a
design flow for fault-tolerant embedded systems. A merged
class-diagram of application and platform meta-models is pro-
posed. The description is useful for modeling the dependencies
between the application and the execution platform. In addi-
tion, their approach focuses on heterogeneous multiprocessor
architectures with time-triggered execution paradigm. Thus,
the meta-model aims at describing the relationships between
application and the time-triggered bus while their reliability
evaluation is not integrated on the meta-model.

The Model-driven Embedded System design (ModES)
framework [6] provides meta-models representing MPSoC
system concerns in specific aspects – application, platform,
mapping, and implementation. These meta-models may par-
tially match with our objectives despite they only focus on the
mapping process and performance of a platform. The aspect
of reliability is not considered in their meta-models.

III. MPSOC PLATFORM META-MODEL

In this section, we firstly present a useful set of definitions,
secondly, our platform meta-model which is built on the
Unified Modeling Language (UML) syntax. Thirdly, we briefly
introduce how to deal with different fault tolerance strategies.

A. Definitions and concepts

Before building a meta-model, basic concepts need to be
defined [7] [8]. This helps to have a clear view of targeted
architectures and to focus on our objectives.

Definition 1: An application is defined as F =
{F1, F2, ..., Fk} a set of k (k ∈ N) functions that will have
to be executed in a given order to produce desired outputs.

Definition 2: An MPSoC platform is composed of subsys-
tems configured to provide a set of services (memorization,
running, etc.). The connections between subsystems form the
platform topology. The description of subsystems supports the
redundancy modeling used in tolerance strategies. In addition,
a subsystem is able to select many component options from
available component libraries. Subsystem model is used in
many works about redundancy allocation for the fault tolerance
and reliability evaluation [9].

Definition 3: A hardware component can be:

• a processing element (PE) that can be hardwired (such
as FPGA, ASIC), thus called a dedicated PE (DPE) (no
software can be executed on it) or a general purpose pro-
cessor (it can execute software), called a programmable
PE (PPE). PE components are used to compute functions
of a given application;

• a memory component is used to store data and source
codes;

• a communication component is used to transfer data,
signals between others hardware components.

Each component provides at least one service to implement
requirements of a given application. A service is represented
by metrics such as delay, cost, computing capacity.

Definition 4: A software component is an implementation
of a function. Its source code is stored in a memory and a
software component runs on a PPE.

Definition 5: A subsystem is composed of one type of
hardware component and possibly several versions of software
components.

B. Proposed Meta-models

The platform meta-model of the ModES framework partially
matches our objectives as well as our definitions. Therefore,
we develop our new platform derived from the proposition
of the ModES meta-models. However, their MPSoC platform
meta-model does not consider the fault tolerance. Thus, in
this section, we present how to cover this gap. The Figure
1 depicts the architectural part of the proposed meta-model
described below.

Fig. 1: Architectural part of the proposed platform
meta-model. Gray elements refer to the ModES platform

meta-model.

In the ModES, two basic classes are used to build an
MPSoC platform meta-model: platform, component. A plat-
form contains many components. Components are classified
to hardware (compHardware) (Definition 3) and software
(compSoftware) (Definition 4). compHardware can be a
communication component (compCommunication), a mem-
ory component (compMemory) or a processing compo-
nent (processingElement). processingElement may be a
comDPE (dedicated, an FPGA or ASIC) or a compPPE
(programmable, a GPP). A component can offer services.

TABLE I: Quality of service and properties specializations.

Component type Service
Metric (quality of service)

Delay Capacity

compCommunication data transfer N/P bandwidth (Gb/s)

compMemory storage read/write delay
memory size

(KB, GB...)

compPPE instruction set
mean inst.

execution time
inst. set size (number)

compDPE
logic block (LB)

computation

mean LB

execution time

number of

logic blocks

For each service provided by a compHardware, delay and
capacity come generic properties defined in the ModES meta-
model qualityOfService (bottom-right elements in Figure 1)
are specialized (Table I) to match our objectives.

