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A GLOBAL STABILITY ESTIMATE FOR THE

PHOTO-ACOUSTIC INVERSE PROBLEM IN LAYERED MEDIA

KUI REN AND FAOUZI TRIKI

Abstract. This paper is concerned with the stability issue in determining

absorption and diffusion coefficients in photoacoustic imaging. Assuming that

the medium is layered and the acoustic wave speed is known we derive global
Hölder stability estimates of the photo-acoustic inversion. These results show

that the reconstruction is stable in the region close to the optical illumination

source, and deteriorate exponentially far away. Several experimental pointed
out that the resolution depth of the photo-acoustic modality is about tens

of millimeters. Our stability estimates confirm these observations and give a

rigorous quantification of this depth resolution.

1. Introduction

Photoacoustic imaging (PAI) [7, 8, 13, 37, 41, 50, 55] is a recent hybrid imaging
modality that couples diffusive optical waves with ultrasound waves to achieve high-
resolution imaging of optical properties of heterogeneous media such as biological
tissues.

In a typical PAI experiment, a short pulse of near infra-red photons is radiated
into a medium of interest. A part of the photon energy is absorbed by the medium,
which leads to the heating of the medium. The heating then results in a local tem-
perature rise. The medium expanses due to this temperature rise. When the rest of
the photons leave the medium, the temperature of the medium drops accordingly,
which leads to the contraction of the medium. The expansion and contraction of the
medium induces pressure changes which then propagate in the form of ultrasound
waves. Ultrasound transducers located on an observation surface, usually a part of
the surface surrounding the object, measure the generated ultrasound waves over
an interval of time (0, T ) with T large enough. The collected information is used
to reconstruct the optical absorption and scattering properties of the medium.

Assuming that the ultrasound speed in the medium is known, the inversion
procedure in PAI proceeds in two steps. In the first step, we reconstruct the initial
pressure field, a quantity that is proportional to the local absorbed energy inside
the medium, from measured pressure data. Mathematically speaking, this is a
linear inverse source problem for the acoustic wave equation [2,3,6,22,25,29,31–33,
35, 36, 38, 45–47, 51, 52]. In the second step, we reconstruct the optical absorption
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and diffusion coefficients using the result of the first inversion as available internal
data [4, 5, 14,15,43,44,48,49].

In theory, photoacoustic imaging provides both contrast and resolution. The
contrast in PAI is mainly due to the sensitivity of the optical absorption and scat-
tering properties of the media in the near infra-red regime. For instance, different
biological tissues absorbs NIR photons differently. The resolution in PAI comes in
when the acoustic properties of the underlying medium is independent of its optical
properties, and therefore the wavelength of the ultrasound generated provides good
resolution (usually submillimeter).

In practice, it has been observed in various experiments that the imaging depth,
i.e. the maximal depth of the medium at which structures can be resolved at
expected resolution, of PAI is still fairly limited, usually on the order of millimeters.
This is mainly due to the limitation on the penetration ability of diffusive NIR
photons: optical signals are attenuated significantly by absorption and scattering.
The same issue that is faced in optical tomography [12]. Therefore, the ultrasound
signal generated decays very fast in the depth direction.

The objective of this work is to mathematically analyze the issue of imaging
depth in PAI. To be more precise, assuming that the underlying medium is layered,
we derive a stability estimate that shows that image reconstruction in PAI is stable
in the region close to the optical illumination source, and deteriorates exponentially
in the depth direction. This provides a rigorous explanation on the imaging depth
issue of PAI.

In the first section we introduce the PAI model and give the main global stability
estimates in Theorem 2.1. Section 2 is devoted to the acoustic inversion, we derive
observability inequalities corresponding to the internal data generated by well cho-
sen laser illuminations. We also provide an observability inequality from one side
for general initial states in Theorem 3.2. In section 3, we solve the optical inversion
and show weighted stability estimates of the recovery of the optical coefficients from
the knowledge of two internal data. Finally, the main global stability estimates are
obtained by combining stability estimates from the acoustic and optical inversions.

2. The main results

In our model we assume that the laser source and the ultrasound transducers are
on the same side of the sample Γm; see Figure 1. This situation is quite realistic
since in applications only a part of the boundary is accessible and in the exiting
prototypes a laser source acts trough a small hole in the transducers. We also
assume that the optical parameters (D,µa), similar to the acoustic speed c, only
depend on the variable y following the normal direction to Γm. We further consider
the optical parameters (D(y), µa(y)) within the set

OM = {(D,µ) ∈ C3([0, H])2; D > D0, µ > µ0; ‖D‖C3 , ‖µ‖C3 ≤M},

where D0 > 0, µ0 > 0 and M > max(D0, µ0) are fixed real constants.
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Figure 1. The geometry of the sample.

