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Abstract:	There	 is	no	consensus	 in	 literature	about	 lifespan	brain	maturation	and	senescence,	
mainly	because	previous	lifespan	studies	have	been	performed	on	restricted	age	periods	and/or	
with	 a	 limited	 number	 of	 scans,	making	 results	 instable	 and	 their	 comparison	 very	 difficult.	
Moreover,	the	use	of	non-harmonized	tools	and	different	volumetric	measurements	 lead	to	a	
great	 discrepancy	 in	 reported	 results.	 Thanks	 to	 the	 new	 paradigm	 of	 BigData	 sharing	 in	
neuroimaging	and	the	 last	advances	 in	 image	processing	enabling	to	process	baby	as	well	as	
elderly	scans	with	the	same	tool,	new	insights	on	brain	maturation	and	aging	can	be	obtained.	
This	study	presents	brain	volume	trajectory	over	the	entire	lifespan	using	the	largest	age	range	
to	date	(from	few	months	of	life	to	elderly)	and	one	of	the	largest	number	of	subjects	(N=2944).	
First,	we	found	that	white	matter	trajectory	based	on	absolute	and	normalized	volumes	follows	
an	inverted	U-shape	with	a	maturation	peak	around	middle	life.		Second,	we	found	that	from	1	
to	8-10y	there	is	an	absolute	gray	matter	(GM)	increase	related	to	body	growth	followed	by	a	
GM	 decrease.	 However,	 when	 normalized	 volumes	 were	 considered,	 GM	 continuously	
decreases	 all	 along	 the	 life.	 Finally,	 we	 found	 that	 this	 observation	 holds	 for	 almost	 all	 the	
considered	subcortical	structures	except	for	amygdala	which	is	rather	stable	and	hippocampus	
which	 exhibits	 an	 inverted	U-shape	with	 a	 longer	maturation	 period.	 By	 revealing	 the	 entire	
brain	 trajectory	 picture,	 a	 consensus	 can	 be	 drawn	 since	 most	 of	 the	 previously	 discussed	
discrepancies	can	be	explained.	

Introduction		
 
Brain development and aging are key topics in neuroscience. The study of normal 
brain maturation and age-related brain atrophy is crucial to better understand normal 
brain development and a large variety of neurological disorders. With the rise of the 
population age, it is becoming increasingly important to understand the cognitive 
changes that accompany aging, both normal and pathologic. Moreover, analyzing 
brain maturation and senescence during the entire lifespan may help to better 
understand the undergoing process on normal brain development and aging.    
 
                                                
* Data used in preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 
investigators within the ADNI contributed to the design and implementation of ADNI 
and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf  
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Despite the large number of studies dedicated to brain trajectory analysis over the 
last decades, an important disagreement remains between existing results (Walhovd, 
Westlye et al. 2011, Walhovd, Fjell et al. 2016). Some studies described early life 
increase of gray matter (GM) volumes followed by a decrease (Giedd, Blumenthal et 
al. 1999, Lenroot, Gogtay et al. 2007, Raznahan, Shaw et al. 2011) while other works 
described GM decrease all along the lifespan (Ostby, Tamnes et al. 2009, Brain 
Development Cooperative 2012, Aubert-Broche, Fonov et al. 2013, Ducharme, 
Albaugh et al. 2016, Mills, Goddings et al. 2016). An extensive review of these 
inconstancies can be found in Walhovd et al. (2016). For white matter (WM) the 
picture is inverted, with a consensus for the early life period characterized by an 
increase. However, less consistent effect of age in adulthood has been reported 
(Jernigan, Baaré et al. 2011, Fjell, McEvoy et al. 2014). In addition, time of brain 
maturation is also different according to the studies (Groeschel, Vollmer et al. 2010, 
Hedman, van Haren et al. 2012). Discrepancies also exist for the shape of 
trajectories for cortical and subcortical structures, sometimes described as linear, U-
shaped (curvilinear) or as more complex polynomial curves. Finally, sometimes 
sexual dimorphism is described in these studies and sometimes no gender difference 
is observed (Giedd, Blumenthal et al. 1999, Suzuki, Hagino et al. 2005, Lenroot, 
Gogtay et al. 2007, Lenroot and Giedd 2010). The lack of consensus on brain 
development and aging prevents us to better understand these highly complex and 
multi-factor phenomena. The significant divergence between existing results is due to 
many factors.  
 
First, the use of restricted life periods (e.g., childhood (Brain Development 
Cooperative 2012), adolescence (Lenroot and Giedd 2010, Vijayakumar, Allen et al. 
2016), adulthood (Ziegler, Dahnke et al. 2012), etc.) makes difficult the comparison 
of results, and tends to favor simple models capturing only brain growth or aging. 
Thus, it prevents global understanding of brain modification across the entire 
lifespan. Up to now, no study covered the entire lifespan including babies from few 
months of life to elderly older than 90. 
 
Second, the use of a limited number of scans for certain age range (especially at 
childhood) may produce unstable results limiting the reproducibility and accuracy of 
estimations. The large majority of previous studies used less than 100 subjects 
(Walhovd, Westlye et al. 2011), some studies used several hundreds of subjects 
(Giedd and Rapoport 2010, Brain Development Cooperative 2012, Ziegler, Dahnke 
et al. 2012, Mills, Goddings et al. 2016) and very few studies used more than 1000 
subjects (Fjell, Westlye et al. 2013, Potvin, Mouiha et al. 2016). 
 
In addition, the use of non-harmonized acquisition protocols, segmentation tools, 
labelling protocols (Walhovd, Fjell et al. 2016) and volumetric measurements such as 
absolute volume (Brain Development Cooperative 2012), normalized volumes using 
intracranial volume (Good, Johnsrude et al. 2002, Mills, Goddings et al. 2016), GM 
volume (Ziegler, Dahnke et al. 2012) or z-scores (Ostby, Tamnes et al. 2009, 
Walhovd, Westlye et al. 2011), lead to a great discrepancy in reported results 
(Walhovd, Westlye et al. 2011). Moreover, some studies are based on cross-
sectional data while others on longitudinal ones. Consequently, this heterogeneity 
makes difficult the definition of normative values (Potvin, Mouiha et al. 2016) 
stressing the need of using harmonized protocols over large samples covering the 
entire lifespan. 
 
Finally, the use of an exigent quality control in the whole measurement process plays 
a major role in the quality of the final estimated brain models. This step is often not 
considered enough, while the model estimation greatly depends on a careful quality 
control (Ducharme, Albaugh et al. 2016).  
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Therefore, one of the most important challenges in neuroscience is to provide a 
consensual and unified vision of brain maturation and aging. In this study, we have 
addressed the previously mentioned limiting factors. First, thanks to the new 
paradigm of BigData sharing in neuroimaging (Poldrack and Gorgolewski 2014), we 
have been able to use a very high number of samples (N=3296) covering the largest 
lifespan period never studied (from few months to advanced age). Moreover, all the 
considered MRI scans obtained from several freely available databases were 
processed using the same advanced MRI processing pipeline (Manjon and Coupe 
2016). Thanks to the last advances in image processing, images from different age 
ranges can be analyzed with the same tool. To get insight on brain maturation and 
aging at global (i.e., absolute volume) and brain scale (i.e., normalized volume), we 
have extensively analyzed our results using absolute volumes and relative volumes 
(normalized by Total Intracranial Volume, TIV). Moreover, to prevent the estimated 
models to be affected by wrongly processed images (Ducharme, Albaugh et al. 
2016), we have used a demanding three stages quality control process. Finally, to be 
able to present a unified analysis of brain development and brain aging at the same 
time we considered hybrid models. Contrary to previous studies based on linear or 
low order polynomial models, we considered models enable to capture fast growth 
and complex degenerative processes. This is achieved by combining cumulative 
exponential function to model rapid growth with saturation resulting from maturation 
and low order polynomial function to model volume decrease caused by aging. 
 
