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 

Abstract— Riemannian geometry has been found accurate 

and robust for classifying multidimensional data, for instance, in 

brain-computer interfaces based on electroencephalography. 

Given a number of data points on the manifold of symmetric 

positive-definite matrices, it is often of interest to embed these 

points in a manifold of smaller dimension. This is necessary for 

large dimensions in order to preserve accuracy and useful in 

general to speed up computations. Geometry-aware methods try 

to accomplish this task while respecting as much as possible the 

geometry of the original data points. We provide a closed-form 

solution for this problem in a fully unsupervised setting. 

Through the analysis of three brain-computer interface data 

bases we show that our method allows substantial dimensionality 

reduction without affecting the classification accuracy. 

 

I. INTRODUCTION 

Classification methods based on Riemannian geometry 

have been recently shown to be robust and accurate, for 

instance in computer vision [1] and in brain-computer 

interface based on electroencephalographic data [2]. Given a 

set of K data point Ck, k:1,…,K, in the manifold of N×N 

symmetric positive-definite (SPD) matrices, we are interested 

in the problem of unsupervised, ‘geometry-aware’ embedding 

of these points on a SPD manifold of smaller dimension. 

Unsupervised refers to the fact that we do not assume 

knowledge of anything else but the input points, for instance, 

class labels, often available for a training data set in machine 

learning applications. Geometry-aware has been used recently 

in the literature to suggest that the embedding should respect 

as much as possible the geometrical structure of the data 

points [3-6]. The problem is relevant for at least two reasons: 

- When observed SPD matrices have high-dimension, they 

may be badly conditioned with respect to inversion, that is, 

their smallest eigenvalues are close to zero, jeopardizing the 

numerical stability of all Riemannian geometry 

manipulations, which are based on spectral functions of the 

eigenvalues such as the logarithm, inverse, etc. [7]. 

 

- Working in the original high-dimensional space is 

computationally expensive or even impossible for very 

high dimensions; dimensionality reduction may be 

necessary or desirable for computational reasons. In the era 

of Big Data, this concern is increasingly relevant. 
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The problem is related to a long-lasting one in signal 

processing and machine learning, where in different contexts 

it can be found under the name of dimensionality (or sub-

space) reduction, model identification, data compression, 

multidimensional scaling and manifold learning. Ideally, one 

expect that the data points lie on some hyperplanes of the 

N×N matrix manifold, therefore some dimensions can be 

eliminated without losing information. In practice this may be 

the case at best approximately because of noise and estimation 

errors, thus the identification of an appropriate sub-dimension 

is to be cast as an optimization problem by means of a 

functional representing the amount of lost information. In this 

work the information of interest is the geometry of the 

observations. Traditionally, in signal processing subspace 

reduction is performed by PCA (or whitening) applied on the 

arithmetic average of the matrix set, however PCA is not 

geometry-aware, nor it is robust to noise. Several 

improvements of the PCA (robust/kernel PCA) have been 

proposed and some recent ones try to exploit geometrical 

information, in line with recent advances on Riemannian 

geometry. This article aims at contributing to this latter 

framework. 

Let hereafter ON,P indicate the set of all N×P matrices with 

P<N orthonormal columns. The general problem is to find a 

matrix ZON,P so as to obtain the embedding in the sub-

manifold via transformation ZTCkZ, for all k:1,…,K. The 

orthonormality of the columns of Z ensures that the resulting 

matrices are SPD [3-6]. In an unsupervised context it has been 

proposed to maximize the following functional [4-5]:  
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where δ(·,·) is a suitable distance function in the SPD 

manifold for the two arguments, like the natural Riemannian 

(affine-invariant) distance and M is a center of mass of the 

points. Given a pair of N×N-dimensional matrices on the SPD 

manifold, the natural Riemannian distance is the length of the 

geodesic (shortest path) joining them. It is given by 
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where n(), with n:1,…,N, denotes the nth eigenvalue of the 

argument. Let us remind here that such distance is invariant 

by congruence, that is, 

   , , :   non-singular.
T T

i j i jC C B C B B C B B    (3) 

Optimization (1) amounts to maximizing the variance 

(dispersion) around the mean, analogously to a classical 

compression by a principal component analysis (PCA). While 

the idea of emulating PCA in a Riemannian context appears 

relevant, optimizing (1) does not guarantee that the 

geometrical structure of the points is preserved. For instance, 

switching the position of any two points on the manifold 

leaves the variance unchanged, but disrupts dramatically the 

geometrical structure. Furthermore, the variance is sensitive 

to outliers and noisy points, as it is well known. In order to 

remediate to the last drawback, [6] has proposed to estimate 

M for each Ck as the center of mass of a number of points in 

its neighborhood. Such procedure may indeed be resistant to 

outliers, still, there is no guarantee to preserve the original 

geometrical structure, in that distinct neighborhoods of points 

may be projected in arbitrary positions of the embedding 

manifold. Importantly, all methods discussed so far try to 

optimize the sought matrix Z given a center of mass M in the 

embedding manifold (or several local centers of mass), but in 

the search the actual value of M depends on Z. 