In our work, we also need to add supplementary architec-
tural level: namely the subsystem level. Indeed evaluating

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Fault tolerance part of the proposed platform meta-model. The subDPE, subPPE, subCommunication,
subMemory and compHardware elements are extracted from their Figure 1 counterparts.

whether requirements of a function are met may rely on the
evaluation of several components as a whole. For example, a
software component always runs on a GPP component for a
given function. To know whether the requirements of the func-
tion are met, we must evaluate both of software component
and PPE component in their common viewpoint. Furthermore,
applying fault tolerance strategies like redundancy implies
to evaluate the reliability of ”group” of components. The
subsystem is defined (Definition 5, top-middle white element
in Figure 1) in the scope of our platform meta-model as follow:

• a platform contains different subsystems;
• a subsystem may be one of the four types

corresponding to components: subPPE, subDPE,
subCommunication, subMemory;

• a subsystem contains at least one component; all hard-
ware component in a subsystem are of the same type;

• portInterface represents the bounding of a subsystem.

We also implement the platform topology, which is required
to calculate the connection delay between subsystems. The
connection reference defines connection wires between sub-
systems. Moreover, for a given function, portInterface and
connection blocks allow to define the relationship between
elements of a platform upon which the function relies. For
example, when a subPPE computes a function, we need to
know in which subMemory the data required by the execution
is saved. Therefore, we can evaluate if the function’s reliability
requirements are met.

Behaviors of a compSoftware depends on its supporting
hardware components. For this reason, the relation between a
compSoftware and compHardware needs to be defined. In
the ModES, authors admit this but it is not defined on their
platform meta-model. To evaluate the subsystem reliability
and performance, we need to know all of the component
relationships in a subsystem. A software is executed on a
compPPE, consequently, it only belongs to the subPPE.
A compMemory can store one or many compSoftware.

C. Fault Tolerance Strategies

After having presented the architecture part of the meta-
model, now we can introduce the tolerance strategies
(faultTolerance). Several fault tolerance strategies can be
applied to a subsystem (redundancies, re-execution, correc-
tion codes etc.) [10] as shown in Figure 2.

A tolerance strategy performance is evaluated by comput-
ing the estimation() method of a given subsystem. This
method computes the reliability of the subsystem through a
set of probability formulas taking into account each of the
subsystem’s component reliability. These formulas parameters
are declared for each component as reliability. Of course,
the cost parameter needs to be defined also for each com-
ponent to evaluate the fault tolerance strategy cost for each
subsystem. Each strategy has its own typical parameters. The
error code correction strategy make the fault tolerance for
a memory with redundant bits (redundantBits). With the
k-out-of-n strategy, a subsystem is functional when there
are equal to or greater than k working components (n is
a redundant number of components in the subsystem). The
recoveryBlock strategy uses a redundant number of software
versions (softwareNumber) and a redundant number of
PPE components (ppeNumber) for the fault tolerance in
a subPPE. In the tolerance strategies, there are additional
dedicated hardware components required by each specific
strategy such as voter, decoder, acceptanceTester. These
components can affect the reliability and cost of subsystems
as well as the entire platform. Therefore, we can apply
the redundancy tolerance strategy also for these components
(toleranceDecoder, toleranceV oter, toleranceTester).

The appliedTolerancePPE, appliedToleranceDPE,
appliedToleranceCommunication and appliedTolerance-
Memory classes represent the tolerance strategy applied
on the corresponding subsystem. Appropriate strategies cor-
responding to each subsystem type are selected from the
library. For example, a tolerance strategy applied for a
memory subsystem (appliedToleranceMemory) can be
errorCodeCorrection or kOutOfn.

The UML view of the meta-model is given in Figure 1 and
Figure 2. Figure 1 represents the architectural part and the
Figure 2 represents the fault tolerance part in the proposed
platform meta-model.

IV. SUPPORTING TOOL

The models built by our framework are based on the meta-
model proposed and described in the previous section. The
tool is constructed over the Sirius environment which is an
Eclipse project allowing the creation of graphical modeling
workbench. We create a workbench which allows designers to
describe their platform through a graphical user interface.

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Illustration of the workbench for the modeling of a
6-subsystem platform.

Figure 3 illustrates an example of such platform comprising
6 subsystems which hold different component types: 2 PPE
subsystems, 1 DPE subsystem, 2 memory subsystems and
1 communication subsystem. They connect together through
ports and wires. Components and their parameters are declared
inside corresponding subsystems. Since the contribution of this
paper is the adjudication of reliability to DSE approaches,
this section firstly presents the reliability model, followed
by a brief description of the optimization algorithm and the
presentation of the results obtained with our approach.