By putting all these elements together, we are able to show for the first time a global 
picture of brain trajectory across the entire lifespan. Our results suggest that most of 
the previous marked disagreements can be explained by the proposed analysis. 
Previous divergences seem mainly to result from restricted investigations over short 
periods of the entire life history. Indeed, as shown in the following, the analysis of 
subjects bellow 8 years of age is important to detect the maturation peak. Similarly, 
the analysis of subjects older than 80 years is necessary to observe the accelerated 
atrophy occurring at this age. We hope that the proposed unified analysis will help to 
reach a consensus on normal brain trajectory. 

Material and Methods 
Datasets	
 
In this study, we used 3D T1-weight MRI obtained from nine freely available 
databases covering the entire lifespan. All the considered subjects are normal 
controls. The summary of used databases is detailed in Table 1 while details are 
provided latter in this section. The used images have been acquired on 1.5T and 3T 
over 103 sites. After quality control, 2944 MRI were kept from the 3296 considered 
subjects. The gender proportion of these selected subjects is 47% of female. The 
covered age starts from 9 months to 94 years, with an average age of 39.65 year 
and a standard deviation of 26.62. 
 
Figure 1 shows the age distribution of the used subjects after quality. At least three 
different datasets are used for all the considered periods except for extreme ages 
(i.e., [0-4] year and [90-94] year) where only 2 datasets are available. Moreover, 
more than 50 subjects by 5-years interval are used at the exception of the last [90-
94] interval. 
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Table 1: Dataset description. This table provides the name of the dataset, the MR acquisition 
configuration, the number of considered image before and after QC, the gender proportion 
after QC and the average mean, standard deviation in parentheses and the interval in 
brackets. 

DATASET Acquisition Before 
QC 

After 
QC 

Gender  
after QC 

Age in years  
after QC 

C-MIND  
 

1 site with 3T MR 
scanner 

266 236 F = 129 
M =107 

8.44 (4.35) 
[0.74-18.86] 

NDAR  10 sites with 1.5T 
and 3T MR scanner 

612 382 F = 174 
M = 208  

12.39 (5.94) 
[1.08-49.92] 

ABIDE  20 sites with 3T MR 
scanner 

528 492 F = 84 
M = 408  

17.53 (7.83) 
[6.50-52.20] 

ICBM  1 sites with 1.5T MR 
scanner 

308 294 F = 142 
M = 152  

33.75 (14.32) 
[18-80] 

IXI  3 sites with 1.5T and 
3T MR scanner 

588 573 F = 321 
M = 252 

49.52 (16.70) 
[20.0- 86.2] 

OASIS  1 sites with 1.5T MR 
scanner 

315 298 F = 187 
M = 111  

45.34 (23.82) 
[18 - 94] 

AIBL 2 sites with 1.5T and 
3T MR scanners 

236 233 F = 121 
M =112  

72.24 (6.73) 
[60 - 89] 

ADNI 1 51 sites with 1.5T 
MR scanner 

228 223 F = 108 
M = 115 

75.96 (5.03) 
[60 – 90] 

ADNI 2  14 sites with 3T MR 
scanners 

215 213 F = 113 
M = 100  

74.16 (6.39) 
 [56.3 - 89] 

Total 103 sites with 1.5T 
and 3T scanners 

3296 2944 F =1379 (47%) 
M = 1565 (53%)  

39.65 (26.62) 
[0.74 - 94] 

 
In the following, more details about the different datasets used in this study are 
presented. 
 
• C-MIND (N=266, after QC N=236): The images from the C-MIND dataset 

(https://research.cchmc.org/c-mind/) used in this study consist of 266 control 
subjects. All the images were acquired at the same site on a 3T scanner. The 
MRI are 3D T1-weighted MPRAGE high-resolution anatomical scan of the entire 
brain with spatial resolution of 1 mm3 acquired using a 32 channel SENSE head-
coil.  

• NDAR (N=612, after QC N=382):  The Database for Autism Research (NDAR) is 
a national database funded by NIH (https://ndar.nih.gov). This database included 
13 different cohorts acquired on 1.5T MRI and 3T scanners. In our study we used 
415 images of control subjects from the NIHPD 
(http://www.bic.mni.mcgill.ca/nihpd/info/data_access.html) dataset and 197 
images of control subjects from the Lab Study 19 of National Database for Autism 
Research. For the NIHPD, T1-weighted images were acquired at six different 
sites with 1.5 Tesla systems by General Electric (GE) and Siemens Medical 
Systems. The MRI are 3D T1-weighted spoiled gradient recalled (SPGR) echo 
sequence with following parameters: TR = 22–25 ms, TE = 10–11 ms, flip angle 
= 30◦, FoV = 256 mm IS × 256 mm AP, matrix size = 256 × 256: 1 × 1 × 1 mm3 
voxels, 160–180 slices of sagittal orientation. The participants chosen from the 
Lab Study 19 of National Database for Autism Research (NDAR) were scanned 
using a 3T Siemens Tim Trio scanner at each site. The MRI are 3D MPRAGE 
sequence (voxel dimensions : 1.0 × 1.0 × 1.0 mm3; image dimensions: 160 × 224 
× 256, TE = 3.16 ms, TR = 2400 ms). 

• ABIDE (N=528, after QC N=492): The images from the Autism Brain Imaging 
Data Exchange (ABIDE) dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) 
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used in this study consist of 528 control subjects acquired at 20 different sites on 
3T scanner. The MRI are T1-weight MPRAGE image and the details of 
acquisition, informed consent, and site-specific protocols are available on the 
website. 

• ICBM (N=308, after QC N=294): The images from the International Consortium 
for Brain Mapping (ICBM) dataset (http://www.loni.usc.edu/ICBM/) used in this 
study consist of 308 normal subjects obtained through the LONI website. The 
MRI are T1-weighted MPRAGE (fast field echo, TR = 17 ms, TE = 10 ms, flip 
angle = 30 °, 256×256 matrix, 1 mm2 in plane resolution, 1 mm thick slices) 
acquired on a 1.5T Philips GyroScan imaging system (Philips Medical Systems, 
Best, The Netherlands). 

• OASIS (N=315, after QC N=298): The images from the Open Access Series of 
Imaging Studies (OASIS) database (http://www.oasis-brains.org) used in this 
study consist of 315 control subjects. The MRI are T1-weighted MPRAGE image 
(TR = 9.7 ms, TE = 4 ms, TI = 20 ms, flip angle = 10 degrees, slice thickness = 
1.25 mm, matrix size = 256×256, voxel dimensions = 1×1×1.25 mm3 resliced to 1 
mm3, averages = 1) acquired on a 1.5-T Vision scanner (Siemens, Erlangen, 
Germany). 

• IXI (N=588, after QC N=573): The images from the Information eXtraction from 
Images (IXI) database (http://brain-development.org/ixi-dataset/ ) used in this 
study consist of 588 normal subjects. The MRI are T1weighted images collected 
at 3 sites with 1.5 and 3T scanners (FoV = 256 mm × 256 mm, matrix size = 
0.9375 × 0.9375 × 1.2 mm3). 