 

II. METHOD 

Let us consider the set of K²-K index pair {i,j} for 

i,j=1,…,K and i≠j. so that asymmetric divergences can also 

be used instead of (2), and the set of non-negative weights 

1,  .ij ij jii j
w w w
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In this work we analyze the following functional 
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which consider all pair-wise distances between points in the 

original and embedded manifold and try to minimize their 

mismatch. Any two points Ci and Cj in the Riemannian SPD 

manifold verify inequality (Ci, Cj)(ZTCiZ, ZTCjZ), thus (5) 

is nullified only when the geometric structure of the data 

points in the embedded manifold is globally identical to the 

original, out of rotations and/or translation of axes, despite 

Q=N-P axes have been eliminated. We may of course write 

(5) more simply as 
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showing that criterion (5) maximizes the dispersion of the 

points in the embedding manifold, like the criteria considered 

previously such as (1), albeit unlike them it does not need the 

approximation of one or several centers of mass on the 

embedding manifold. Previous works treating problem (1) 

have proceeded iteratively by Riemannian optimization 

methods on the Grassmann manifold [3-5] or other 

optimization methods on the orthonormal group [6]. In 

contrast to these previous geometry-aware attempts, here we 

show that the solution to problem (6) can be approximated by 

a symmetric eigenvalues problem in closed form. Our goal is 

to offer hereby a simple general framework for Riemannian 

sub-manifold embedding. 

 

Given K input points functional (6) involves the evaluation 

of (K²-K)/2 distances, which is problematic for high-K 

problems. Also, like (1), it is sensitive to outliers because it 

considers distances among all single points. In this study we 

also investigate the idea of applying functional (6) not on the 

K input points Ck directly, but on a random subset of them or 

on L<K centers of mass bootstrapped from them. This way 

the complexity of the problem decreases from K² to L², and 

typically one can find a suitable L for a given data set, no 

matter how large K is. Furthermore, the influence of outliers 

is considerable lessened evaluating (6) on the L means instead 

that on all single points because the Riemannian geometric 

mean is resistant to outliers [2]. In general, we may prefer to 

set conveniently the number of bootstrapped means L and 

compute the mean on only a few points, so at to guarantee that 

the bootstrapped means are sufficiently dispersed in the 

manifold, providing enough geometrical information. 

 

The natural Riemannian distance (2) is a non-linear 

function of the eigenvalue of Ci
-½Cj Ci

-½. For any pair of 

matrices {Ci, Cj} let us define matrix 
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where Log() denotes the matrix logarithm of the argument 

and notice that for input data transformed by any orthogonal 

matrix B such as 
T

k kC B C B , the matrices Sij are transformed 

accordingly such as 
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Eq. (8) shows that we can work directly on matrices Sij, i.e., 

rotations with optimal properties on matrices Sij can be 

applied to the original points Ck. When square matrix B is 

replaced by rectangular matrix Z, (8) will hold only 

approximatively, which is why our method yields an 

approximate solution. The squared natural Riemannian 

distance (2) ²(Ci, Cj) is the trace of Sij. The total (weighted) 

squared distance across all i,j pairs is the trace of  

 ,ij iji j
S w S


  (9) 

thus, using well-known extremal properties of eigenvalues, 

the maximization of the total squared distance (6) is obtained 

by the P eigenvectors of S associated to its P largest 

eigenvalues; the problem is the distance-based analogous to a 



  

dimensionality reduction by PCA, where instead of retaining 

the maximum of the energy of the points we retain the 

maximum of their dispersion on the manifold. The algorithm, 

named RME (Riemannian Manifold Embedding), follows: 

 
  

III. RESULT 

Fig. 1 shows the typical inter-distance matrix obtained by 
applying dimensionality reduction via PCA, RME and RME 
applied on bootstrapped means (bmRME). In all simulations 
we have performed, as the one pictured in Fig. 1, the RME 
method is the best in preserving the inter-distances among all 
points, followed by bmRME and PCA. 

 

Figure 1.  Typical result of applying dimensionality reduction. 30 random 

SPD matrices of dimension 8x8 were created with the model proposed in [8], 
using therein SNR=0.1 and 6 as signal dimension (signal subspace). Each 

plot is a heat map of an inter-distance matrix, i.e., the matrix holding all pair-

wise Riemannian distances (2) among the 30 original matrices of dimension 
8x8 (leftmost plot) and the 6x6 reduced matrix by, in the order, PCA, RME 

and RME applied on 15 means bootsrapped using 4 matrices at each bootstrap 

(bmRME). The darker the color, the higher the distance (zero on diagonal). 

We compared the classification accuracy obtained by 

dimensionality reduction methods PCA, RME, bmRME and 

HRD (acronym of the author) [4], which are all unsupervised, 

to the classification accuracy obtained in the original 

manifold. We used three brain-computer interface data sets 

based on electroencephalography (EEG). As classifier we 

used the Riemannian minimum distance to mean (MDM) [9].  