A. Reliability Model

We develop a model to evaluate the subsystem reliability as
well as the platform reliability. The component-level reliability
is given by the user as an input data. Regarding hardware
components, it is obtained using fault models derived from
the physical failure mechanisms [11]. Concerning software
components, it is acknowledged that reliability depends on
numerous factors such as function complexity, programming
language, programmer skill, etc [12]. In real cases, designers
must have knowledge of their component reliability.

Specifically, the reliability of a platform is formulated with
the following assumptions, originally proposed in [13]:

• hardware components in a subsystem are identical and
software components in a subsystem are identical;

• each component and the platform have 2 states: functional
or failed;

• component reliability is the probability that the compo-
nent does not fail in a fixed mission time interval from
the beginning;

• a platform is functioning if and only if all of its subsys-
tems are functioning.

The number of available tolerance strategies which can be
applied on a subsystem is noted NtS . We defined a variable xi
which represents the tolerance strategy index on the subsystem
i: xi ∈ {1, 2, ..., NtS}. rcompi

is the reliability of a single
component in the subsystem i. rcompi can be rcomp−softi ,
rcomp−PPEi , rcomp−DPEi , rcomp−memoryi , rcomp−busi cor-
responding respectively to the reliability of software, PPE,
DPE, memory and bus components. Respectively, the cost
of a single component may be ccomp−softi , ccomp−PPEi

,
ccomp−DPEi , ccomp−memoryi , ccomp−busi .

Therefore, with the tolerance strategy xi, the reliability level
of the subsystem i: Rsubi(xi, rcompi

) is the probability that

the subsystem i does not fail in its mission time interval from
the beginning. Respectively, the cost of the subsystem i is
Csubi(xi, ccompi

). Note that a subPPE has compSoftware
and compPPE, so that the reliability and cost of a subPPE
are respectively Rsubi(xi, rcomp−softi , rcomp−PPEi

) and
Csubi(xi, rcomp−softi , rcomp−PPEi).

A platform has N subsystems which owns a vector x =
[x1, x2, ..., xN]. Each x vector defines a tolerance solution
for a platform. Therefore, the reliability of a platform is the
probability that all subsystems are functioning, the product of
all the reliability of subsystems [14], is represented by:

Rplatform(x;N) =

N∏
i=1

Rsubi (1)

and respectively the cost of a platform is calculated by:

Cplatform(x;N) =

N∑
i=1

Csubi (2)

Reliability optimization model:
The objective is to look for a vector x to reach a maximum

platform reliability level under a cost constraint. Each solution
corresponding to a definite vector x have to respect the cost
constraint. It means that the platform cost has to be less than or
equal to the maximum cost Costmax pre-defined by designers.
The reliability optimization model hence is given by:

max
(
Rplatform(x;N)

)
with Cplatform(x;N) ≤ Costmax

(3)

To illustrate the reliability model, we use 2 tolerance strate-
gies: Triple Modular Redundancy (TMR) and 3-out-of-5. In
TMR, a subsystem is functioning if 2 out of 3 components are
functioning. In 3-out-of-5, a subsystem is functioning if 3 out
of 5 component are functioning. Specially, if TMR is applied
on a PPE subsystem, there are three independent software
components, each running on a separate PPE component. The
PPE subsystem is functioning if 2 out of 3 software compo-
nents (on working PPE component) are operating. Similarly,
when 3-out-of-5 is applied on a PPE subsystem, the PPE
subsystem is functioning if 3 out of 5 software components (on
working PPE component) are operating. Thus, the variable xi
gets value in {1, 2, 3} – 1 means the no-tolerance, 2 stands for
TMR and 3 for 3-out-of-5. Both strategies use one voter with
its reliability rvoter and its cost cvoter for selecting correct
outputs.

The reliability and cost evaluation of a subsystem cor-
responding to each value of xi is given by Table II. The
original formulas are retrieved from [13]. However, in a
PPE subsystem, there are hardware and software components.
So the formulas of PPE subsystems have been modified to
evaluate the impact of both hardware and software components
on PPE subsystems for each strategy.