• ADNI1 (N=228, after QC N=223): The images from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu ) used in this 
study consist of 228 control subjects from the 1.5T baseline collection. These 
images were acquired on 1.5T MR scanners at 60 different sites across the 
United States and Canada. A standardized MRI protocol to ensure cross-site 
comparability was used. Typical MRI are 3D sagittal MPRAGE (repetition time 
(TR): 2400 ms, minimum full TE, inversion time (TI): 1000 ms, flip angle: 8°, 24 
cm field of view, and a 192×192×166 acquisition matrix in the x-, y-, and z- 
dimensions, yielding a voxel size of 1.25×1.25×1.2 mm3, later reconstructed to 
get 1 mm3 isotropic voxel resolution). 

• ADNI2 (N=213): The images from the ADNI2 database (second phase of the 
ADNI project) consist of 215 control subjects. Images were acquired on 3T MR 
scanners with the standardized ADNI-2 protocol, available online 
(www.loni.usc.edu). Typical MRI are T1-weighted 3D MPRAGE sequence 
(repetition time 2300 ms, echo time 2.98 ms, flip angle 9°, field of view 256 mm, 
resolution 1.1 x 1.1 x 1.2 mm3). 

• AIBL (N=233): The Australian Imaging, Biomarkers and Lifestyle (AIBL) 
database (http://www.aibl.csiro.au/) used in this study consists of 236 control 
subjects. The imaging protocol was defined to follow ADNI’s guideline on the 3T 
scanner (http://adni.loni.ucla.edu/research/protocols/mri-protocols) and a custom 
MPRAGE sequence was used on the 1.5T scanner. 
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Figure 1: Age distribution of the used MRI after the quality control. Left: Age distribution for all the 
considered subjects. Right: Age distribution for child younger than 10 years old. Legend indicates the 
database color and the number of image after quality control. 

Image	processing	
 
All the images were processed with volBrain online software pipeline 
(http://volbrain.upv.es). The volBrain system is a fully open access academic 
platform that we have developed during the last 5 years. This web-based platform 
offers to freely share our computational resources and our last image processing 
methods to all researchers over the world. Therefore, we used volBrain in this study 
since we perfectly know the software, the generated reports facilitate a fast first stage 
QC and we recently demonstrated its robustness and accuracy (Manjon and Coupe 
2016). Recently, volBrain pipeline was compared with two well-known tools used on 
MR brain analysis (FSL and Freesurfer) showing significant improvements in terms 
of both accuracy and reproducibility for intra and inter-scanner scan rescan 
acquisition (Manjon and Coupe 2016). Moreover, we knew that the system was able 
to process large dataset since volBrain provides automatic brain volumetry in less 
than 15 minutes (including the generation of a pdf volumetry report summarizing the 
volumetric results). Since its deployment (2 years ago) volBrain has processed online 
more than 37.000 brains for more than 1200 users.  
 
The volBrain pipeline consists of a set of steps aimed to improve the quality of the 
MR images to analyze and to locate them in a common geometric and intensity 
space prior to perform segmentation at several anatomical levels (Manjon and Coupe 
2016). In more details, volBrain pipeline includes the following preprocessing steps: 
1) denoising using spatially adaptive non-local means (Manjon, Coupe et al. 2010), 
2) rough inhomogeneity correction using N4 method (Tustison, Avants et al. 2010), 
3) affine registration to MNI152 space using ANTS software (Avants, Tustison et al. 
2011), 4) SPM based fine inhomogeneity correction (Ashburner and Friston 2005) 
and 5) histogram based intensity standardization. After the preprocessing, the 
intracranial cavity is segmented using NICE method (Manjon, Eskildsen et al. 2014), 
tissue classification is performed using TMS method (Manjón, Tohka et al. 2010) and 
finally subcortical structures are estimated using an extended version of the non-local 
label fusion method (Coupe, Manjon et al. 2011). All the segmentation methods of 
volBrain use a library of 50 experts manually labelled cases (covering almost the 
whole lifespan) needed to perform the labeling process at different levels. More 
details can be found in (Manjon and Coupe 2016).  
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Statistical	Analysis	
 
The statistical analysis was performed with Matlabã software. In order to determine 
the best general models for each structure, several models were tested from the 
simplest to the most complex on all the dataset (i.e., female and male at the same 
time). A model is kept as a potential candidate only when F-statistic based on 
ANOVA for model vs. constant model is significant (p<0.05) and when all its 
coefficients are significant using t-statistic (p<0.05). At the end of the selection 
procedure, we used the Bayesian Information Criterion (BIC) to select the best model 
among models being significant compared to constant model and having all 
coefficients significant.  BIC provides a measure of the trade-off between bias and 
variance and thus select the model explaining most the data with minimum 
parameters. Afterwards, this general model type is applied on female and male 
separately to estimate gender specific models. At the end, to study trajectory 
difference in terms of volume and shape between both female and male, 𝛽"𝑆𝑒𝑥 +
	𝛽(𝑆𝑒𝑥. 𝐴𝑔𝑒 interactions are tested over the selected general model.  All the reported 
parameters (t-statistic, F-statistic, BIC and R2) were internally estimated by Matlabã 
using default parameters. The following models were considered as potential 
candidates: 
 

1. Linear model 
 

𝑉𝑜𝑙 = 𝛽0 +	𝛽1𝐴𝑔𝑒 + 	𝜀 
2. Quadratic model 

 
𝑉𝑜𝑙 = 𝛽0 +	𝛽1𝐴𝑔𝑒 + 𝛽3𝐴𝑔𝑒3 + 	𝜀 

3. Cubic model 
 

𝑉𝑜𝑙 = 𝛽0 +	𝛽1𝐴𝑔𝑒 + 𝛽3𝐴𝑔𝑒3 + 	𝛽4𝐴𝑔𝑒4 + 	𝜀 
 

4. Linear hybrid model: exponential cumulative distribution for growth with linear 
model for aging 

𝑉𝑜𝑙 = 𝛽5. 1 − 𝑒89:; <= + 𝛽0 +	𝛽1𝐴𝑔𝑒 + 	𝜀 
 

5. Quadratic hybrid model: exponential cumulative distribution for growth with 
quadratic model for aging 

 
𝑉𝑜𝑙 = 𝛽5. 1 − 𝑒89:; <= + 𝛽0 +	𝛽1𝐴𝑔𝑒 + 𝛽3𝐴𝑔𝑒3 + 	𝜀 

 
6. Cubic hybrid model: exponential cumulative distribution for growth with cubic 

model for aging 
 

𝑉𝑜𝑙 = 𝛽5. 1 − 𝑒89:; <= + 𝛽0 +	𝛽1𝐴𝑔𝑒 + 𝛽3𝐴𝑔𝑒3 + 	𝛽4𝐴𝑔𝑒4 + 	𝜀 
 
In the literature, structure trajectories have been mainly modeled using low order 
polynomial function (see (Walhovd, Westlye et al. 2011) for review). However, to 
follow structure trajectories across the entire lifespan, we propose to consider hybrid 
models able to track rapid growth during childhood and to capture complex volume 
decrease from adulthood to elderly. In the past, fast growth modelling occurring 
during childhood has been achieved using Poisson curve (Lebel, Gee et al. 2012) or 
Gompertz-like function (Makropoulos, Aljabar et al. 2016). Here, we propose to 
combine a cumulative exponential function in place of Gompertz-like function, and to 
combine it with low order polynomial function. At the end, our hybrid models can 
model fast growth process and complex volume decreases at the same time. 
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Quality	Control	
 