The first data set is about motor imagery. It is available at 

the Physionet website and comprises EEG recordings on 64 

electrodes from 109 subjects [10]. We only used the data from 

tasks of imagined hands and feet movement (2-class 

problem), which yielded approximately 44 trials per subject 

(22 for each class). As only pre-processing, we filtered the 

EEG signals in the 8-30 Hz frequency band-pass by a 5-th 

order butterworth IIR filter and considered each trial as a 

segment from 0.5 to 2.5s after trial onset. From these 

segments, sample covariance matrices were estimated and 

used as input points. The accuracy obtained by MDM in the 

original manifold (N=64) vs. the accuracy obtained by MDM 

in the embedded manifold (P=24) according to methods HRD, 

PCA, RME and bmRME, is shown for each subject as dots in 

Fig. 2.  

The second data set comes from EEG experiments 

performed in out laboratory on the P300-based game Brain 

Invaders [11]. We used data on 32 electrodes from 48 

subjects. A total of 720 trials were available (120 target and 

600 non-target). Of those, a random subset of 180 trials were 

used (30 target and 150 non-target). Data was filtered in the 

band-pass region 1-20 Hz by a 5-th order butterworth IIR 

filter. Each trial had a duration of one second starting right 

after a flash. We used the approach described in [12] to 

estimate a special form of covariance matrix, suiting signals 

containing event-related potentials and we performed the 

same comparison as for the previous database (with P=24). 

This analysis (Fig. 3) and the analysis obtained for all avilable 

trials (720 trials, data not shown) suggest the following 

conclusions: i.) when the sample size is small, sub-space 

reduction methods can overall improve the performance and 

ii.) there is a trend for such improvement to concern subjects 

with medium to high performance, while the opposite trend 

emerges for low-performance subjects. 

 

Figure 2.  Scatter plot of single-subject accuracy (109 subjects, motor 

imagery) obtained with no dimensionality reduction (MDM) vs. 
HRD+MDM, PCA+MDM, RME+MDM, bmRME+MDM (all with P=24). 

For bmRME, 50 means of 5 points were bootstrapped. A linear regression 

line has been fitted to the obtained points forcing the intercept to be zero 
(dotted line). As reference, the area below a line with slope 1.0 is shaded. The 

value of the slopes obtained is printed on the plots. All slopes are higher then 

1.0, but none in a statistically significant way (p>0.05).  

We also analyzed a third data set (Motor Imagery), the one 

of the BCI competition IV (2a) [13]. It comprises EEG 

recordings from 9 subjects on only 22 electrodes sampling 

only the superior part of the head, thus reducing the dimension 



  

for this data may not be appropriate. We used only tasks 

corresponding to imagination of right hand and feet 

movements (2-class problem). The dataset is composed of 

two recording sessions of 144 trials per subjects (72 per 

classes). The first session was used as training, and the second 

session was used for results evaluation (cross-session 

learning). As only pre-processing, we filtered the data in the 

8-35Hz frequency band-pass using a 5-th order butterworth 

bandpass IIR and a segmentation from 3.5 to 5.5 second after 

the cue onset. The results in term of mean accuracy are shown 

in Fig. 4: as soon as P is lowered from 22 to 18 the accuracy 

degrades, but less so using HRD and RME as compare to 

using bmRME and, even more, PCA. 

 

Figure 3.  Scatter plot of the single-subject area under the ROC curve (AUC, 

48 subjects, P300) obtained with no dimensionality reduction (MDM) vs. 

HRD+MDM, PCA+MDM, RME+MDM, bmRME+MDM (P=24). For 

bmRME, 50 means of 5 points were bootstrapped. See caption of Fig.2. All 

observed slopes are significantly higher then 1.0 (p<0.001), showing that all 

reduction methods perform better as compared to MDM in the original space. 
This effect disappears if we consider all 720 available trials (data not shown), 

i.e., all slopes in this case are not different from 1.0.  

 

Figure 4. Mean accuracy across the 9 subject as a function of number of 

components (P), the sub-space dimension, for the 2-class classification 

problem of data set BCI competition IV 2a. The straight line indicates the 
accuracy with no dimensionality reduction (constant across values of P) and 

the curves the mean accuracy obtained with P=3, 6,…,21, for data reduced 

by HRD [4], PCA, RME and bmRME. For bmRME, 20 means of 3 points 
were bootstrapped. 

IV. CONCLUSION  

We have proposed a closed-form solution for the problem 

of unsupervised geometry-aware sub-manifold embedding 

for the manifold of symmetric positive-definite matrices. The 

resulting method, RME (Riemannian Manifold Embedding) 

and the extension based on bootstrapped means allow 

dimensionality reduction with no loss of classification 

accuracy in the three brain-computer interface data bases we 

have analyzed, as long as the sub-dimension is not 

underestimated.  The advantage of these and the previously 

published geometry-aware method [4] over a principal 

component analysis does not appear dramatic, but it is 

appreciable for small dimensions. Further research should 

establish under what conditions geometry-aware methods are 

advantageous, both theoretically and in practice. 

 

Geometry-aware Riemannian manifold learning is a recent 

research direction. The general method we have proposed is 

by far the most simple currently available. It is also general, 

in that it is unsupervised, thus it can be used on any kind of 

data and not only for classification purposes. 
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