All input parameters of components are declared for our
example, as depicted in Table III. The Component reliability

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Formulas for the subsystem cost and reliability estimation corresponding to tolerance strategies [13].

Name xi Subsystem type Rsubi
and Csubi

No

tolerance
1

PPE
Rsubi

(1, rcomp−softi
, rcomp−PPEi

) = rcomp−softi
.rcomp−PPEi

Csubi
(1, ccomp−softi

, ccomp−PPEi
) = ccomp−softi

+ ccomp−PPEi

Others
Rsubi

(1, rcompi
) = rcompi

Csubi
(1, ccompi

) = ccompi

TMR 2

PPE
Rsubi

(2, rcomp−softi
, rcomp−PPEi

) = rvoter.
(
3.(rcomp−softi

.rcomp−PPEi
)2 − 2.(rcomp−softi

.rcomp−PPEi
)3

)
Csubi

(2, ccomp−softi
, ccomp−PPEi

) = cvoter + 3.(ccomp−softi
+ ccomp−PPEi

)

Others
Rsubi

(2, rcompi
) = rvoter.(3.r2compi

− 2.r3compi
)

Csubi
(2, ccompi

) = cvoter + 3.ccompi

3-out-of-5 3

PPE

Rsubi
(3, rcomp−softi

, rcomp−PPEi
) = rvoter.

(
10.(rcomp−softi

.rcomp−PPEi
)3.(1 − rcomp−softi

.rcomp−PPEi
)2+

5.(rcomp−softi
.rcomp−PPEi

)4.(1 − rcomp−softi
.rcomp−PPEi

) + (rcomp−softi
.rcomp−PPEi

)5
)

Csubi
(3, ccomp−softi

, ccomp−PPEi
) = cvoter + 5.(ccomp−softi

+ ccomp−PPEi
)

Others
Rsubi

(3, rcompi
) = rvoter.

(
10.r3compi

.(1 − rcompi
)2 + 5.r4compi

.(1 − rcompi
) + r5compi

)
Csubi

(3, ccompi
) = cvoter + 5.ccompi

and Component cost columns declare the input parameters
of a single component in the corresponding subsystem. The
tolerance strategies use one voter defined with rvoter = 0.999
and cvoter = 50. There is no tolerance for the voter.

TABLE III: Component input parameters for the platform
given in Figure 3.

Subsystem Component name Component reliability Component cost

PPE Processor 1
GPP 1 0.9850 40

Software 1 0.9760 35

PPE Processor 2
GPP 2 0.9940 35

Software 2 0.9700 35

Memory Local SRAM 1 0.9860 40

Memory Global SRAM 2 0.9870 45

DPE Controller FPGA 0.9900 60

Communication Bus Bus 0.9960 80

B. Optimization algorithm

We use Simulated Annealing (SA) to solve the system
reliability optimization problem, by modifying the tolerance
strategy. SA parameters are:

Objective function: the objective is to find the best solution
through the decision vector x with the evaluation function
Rplatform(x;N). A reliability value equal to 1 is the max-
imum reachable (higher is better).

Initial solution: the initial solution for each subsystem
is selected randomly. In a particular case, if designers have
predefined knowledge of some particular subsystems, they can
select a more reasonable initial solution.

Cooling function: the cooling schedule is implemented
by using the function proposed in [15]: T (j) = T0.α

j ,
with: T (j) the temperature at jth step, j the temperature
step number, T0 an initial temperature, and α a factor to
decrease the temperature in each step. Based on previous
work [16], we can take T0 = ∆Rmax with ∆Rmax the
maximal objective function value difference between any two
neighboring solutions. Since the reliability value difference
between two solutions is small compared to 1 so that it also
makes T0 small. And the cooling schedule does not have
practical sense. Therefore, the objective function is transferred
to 1000×Rplatform(x;N). This does not alter the nature of
the algorithm. In our example, T0 ranges from 45 to 55. In
the literature, the cooling factor (α) is between 0 and 1. But,
according to [15], α can be around of 0.85-0.96, to gain a

optimal solution. Moreover, SA produces better results when
the neighbor-compare-move process is carried out many times
at each temperature step. The number of iteration per temper-
ature is a function of the number of neighborhood solutions
of a given solution [17]. In our example, each subsystem has
3 tolerance options. Consequently, with 6 subsystems, a given
solution has 17 neighborhood solutions. Thus, we choose the
number of iteration per temperature equal to 17.