As recently shown, the quality control (QC) of image processing pipeline has a 
critical impact on trajectory results (Ducharme, Albaugh et al. 2016). Therefore, in 
this study we decided to use a demanding multi-stage QC procedure for a careful 
selection of the involved subjects. First, a visual assessment of input image quality 
was done for all considered subjects. This assessment was performed by checking 
screen shots of one sagittal, one coronal and one axial slice in middle of the 3D 
volume. This step led to remove 219 subjects from the 3296 considered subjects in 
our study (6.6%). Next, a visual assessment of the image processing quality for all 
remaining subjects was performed using volBrain reports (see an example of report 
here: http://volbrain.upv.es/example_report.pdf ). This report provides screenshots of 
one sagittal, one coronal and one axial slice at middle of the 3D volume for each step 
of the processing pipeline. All these steps (full head coverage including cerebellum, 
registration to MNI space, TIV extraction, tissue classification, subcortical structure 
segmentation, etc.) were carefully checked.  This step led to remove 83 subjects 
from our study (2.5%). Finally, a last control was performed by individually checking 
all outliers detected using estimated trajectories. A volume was considered as outlier 
when its value was higher/lower than 2 standard deviations of the estimated model. 
For each detected outlier, the segmentation map was opened and displayed over the 
MRI using a 3D viewer (Yushkevich, Piven et al. 2006). A careful inspection was 
performed over the 3D volume. In case of segmentation failure, the subject was 
removed from the study. This last QC step led to remove 50 subjects (1.5%). 
Therefore, 2944 of the 3296 considered subjects were kept after our QC procedure. 

Results 
Maturation and aging of brain tissues 
 
Global	gray	matter	and	white	matter	trajectories	
 
At the global scale (i.e., absolute volumes), we observe an increase of WM volume 
until 30-40y followed by a volume decrease (see Fig. 2). As it can be noticed, the 
WM growth at early ages is faster than the senescence at late ages. This is 
assessed by the selected hybrid model (p<0.001) combining an exponential 
cumulative distribution model for growth and a cubic model for aging (see Tab. 2). 
On the other hand, although the same model is selected for GM (p<0.0001), its 
trajectory is more complex. We can observe a 4-stage trajectory composed of a fast 
growth until 8-10y followed by a fast decrease until 40ys, then a plateau and finally 
an accelerated aging-related decrease is visible around 80ys. At the brain scale, 
when using normalized volumes in % to the TIV (see Supplementary Figure 1), the 
main difference is found for the GM trajectory. Indeed, at this scale, we observe a 
decrease of GM all along the lifespan (see Fig. 3) following a cubic model (p<0.0001) 
(see Tab. 3). The decrease of normalized volumes also follows a complex shape with 
3 stages composed of a rapid decrease from 0 to 20y, a plateau from 40 to 80y and 
a rapid decrease after 80y. It is interesting to note that despite the normalization, the 
WM growth remains very fast at the brain scale for early age with a hybrid model 
using an exponential cumulative distribution model for growth. Finally, at global and 
brain scales, we observe that WM have almost an inverted U-shape model although 
an asymmetry exists with a faster volume increase related to maturation than volume 
decrease caused by aging.   
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Figure 2: Volume trajectories based on absolute volume in cm3 for brain tissues and subcortical 
structures across the entire lifespan. These volume trajectories are estimated according to the age on 
2944 subjects from 9 months to 94 years. General model is in black, female model is in magenta and 
male model is in blue. Dots color represents the different datasets used in this study (see Fig. 1 for 
dataset color legend). 

Cortical	and	subcortical	gray	matter	trajectories	
 
To study trajectory differences between cortical and deep gray matter, we performed 
complementary analyses (see supplementary Tab. 1). First, we estimated the deep 
GM volume by adding the GM volume of the considered deep structures (i.e., 
caudate, thalamus, accumbens, globus pallidus, putamen, hippocampus and 
amygdala). The cortical GM was estimated as the global GM volume (as used in the 
paper) minus the deep GM volume. Figure 4 shows the estimated trajectories using 
absolute volume and normalized volume in % of TIV. At the global scale, we can 
observe that after their maturation peaks, deep and cortical GM volume decreases. 
However, deep GM volume decreases with almost a constant rate while cortical GM 
volume follows a more complex trajectory similar to the 4-stage pattern already 
described for global GM.  Similarly, at the brain scale, while the cortical GM follows 
the 3 stages detailed for global GM, the deep GM follows an almost linear decrease 
all along the lifespan with an accelerated atrophy after 80y.  
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Table 2: Results of model analysis for absolute volumes. 

Absolute volume 
 
 

Selected  
Model 

F-Statistic  R2  Model vs. 
constant model 
p-value of the F-
statistic based 
on ANOVA 

Gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

Age*gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

White Matter 
Global 
Male 
Female 

 
Hybrid 3rd 
order  

 
472 
291 
230 

 
0.39 
0.43 
0.40 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p =0.77 
 

Gray Matter 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
938 
536 
529 

 
0.56 
0.45 
0.61 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p =0.19 
 

CSF 
Global 
Male 
Female 

 
3rd order 

 
2770 
813 
1380 

 
0.74 
0.81 
0.75 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.90 
 

 
 
p < 0.0001 
 

Caudate 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
590 
307 
255 

 
0.37 
0.37 
0.36 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.006 
 

 
 

p = 0.25 
 

Putamen 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
593 
315 
262 

 
0.45 
0.45 
0.43 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p = 0.28 
 

Thalamus 
Global 
Male 
Female 

 
Hybrid 2nd 
order 

 
1730 
977 
840 

 
0.64 
0.65 
0.65 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p = 0.11 
 

Globus Pallidus 
Global 
Male 
Female 

 
2nd order 
 

 
494 
203 
281 

 
0.25 
0.21 
0.29 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.001 
 

 
 
p = 0.78 
 

Hippocampus 
Global 
Male 
Female 

 
Hybrid 2nd 
order 
 

 
177 
85.3 
90.2 

 
0.15 
0.14 
0.16 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.001 
 

 
 
p = 0.99 
 

Amygdala 
Global 
Male 
Female 

 
Hybrid 3nd 
order 

 
46.3 
23.3 
24.0 

 
0.06 
0.06 
0.05 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.045 
 

 
 
p = 0.90 
 

Accumbens 
Global 
Male 
Female 

Hybrid 1st 
order 
 

 
1250 
598 
592 

 
0.46 
0.43 
0.46 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.37  
 

 
 
p = 0.97 
 

 
Cerebrum	and	cerebellum	trajectories	
 
Finally, we investigated cerebrum and cerebellum trajectories separately. At global 
scale, selected models for cerebrum and cerebellum are the same and they are 
similar to the models selected for global GM and WM (see supplementary Tab. 2 and 
Tab. 3). Moreover, gender differences were found for cerebrum and cerebellum 
when using absolute volumes. Visually, both structures follow similar trajectories (see 
Fig. 5 and Fig. 6). However, some differences can be observed. First, the cerebellum 
has a shorter GM volume decrease after maturation peak. In addition, the magnitude 
of GM and WM increase during maturation is smaller for the cerebellum than for 
cerebrum.  Finally, the cerebellum has a less pronounced WM decrease after 80y 
and has a reduced atrophy rate over this period. At the brain scale, selected models 
are different between cerebrum WM and cerebellum WM. The hybrid model selected 
for WM cerebrum indicates a faster volume increase for this structure compared to 
WM cerebellum. The faster maturation during childhood of WM cerebrum is also 
visible on Figure 5 and Figure 6. The 3-stage trajectory obtained for global GM is 
observed for cerebellum GM and cerebrum GM. However, the plateau occurring at 
adulthood appears earlier for cerebellum than for cerebrum. Finally, the atrophy rate 
of normalized cerebrum volume is faster than cerebellum one.  
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Figure 3: Trajectories based on relative volumes (% total intracranial volume) for brain tissues and 
subcortical structures across the entire lifespan. These volume trajectories are estimated according to 
the age on 2944 subjects from 9 months to 94 years. General model is in black, female model is in 
magenta and male model is in blue. Dots color represents the different datasets used in this study (see 
Fig. 1 for dataset color legend). 

Deep gray matter structure trajectories  
 
Thalamus,	accumbens,	caudate,	putamen	and	globus	pallidus	trajectories	
 
At global scale, we observe that thalamus, accumbens, caudate and putamen follow 
similar trajectories with fast growth until 10-12y followed by a volume decrease. All 
selected hybrid models combine an exponential cumulative distribution for growth 
followed by low polynomial order for volume loss during aging, cubic for caudate 
(p<0.0001) and putamen (p<0.0001), quadratic for thalamus (p<0.0001) and linear 
for accumbens (p<0.0001) (see Tab. 2). On the other hand, globus pallidus volume 
decreases from birth all along lifespan (quadratic model with p<0.0001). Unexpected 
slight increases of caudate and putamen volumes are visible after 80y. At the brain 
scale, we can see that thalamus, accumbens, caudate, putamen and globus pallidus 
show a volume decrease across the entire lifespan. First, thalamus and accumbens 
exhibit almost monotonous decrease although cubic models have been selected 
(both with p<0.0001). Second, caudate and putamen present similar slowdown 
decreases after 50y. The similar trajectories of the caudate and putamen are 
consistent with their shared nature as dorsal striatal structures (Paxinos and Mai 
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2004). The model selected for these structures is cubic for caudate (p<0.0001) and 
quadratic for putamen (p<0.0001) (see Tab. 3). Finally, globus pallidus follows a 
cubic model (p<0.0001) showing a fast decrease between 1y-30y, followed by a 
plateau between 30y and 80y and then by an accelerated atrophy after 80y. 
 
Table 3: Results of model analysis for relative volumes normalized by TIV. 

Relative volume in 
% of TIV 
 

Selected  
Model 

F-Statistic  R2  Model vs. constant 
model 
p-value of the F-
statistic based on 
ANOVA 

Gender interaction  
p-value of the t-
statistic on the 
coefficient 

Age*gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

White Matter 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
837 
466 
369 

 
0.53 
0.54 
0.52 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.32 
 

 
 
p =0.41 
 

Gray Matter 
Global 
Male 
Female 

 
3rd order 

 
4030 
2380 
1920 

 
0.80 
0.82 
0.81 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.80 
 

 
 
p =0.06 
 

CSF 
Global 
Male 
Female 

 
3rd order 

 
4450 
2910 
1880 

 
0.82 
0.85 
0.80 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.25 
 

 
 
p = 0.003 
 

Caudate 
Global 
Male 
Female 

 
3rd order 

 
569 
307 
282 

 
0.37 
0.44 
0.38 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.05 
 

 
 

p = 0.31 
 

Putamen 
Global 
Male 
Female 

 
2nd order 
 

 
1110 
743 
471 

 
0.43 
0.49 
0.41 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.37 
 

 
 
p = 0.37 
 

Thalamus 
Global 
Male 
Female 

 
3rd order 

 
2180 
1540 
1050 

 
0.69 
0.75 
0.70 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.05 
 

 
 
p = 0.20 
 

Globus Pallidus 
Global 
Male 
Female 

 
3rd order 

 
398 
205 
215 

 
0.29 
0.28 
0.32 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.12 
 

 
 
p = 0.83 
 

Hippocampus 
Global 
Male 
Female 

 
2nd order 

 
140 
60 
94.9 

 
0.09 
0.07 
0.12 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.07 
 

 
 
p = 0.67 
 

Amygdala 
Global 
Male 
Female 

 
3rd order 

 
47.2 
29.9 
19.5 

 
0.05 
0.05 
0.04 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.56 
 

 
 
p = 0.50 
 

Accumbens 
Global 
Male 
Female 

 
3rd order 

 
725 
427 
368 

 
0.42 
0.45 
0.44 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.02  
 

 
 
p = 0.65 
 

 
Amygdala	and	hippocampus	trajectories	
 
At the global scale, amygdala volume shows a slight increase until 18y-20y followed 
by a long plateau that ends around 70y, followed by an age-related atrophy. The 
selected hybrid model combines a volume increase following an exponential 
cumulative distribution and a volume decrease following cubic model (p<0.0001). 
The hippocampus trajectory presents a fast volume increase until 8y-10y followed by 
a slow volume increase until 40y-50y before an atrophic period. Here, the selected 
hybrid model mixes a volume increase following an exponential cumulative 
distribution and then an inverted U-shape volume decrease (p<0.0001).  At the brain 
scale, amygdala volume trajectory follows a cubic model (p<0.0001) with a plateau 
until 70y followed by an atrophy. This result seems to indicate that absolute increase 
of amygdala volume during childhood is mainly related to brain growth. Moreover, 
using relative volume, hippocampus exhibit a very specific inverted U-shape 
trajectory compared to other analyzed subcortical structures. In our study, the 
hippocampus is the only structure showing volume increase until the middle period of 
human life. To better investigate this point, we performed a complementary analysis 
between 18y and 70y. We found that the impact of age on absolute HC volume is 
significant (p<0.0001) and that the selected model is an inverted U-shape trajectory 
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over this restricted period. According to our results, the hippocampal maturation 
stops around 50y.  
 
Table 4: Results on normalized volumes for 637 subjects older than 70y. The result for absolute TIV 
over this restricted period is p=0.50 for gender interaction and p=0.35 for Age*gender interaction. 

 Relative volume in % of TIV 

 
 Gender interaction  

p-value of the t-statistic on 
the coefficient 

Age*gender interaction  
p-value of the t-statistic on 
the coefficient 

White Matter 

 
p = 0.14 

 
p =0.14 

 
Gray Matter 

 
p = 0.0002 

 
p =0.0001 

 
CSF p = 0.002 

 
p = 0.0015 

 
Caudate 

 
p = 0.03 
 

p = 0.01 
 

Putamen 

 
p = 0.0001 
 

p < 0.0001 
 

Thalamus 

 
p = 0.001 
 

p = 0.0005 
 

Globus Pallidus 

 
p = 0.0002 
 

p = 0.0001 
 

Hippocampus 

 
p = 0.03 
 

p = 0.04 
 

Amygdala 

 
p = 0.38 

 
p = 0.34 

 
Accumbens 

 
p = 0.03  
 

p = 0.02 
 

Sexual dimorphism 
 
At the global scale, we observe that males have bigger volumes than females for all 
considered structures (sex interaction with p<0.0001, see Tab. 2) with the exception 
of accumbens. Finally, increased atrophy rates for males after 80y is assessed by 
CSF trajectory, which is the only brain compartment showing significant age*sex 
(p<0.0001) over the entire lifespan using the considered model. At the brain scale, 
almost all gender volume differences vanish, except in favor of females for caudate 
(p=0.05) and thalamus (p=0.05) with marginal significance, and for accumbens 
(p=0.02) (see Tab. 3). Visually, we can observe bigger relative volume for female 
hippocampus almost significant (p=0.07) (see Tab. 3 and Fig. 3). Finally, for global 
GM, caudate, thalamus, globus pallidus and amygdala, trajectories of females seem 
to indicate a better resistance to the accelerated age-related atrophy occurring after 
80y. To investigate this point, we studied sex and sex*age interaction using all 
subjects with age > 70 years (i.e., 637 subjects composed of 292 males and 345 
females). Models estimated using all the subjects (see Tab. 2) are applied over this 
considered restricted period to evaluate sex and sex*age interactions. We found that 
using normalized volumes, almost all studied structures show significant sex and 
sex*age interaction after 70y with the exception of WM and amygdala (see Tab. 4).  
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Figure 4: Trajectory of the cortical and deep GM volumes in cm3 and % of TIV across the entire 
lifespan. These volume trajectories are estimated according to the age on 2944 subjects from 9 months 
to 94 years. General model is in black, female model is in magenta and male model is in blue. Dots 
color represents the different datasets used in this study (see Fig. 1 for dataset color legend). 