Constraint and next neighborhood move: the reliability
optimization is under a cost constraint. A neighbor move is
performed only to a new solution if the cost condition is
satisfied. One subsystem is randomly selected at each iteration.
A random tolerance strategy is applied at the subsystem.

Stopping condition: normally, the simulation process stops
when the temperature reaches a value as close as possible to
the zero. In our case, we terminate the optimization simulation
when there is no more expected move. We observe that
satisfied solutions were found after about 20 temperature steps.

C. Results

Our optimization model applied to the example previously
presented is simulated with Scilab. We consider four cost
constraints: 400, 750, 1100, 1800. The goal is to find a
tolerance solution which has the highest reliability level in
each constraint. Based on 10 simulation runs for each cost
constraint, results with the highest reliability level represent
our results in this constraint.

Furthermore, we also looked for all possible tolerance
solutions for the platform. This has confirmed that the result
obtained from the optimization algorithm is actually the opti-
mal result for each constraint.

Table IV presents the optimization results. The first column
shows the subsystems in the platform. Each cost constraint
(Costmax) has two columns. The Solution column indicates
tolerance strategies used on the corresponding subsystem.
The Reliability column gives the subsystem reliability that
corresponds to the strategy which was applied. The platform
reliability and the average computation time per simulation
run of each cost constraint are shown in the lower half of
the table. For example, no component redundancy is allowed
for a system cost of 400. Such system overall reliability is
0.889473, it means that the system can be operating without

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: A selection of optimal results obtained for different cost constraints.
Costmax = 400 Costmax = 750 Costmax = 1100 Costmax = 1800

Subsystem Solution Reliability Solution Reliability Solution Reliability Solution Reliability
PPE Processor 1 1 0,96136 2 0,994641 2 0,994641 3 0,998457

PPE Processor 2 1 0,96418 1 0,96418 2 0,995247 3 0,998565

Memory Local 1 0.9860 2 0,998418 2 0,998418 3 0,998973

Memory Global 1 0.9870 1 0.9870 2 0,998498 2 0,998498

DPE Controller 1 0.9900 1 0.9900 1 0,9900 2 0,998702

Communication Bus 1 0.9960 1 0.9960 1 0.9960 2 0,998952

Platform
Ave. time Reliability Ave. time Reliability Ave. time Reliability Ave. time Reliability
14,6235 0,889473 6,52861 0,931855 8,5676 0,973085 11,8545 0,992173

fault after a mission with a probability of 88.95%. As well as
the average simulation time of this case is 14, 62 seconds.
Note that the run time in the constraint of 400 is highest
because the optimization process wastes many times to look
for a neighborhood solution.

When the cost budget is increased to 750, this makes
possible to use TMR in some subsystems, thus increasing
the system reliability. When the cost budget is set to 1100,
most of the subsystems are applied TMR and the platform
reliability reaches 0.973085. With a cost budget of 1800,
the results indicate that all subsystems are applied the fault
tolerance and the most reliable strategy (3-out-of-5) is used.
With this cost budget, the platform can reach more than 99%
of reliability in a mission time from the beginning. Thus, the
platform reliability is improved by 11% compared with the no-
tolerance case. The run time increases when its cost constraint
is widened. Because the smaller the cost constraint is, the
smaller the space of satisfied designs is. So the best solution
was found earlier.

In summary, results from the Table IV shows that, for each
cost budgets, our tool finds a fault tolerance solution with the
best level of reliability.

V. CONCLUSION AND FUTURE WORKS

Design space exploration under constraints is an important
topic in computer architecture, especially with new MPSoCs
which can comprise a large number of subsystems. However,
up to now, no approach has taken into account the overall
system reliability.

In this paper, we propose a DSE approach that is based on
meta-model in which we have integrated the elements of the
fault-tolerance. This enables the use of an SA optimization
algorithm to select the most efficient architecture in terms
of system cost and reliability. We apply our proposal on
an example of SoC and present the results. We showed
substantial (11%) improvement of the reliability of the con-
sidered platform. It can be concluded that our meta-model
provides a satisfactory foundation for modeling an MPSoC
platform. Besides, we also design a modeling tool integrating
a reliability model to illustrate the ability of the meta-model
in the reliability optimization process.