Discussion  
 
One of the main questions related to brain tissue properties deals with gray and 
white matter development/maturation and age-related gray and white matter atrophy. 
Knowing when brain tissues stop to mature and when they start to degenerate are 
key questions in neurology (Sowell, Peterson et al. 2003). In the past, both questions 
have been mainly treated separately in the literature, preventing us to get a global 
picture of these join phenomena. Moreover, discrepancies between used volumetric 
measurements (absolute or relative) made difficult to reach a consensus on crucial 
questions about synaptogenesis and synaptic pruning or myelination and aging.   
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Figure 5: Trajectory of the cerebrum, cerebrum GM and cerebrum CM volumes in cm3 and % of TIV 
across the entire lifespan. These volume trajectories are estimated according to the age on 2944 
subjects from 9 months to 94 years. General model is in black, female model is in magenta and male 
model is in blue. Dots color represents the different datasets used in this study (see Fig. 1 for dataset 
color legend). 

 
 
 

 
Figure 6: Trajectory of the cerebellum, cerebellum GM and cerebellum WM volumes in cm3 and % of 
TIV across the entire lifespan. These volume trajectories are estimated according to the age on 2944 
subjects from 9 months to 94 years. General model is in black, female model is in magenta and male 
model is in blue. Dots color represents the different datasets used in this study (see Fig. 1 for dataset 
color legend). 
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Towards a consensus? 
 
Marked discrepancies exist in the literature about the best fitting models to describe 
brain trajectories either in pediatric phase (Ducharme, Albaugh et al. 2016) or 
adulthood (Fjell, Westlye et al. 2013). In our study, hybrid models mixing exponential 
cumulative distribution growth with low order polynomial senescence were selected 
for 8/10 of the investigated brain regions when absolute volumes are used. 
Moreover, the absolute global GM volume follows a complex trajectory with 4 
phases: 1) rapid increase from 0 to 8-10y, 2) rapid decrease until 40, 3) a plateau 
from 40-80y and 4) a rapid decrease after 80y. On the other hand, low order 
polynomial models better fit when volumes normalized by TIV are used, except for 
WM (see Tab. 2 and Tab. 3). When global growth effect is corrected, normalized 
global GM volumes decrease all over lifespan and follow a complex shape with 3 
phases: 1) a rapid decrease from 0 to 20y, 2) a plateau from 40 to 80y and 3) a rapid 
decrease after 80y. This decline of the normalized global GM volume is consistent 
with the well-known fact that most of the neurogenesis is a prenatal phenomenon 
(Stiles and Jernigan 2010). In contrast, WM presents a shape close to the usually 
described inverted U-shape (Walhovd, Westlye et al. 2011) that persists after 
controlling for head size. This result indicates that during the early phase of brain 
development WM expansion exceeds general growth. The fast simultaneous WM 
maturation and GM decrease at brain scale from childhood to adolescence are 
consistent with brain myelination period and cortical thinning process previously 
observed ex-vivo (Huttenlocher and Dabholkar 1997). When considering cortical GM 
and deep GM separately, they exhibit a different pattern at both global and brain 
scales. At brain scale, deep GM shows almost a linear decrease while cortical GM 
trajectory follows the 3 identified stages for the global GM (see Fig. 4). The steeper 
decrease of normalized volume for cortical GM in the 0-20y period (compared to the 
almost linear dynamics of the deep GM) is probably due to the very high pruning rate 
of the exuberant connectivity generated in the cerebral cortex (Stiles and Jernigan 
2010) or is due to myelination of nearby subcortical WM fibers (Jernigan, Baaré et al. 
2011).  
 
One of the most marked discrepancy in the literature is about the cortical GM 
trajectory over childhood (Walhovd, Fjell et al. 2016). First studies reported an 
increase with maturation peak in early school age (Giedd, Blumenthal et al. 1999, 
Lenroot, Gogtay et al. 2007, Raznahan, Shaw et al. 2011). However, mainly 
monotonic decrease from early childhood have been recently published (Ostby, 
Tamnes et al. 2009, Brain Development Cooperative 2012, Aubert-Broche, Fonov et 
al. 2013, Ducharme, Albaugh et al. 2016, Mills, Goddings et al. 2016). The first factor 
that could explain this pronounced divergence is the used volume measurement. In 
this study, we showed that absolute GM volume follows a 4-stage trajectory with a 
maturation peak while normalized GM volume follows a 3-stage trajectory exhibiting 
a decrease all along the lifespan. Therefore, our results are in line with (Giedd, 
Blumenthal et al. 1999, Shaw, Kabani et al. 2008, Groeschel, Vollmer et al. 2010, 
Raznahan, Shaw et al. 2011) using absolute measurement and are consistent with 
(Ostby, Tamnes et al. 2009, Mills, Goddings et al. 2016) using normalized 
measurement. However, several studies reported monotonic decrease using 
absolute cortical GM volume over childhood (Sowell, Peterson et al. 2003, Brain 
Development Cooperative 2012, Aubert-Broche, Fonov et al. 2013, Ducharme, 
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Albaugh et al. 2016, Mills, Goddings et al. 2016, Walhovd, Fjell et al. 2016). This 
result is in contradiction with studies dedicated to newborn period that report an 
increase of absolute GM over the first months of life (Groeschel, Vollmer et al. 2010, 
Holland, Chang et al. 2014, Makropoulos, Aljabar et al. 2016). The fact that several 
studies did not detect GM maturation peak using absolute measurements seems to 
be related to two main factors, the lack of subjects younger than 5y and the use of 
low order polynomial models. Indeed, most of the studies presenting monotonic 
decrease did not include subjects younger than 4y making difficult the detection of 
GM volume increase over the first years of life. Moreover, this implies that the model 
fitting was mainly driven by subjects with already mature brains (Sowell, Peterson et 
al. 2003, Brain Development Cooperative 2012, Aubert-Broche, Fonov et al. 2013, 
Ducharme, Albaugh et al. 2016, Mills, Goddings et al. 2016, Walhovd, Fjell et al. 
2016). In addition to this potential issue on the used age range, most of these studies 
were using linear, quadratic or cubic models. Low order polynomial models are not 
well-designed to capture complex shape such as fast growth with saturation before 
nonlinear decrease. In our study, we tried to address these two limitations by using 
subjects younger than 4y old and by considering hybrid models able to handle 
complex brain change occurring during the first years of life. Finally, it is interesting to 
note that our results are in line with another study presenting GM trajectory from 
infancy to young adulthood based on nonlinear piecewise polynomial model 
(Groeschel, Vollmer et al. 2010).  
 
 
Deep GM structures are the focus of a great interest due to their important role in 
various neurodegenerative diseases, and thus have been intensively studied in the 
past (Fjell, Westlye et al. 2013). Non-linear trajectories of these structures have been 
previously described for adulthood (Ziegler, Dahnke et al. 2012, Fjell, Westlye et al. 
2013). More recently, studies taking advantage of the “BigData sharing” in 
neuroscience started to analyze subcortical structure volumes from 20y up to 
advanced ages to define normative values for adult lifespan (Potvin, Mouiha et al. 
2016). However, the limited age range of these studies made impossible to estimate 
full lifespan models. In this study, we have addressed this important problem by 
considering subjects covering the entire lifespan. Moreover, we extensively analyzed 
structure trajectories using both absolute and normalized volumes. Therefore, our 
results present at the same time the structure maturation peaks occurring during 
childhood based on absolute volumes and the accelerated atrophy related to aging 
occurring after 80y obtained using normalized volumes. In addition, when deep GM 
structures are considered at the brain scale, their trajectories present a similar global 
decrease all along life, except for the medio-temporal regions with a late decrease for 
amygdala (after 70 years old) and an inverted U-shape for hippocampus. Moreover, 
an unexpected slight increase of caudate and putamen absolute volumes is visible 
after 80y. Such observations have been already reported and questioned in several 
studies (Walhovd, Westlye et al. 2011, Fjell, Westlye et al. 2013, Potvin, Mouiha et 
al. 2016). Different hypotheses have been proposed such as bias related to survival 
of subjects with bigger structures, cohort effect, image artifact related to aging or a 
real phenomenon (Potvin, Mouiha et al. 2016). In our opinion, such volume increases 
at late ages can be also related to the use of global parametric model with less 
samples for very old subjects.   
 
The understanding of the amygdalo-hippocampal complex is important in neurology 
since it is related to crucial tasks such as memory, spatial navigation or emotional 
behavior. Moreover, hippocampus has been largely studied due to its use as an early 
biomarker in several neurodegenerative diseases such as Alzheimer’s disease (Fox, 
Warrington et al. 1996, Jack, Petersen et al. 1997) but also because it is the main 
location of adult neurogenesis (Eriksson, Perfilieva et al. 1998, van Praag, Schinder 
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et al. 2002). Noteworthy, while amygdala and hippocampus are often associated due 
to their respective contribution to the limbic system, it appears that they present 
different trajectories. This fact has been previously reported in recent studies 
(Ziegler, Dahnke et al. 2012, Fjell, Westlye et al. 2013, Pfefferbaum, Rohlfing et al. 
2013, Potvin, Mouiha et al. 2016). The long maturation period of the hippocampus 
may be related to the adult neurogenesis. In fact, it has been shown that 
neurogenesis in the human hippocampus is substantial until at least the fifth decade 
of life (Spalding, Bergmann et al. 2013), a finding consistent with our analysis. In 
contrast to the hippocampus, early maturation of the amygdala is consistent with its 
known function in emotional learning, which allows individuals to avoid aversive 
events and pursue rewarding experiences (Phelps and LeDoux 2005). Accordingly, 
the amygdala in humans has been shown to be functional early in life (Tottenham 
and Sheridan 2009). Our results on amygdala are in accordance with most of the 
previous studies highlighting a minor effect of aging over adulthood (Walhovd, 
Westlye et al. 2011). 
 
Another important question about brain maturation and aging is related to sexual 
dimorphism. In the past, this question has been studied mainly over childhood 
development (Giedd and Rapoport 2010, Brain Development Cooperative 2012, 
Aubert-Broche, Fonov et al. 2013) or during adolescence (Lenroot, Gogtay et al. 
2007, Ostby, Tamnes et al. 2009, Lenroot and Giedd 2010, Hu, Pruessner et al. 
2013). As previously mentioned, studies on different limited time periods, using non-
harmonized tools and different volumetric measurements prevented reaching a 
consensus. In our study, when using absolute volume, we found that brain structure 
maturation peaks occur before for female than for male (between 1y-3y earlier). 
These earlier peaks in females in the maturational phase have been previously 
described (Giedd and Rapoport 2010) and were mainly explained by sex differences 
in growth. We also found a difference around 10-12% of brain size between sexes as 
previously reported by in-vivo or postmortem studies (Lenroot and Giedd 2010, Brain 
Development Cooperative 2012). On the other hand, when the impact of brain size is 
compensated for, both sexes exhibit more similar trajectories. Only the normalized 
volume of nucleus accumbens presents a marked sexual dimorphism. This region is 
a key structure in the neural circuitry of addiction, a phenomenon well-known to show 
sex differences (Becker and Hu 2008). However, sexual dimorphism of the 
accumbens volume in humans has not been (to our knowledge) described before. In 
rats, a higher density of dendritic spines has been shown in females (Forlano and 
Woolley 2010). If a similar sex difference would exist in humans, it would be so 
subtle that only very large experimental samples would reveal it, as it is the case in 
the present study. Finally, we found that for several structures males are more 
impacted by aging than females especially after 70y. The fact that women may be 
less vulnerable to age-related atrophy has been previously reported (Gur, Mozley et 
al. 1991, Coffey, Lucke et al. 1998, Carne, Vogrin et al. 2006). This phenomenon 
may be related to the protective effect of estrogens and progesterone (Green and 
Simpkins 2000) or related to the fact that women present fewer risk factors 
(hypertension, tobacco and alcohol consummation…).  
 
Limitations 
 
In our opinion, one of the strengths of our study is to use multiple datasets to be able 
to cover the entire lifespan. However, this point can be also viewed as a weakness 
since the use of multiple datasets may introduce bias. Indeed, pooling databases 
having different age ranges could lead to find artificial differences. It has to be noted 
that we limited this aspect by using at least 2 different overlapping databases for 
each 5y intervals. Moreover, the preprocessing pipeline of volBrain has been 
designed to limit the impact of acquisition protocol by proposing advanced denoising 
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filter and tissue-based intensity normalization. Therefore, after preprocessing, 
images are better homogenized in terms of signal-to-noise ratio and tissue contrast 
limiting the impact of using different acquisition protocols and scanners. In addition, 
during our QC all images with motion and ghosting artifacts were removed as well as 
the image having high anisotropic voxel resolution. Finally, several studies showed 
that age-related volume differences are consistent between datasets when using the 
same analysis tool  (Fjell, Westlye et al. 2009, Walhovd, Westlye et al. 2011, Mills, 
Goddings et al. 2016). Moreover, recent papers based on a large scale study over 
adulthood (Potvin, Mouiha et al. 2016, Potvin, Dieumegarde et al. 2017) showed that 
the impact of MRI scanner manufacturer and magnetic strength is negligible 
compared to impact of age of the structure trajectories. 
 
After our quality control step, no images of subjects younger than 9 months 
remained. Therefore, the newborn period is not well covered by our samples and 
thus results obtained before 9 months of life may be inaccurate. Few studies have 
been published on brain structure trajectory for this since the acquisition is difficult 
and the image analysis is very challenging due to low contrast before 6 months and 
fast myelination progression during the first 2 years of life (Gilmore, Lin et al. 2007, 
Groeschel, Vollmer et al. 2010, Gilmore, Shi et al. 2012, Holland, Chang et al. 2014, 
Makropoulos, Aljabar et al. 2016). However, specific tools have been proposed to 
analyze the newborn life period (Makropoulos, Gousias et al. 2014, Wang, Shi et al. 
2014). Nevertheless, up to now, there is no large period lifespan study integrating 
newborn period with childhood, adolescence, adulthood and elderly.  
 
Here, we described different lifespan trajectories for deep versus cortical structures.  
Previous studies described heterogeneous trajectories for different parts of the cortex 
over restricted periods (Sowell, Peterson et al. 2003, Fjell, Westlye et al. 2009, 
Pfefferbaum, Rohlfing et al. 2013, Walhovd, Fjell et al. 2016, Potvin, Dieumegarde et 
al. 2017). Therefore, we plan to investigate trajectory based on cortex parcellation 
over the entire lifespan in a further study.  
 