In this paper, we have focused on simple fault-tolerance
strategies with a toy example to illustrate the novelty of the
proposed meta-model. Future work will consider several other
strategies in association with different types of subsystems
(Recovery Block, Error Detection/Correction Coding, Hybrid).

Moreover, the DSE process will also consider the application
structure and optimization of the mapping between an appli-
cation and a platform.

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of techniques for modeling and
improving reliability of computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 4, pp. 1226–1238, 2016.

[2] S. Assar, “Model driven requirements engineering: mapping the field
and beyond,” in Model-Driven Requirements Engineering Workshop
(MoDRE), 2014 IEEE 4th International. IEEE, 2014, pp. 1–6.

[3] R. B. Atitallah, L. Bonde, S. Niar, S. Meftali, and J.-L. Dekeyser,
“Multilevel mpsoc performance evaluation using mde approach,” in
System-on-Chip, 2006. International Symposium on. IEEE, 2006, pp.
1–4.

[4] L. Bondé, C. Dumoulin, and J.-L. Dekeyser, “Metamodels and mda
transformations for embedded systems,” in Advances in design and
specification languages for SoCs. Springer, 2005, pp. 89–105.

[5] J. Huang, S. Barner, A. Raabe, C. Buckl, and A. Knoll, “A framework for
reliability-aware embedded system design on multiprocessor platforms,”
Microprocessors and Microsystems, vol. 38, no. 6, pp. 539–551, 2014.

[6] M. F. d. S. Oliveira, “Model driven engineering methodology for design
space exploration of embedded systems,” 2013.

[7] Z. J. Jia, A. Núñez, T. Bautista, and A. D. Pimentel, “A two-phase
design space exploration strategy for system-level real-time application
mapping onto mpsoc,” Microprocessors and Microsystems, vol. 38,
no. 1, pp. 9–21, 2014.

[8] F. R. Wagner, F. A. Nascimento, and M. F. Oliveira, “Model-driven
engineering of complex embedded systems: Concepts and tools,” Porto
Alegre, RS: Institute of Informatics, Federal University of Rio Grande do
Sul (UFRGS)/Cooperative Computing and Communication Laboratory
(C-LAB), University of Paderborn, Paderborn, Germany, 2011.

[9] R. Soltani, “Reliability optimization of binary state non-repairable
systems: A state of the art survey,” International Journal of Industrial
Engineering Computations, vol. 5, no. 3, pp. 339–364, 2014.

[10] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Survey of fault tolerance
techniques for shared memory multicore/multiprocessor systems,” in
Design and Test Workshop (IDT), 2011 IEEE 6th International. IEEE,
2011, pp. 12–17.

[11] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-
level reliability modeling for mpsocs,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. ACM, 2010, pp. 297–306.

[12] P. Kapur, H. Pham, A. Gupta, and P. Jha, Software reliability assessment
with OR applications. Springer, 2011.

[13] D. W. Coit, N. Chatwattanasiri, N. Wattanapongsakorn, and A. Konak,
“Dynamic k-out-of-n system reliability with component partnership,”
Reliability Engineering & System Safety, vol. 138, pp. 82–92, 2015.

[14] M. Rausand, H. Arnljot et al., System reliability theory: models, sta-
tistical methods, and applications. John Wiley & Sons, 2004, vol.
396.

[15] K.-L. Du and M. Swamy, Search and Optimization by Metaheuristics.
Springer, 2016.

[16] W. Ben-Ameur, “Computing the initial temperature of simulated anneal-
ing,” Computational Optimization and Applications, vol. 29, no. 3, pp.
369–385, 2004.

[17] M.-W. Park and Y.-D. Kim, “A systematic procedure for setting pa-
rameters in simulated annealing algorithms,” Computers & Operations
Research, vol. 25, no. 3, pp. 207–217, 1998.

Authorized licensed use limited to: CEA. Downloaded on April 27,2022 at 08:27:19 UTC from IEEE Xplore. Restrictions apply.