Finally, we used cross-sectional analysis to study brain trajectory over the entire 
lifespan. Using cross-sectional data to analyze a dynamic process can be 
suboptimal. However, some evidences show that cross-sectional and longitudinal 
samples produce similar age-related patterns (Fjell, Westlye et al. 2013). Moreover, 
the reported lack of consensus is also observed among different longitudinal studies. 
For instance, the volume of cortical gray matter is highest in childhood according to 
some longitudinal studies (Mills, Goddings et al. 2016), but peaks at puberty 
according to others (Lenroot, Gogtay et al. 2007). Therefore, the longitudinal or 
cross-sectional nature of the data is another factor introducing variability but it is not 
the unique factor explaining the different results reported in the literature. It is 
interesting to note that most of the trajectories obtained in our cross-sectional study 
are in accordance with previous longitudinal studies. First, for childhood, maturation 
peak between 8-10y for absolute cortical GM volume and earlier peak for females 
have been reported using longitudinal data (Giedd, Blumenthal et al. 1999, 
Raznahan, Shaw et al. 2011). Moreover, for adolescence, an increase of the 
absolute WM volume and a decrease of absolute GM volume between 10y and 20y 
have been observed in previous longitudinal studies (Giedd, Blumenthal et al. 1999, 
Aubert-Broche, Fonov et al. 2013, Mills, Goddings et al. 2016). Finally, for adulthood, 
our results on normalized subcortical structures volume are highly consistent with 
results presented in the longitudinal study published by Pfefferbaum et al. (2013). 
Nevertheless, we think that in a further work, a mixed cross-sectional / longitudinal 
study (Giedd, Blumenthal et al. 1999) could be done since some of the used datasets 
contain longitudinal data. 
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Conclusion 
 
We have presented an MRI volumetric brain analysis study covering the entire 
lifespan based on a very large number of subjects. In this study, we have dealt with 
main limitations of previous studies to offer a comprehensive analysis of maturation 
and aging effects at different brain tissues and structures. Absolute and relative 
measurements have been used to get a complete picture of the brain state at 
different development stages for both genders. Moreover, optimized models have 
been used to robustly characterize volume evolution of the different tissues and 
structures. The results of this study are very helpful to integrate several previous 
studies covering partial age ranges into a common framework. This enables a better 
understanding of the observed phenomena. Moreover, the use of the estimated 
models as normative values can be of inestimable help when analyzing the state of 
new subjects. Furthermore, disease specific estimated models can be directly 
compared to the normal models estimated in this study without needing to acquire 
and analyze a control group. We will include these models in our open access web 
platform volBrain to provide normality bounds based on the appropriate sex and age 
for the analysis of new cases. We hope that the online availability of the volBrain 
online service in combination with the presented models will help our understanding 
of both normal and pathological human brain. 
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Supplementary Figure 1: Trajectory of the Total Intracranial Volume in cm3 across the entire lifespan. 
These volume trajectories are estimated according to the age on 2944 subjects from 9 months to 94 
years. General model is in black, female model is in magenta and male model is in blue. Dots color 
represents the different datasets used in this study (see Fig. 1 for dataset color legend). 
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Supplementary Table 1: Results of model analysis for gray matter, cortical gray matter and deep gray 
matter in absolute and relative volumes. 

 
 

Selected  
Model 

F-Statistic  R2  Model vs. 
constant model 
p-value of the F-
statistic based on 
ANOVA 

Gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

Age*gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

  
Absolute volume 

 
Global GM 

Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
938 
536 
529 

 
0.56 
0.45 
0.61 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p =0.19 
 

Cortical GM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
1030 
579 
586 

 
0.58 
0.60 
0.63 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p < 0.0001 
 

Deep GM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
1030 
585 
479 

 
0.51 
0.53 
0.51 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 

p < 0.0001 
 

  
Relative volume in % of TIV 

 
Global GM 

Global 
Male 
Female 

 
3rd order 

 
4030 
2380 
1920 

 
0.80 
0.82 
0.81 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.80 
 

 
 
p =0.06 
 

Cortical GM 
Global 
Male 
Female 

 
3rd order 

 
4430 
2520 
2140 

 
0.82 
0.83 
0.82 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.80 
 

 
 
p = 0.11 
 

Deep GM 
Global 
Male 
Female 

 
3rd order 

 
1250 
965 
608 

 
0.56 
0.65 
0..57 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.01 
 

 
 

p = 0.21 
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Supplementary Table 2: Results of model analysis for cerebrum, cerebrum GM and cerebrum WM in 
absolute and relative volumes. 

 
 

Selected  
Model 

F-Statistic  R2  Model vs. 
constant model 
p-value of the F-
statistic based on 
ANOVA 

Gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

Age*gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

  
Absolute volume 

 
Cerebrum 

Global 
Male 
Female 

 
Hybrid 1st 
order 

 
1130 
641 
580 

 
0.43 
0.45 
0.46 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p = 0.36 
 

Cerebrum GM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
1050 
587 
598 

 
0.6 
0.60 
0.63 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p = 0.21 
 

Cerebrum WM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
592 
360 
289 

 
0.38 
0.41 
0.39 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 

p = 0.80 
 

  
Relative volume in % of TIV 

 
Cerebrum 

Global 
Male 
Female 

 
3rd order 

 
4310 
2680 
1860 

 
0.81 
0.84 
0.80 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.34 
 

 
 
p =0.001 
 

Cerebrum GM 
Global 
Male 
Female 

 
3rd order 

 
4600 
2240 
2140 

 
0.82 
0.83 
0.82 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.65 
 

 
 
p = 0.10 
 

Cerebrum WM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
813 
449 
360 

 
0.52 
0.53 
0..51 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.28 
 

 
 

p = 0.41 
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Supplementary Table 3: Results of model analysis for cerebellum, cerebellum GM and cerebellum WM 
in absolute and relative volumes. 

 
 

Selected  
Model 

F-Statistic  R2  Model vs. 
constant model 
p-value of the F-
statistic based on 
ANOVA 

Gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

Age*gender 
interaction  
p-value of the t-
statistic on the 
coefficient 

  
Absolute volume 

 
Cerebellum 

Global 
Male 
Female 

 
Hybrid 1st 
order 

 
690 
379 
296 

 
0.32 
0.33 
0.30 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p =0.24 
 

Cerebellum GM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
232 
121 
92 

 
0.24 
0.24 
0.21 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p < 0.0001 
 

 
 
p = 0.25 
 

Cerebellum WM 
Global 
Male 
Female 

 
Hybrid 3rd 
order 

 
422 
229 
191 

 
0.36 
0.37 
0.36 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.006 
 

 
 

p = 0.71 
 

  
Relative volume in % of TIV 

 
Cerebellum 

Global 
Male 
Female 

 
2nd order 

 
638 
461 
232 

 
0.30 
0.37 
0.25 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.47 
 

 
 
p =0.06 
 

Cerebellum GM 
Global 
Male 
Female 

 
3rd order 

 
331 
244 
115 

 
0.25 
0.32 
0.20 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.60 
 

 
 
p = 0.09 
 

Cerebellum WM 
Global 
Male 
Female 

 
3rd order 

 
526 
282 
240 

 
0.35 
0.35 
0..34 

 
p < 0.0001 
p < 0.0001 
p < 0.0001 

 
 
p = 0.65 
 

 
 

p = 0.62 
 

 
	
	
	
 