The propagation of the optical wave in the sample is modeled by the following
diffusion equation

−∇ ·D(y)∇u(x) + µa(y)u(x) = 0 x ∈ Ω,
u(x) = g(x) x ∈ Γm,
u(x) = 0 x ∈ Γ0,
u(0, y) = u(L, y) y ∈ (0, H),

(1)

where g is the laser illumination, D and µa are respectively the diffusion and ab-
sorption coefficients. The part of the boundaries Γj are given by

Γm = (0, L)× {y = H}, Γ0 = (0, L)× {y = 0},

and ∂ν is the derivative along ν, the unit normal vector pointing outward of Ω. We
note that ν is everywhere defined except at the vertices of Ω and we denote by Γp
the complementary of Γ0 ∪ Γm in ∂Ω.

We follow the approach taken in several papers [16–18] and consider two laser
illuminations gj , j = 1, 2. Denote uj , j = 1, 2, the corresponding laser intensities.

Let

V := {v ∈ H1(Ω); v(0, y) = v(L, y), y ∈ (0, H);u = 0 on Γ0}.

We further assume that g ∈ VΓm , where

VΓm
:= {v|Γm

: v ∈ H1(Ω); v(0, y) = v(L, y), y ∈ (0, H);u = 0 on Γ0}.

Then, there exists a unique solution u ∈ V satisfying the system (1). The proof
uses techniques developed in [30]. The first step is to show that the set

V0 := {v ∈ H1(Ω); v(0, y) = v(L, y), y ∈ (0, H);u = 0 on Γ0 ∪ Γm},

is a closed sub space of H1(Ω), using a specific trace theorem for regular curvi-
linear polygons (Theorem 1.5.2.8, page 50 in [30]). Then, applying the classical
Lax-Milligram for elliptic operators in Lipschitz domain gives the existence and
uniqueness of solution to the system (1).
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Remark 2.1. Using an explicit characterization of the trace theorem obtained in
[30] one can derive an optimal local regularity for g ∈ H 1

2 (Γm) that guarantees the
existence and uniqueness of solutions to the system (1) (see also [9]).

For simplicity, we will further consider gj = ϕkj , j = 1, 2, where k1 < k2, and

ϕk(x), k ∈ N, is the Fourier orthonormal basis of L2(0, L) satisfying −ϕ′′k(y) =

λ2
kϕk(y), with λk = 2kπ

L , k ∈ Z. Direct calculation gives ϕk(x) = 1√
L
eiλkx, k ∈ Z.

We assume that point-like ultrasound transducers, located on an observation
surface Γm, are used to detect the values of the pressure p(x, t), where x ∈ Γm
is a detector location and t ≥ 0 is the time of the observation. We also assume
that the speed of sound in the sample occupying Ω = (0, L) × (0, H), is a smooth
function and depends only on the vertical variable y, that is, c = c(y) > 0. Then,
the following model is known to describe correctly the propagating pressure wave
p(x, t) generated by the photoacoustic effect

∂ttp(x, t) = c2(y)∆p(x, t) x ∈ Ω, t ≥ 0,
∂νp(x, t) + β∂tp(x, t) = 0 x ∈ Γm, t ≥ 0,
p(x, t) = 0 x ∈ Γ0, t ≥ 0,
p((0, y), t) = p((L, y), t) y ∈ (0, H), t ≥ 0,
p(x, 0) = f0(x), ∂tp(x, 0) = f1(x), x ∈ Ω,

(2)

Here β > 0 is the damping coefficient, and fj(x), j = 0, 1, are the initial values
of the acoustic pressure, which one needs to find in order to determine the optical
parameters of the sample.

Remark 2.2. Notice that in most existing works in photoacoustic imaging the ini-
tial state f0(x) is given by µa(x)u(x), and is assumed to be compactly supported
inside Ω, while the initial speed f1(x) is zero everywhere [36,47,51]. The compactly
support assumption on f0(x) simplifies the analysis of the inverse source initial-to-
boundary problem, and seems to be necessary in almost all the existing uniqueness
and stability results [10, 11, 34, 56]. Meanwhile the assumption is clearly in contra-
diction with the fact that f0(x) coincides with µa(x)u(x) everywhere. We will show
in section 4 that µa(x)u(x) not only does not have a compact support in Ω, but
it is also exponentially concentrated around the part of the boundary Γm where we
applied the laser illumination. In our model the initial speed ∂tp(x, 0) = f1(x) can
be considered as the correction of the photoacoustic effect generated by the heat at
Γm.

The following stability estimates are the main results of the paper, obtained by
combining stability estimates from the acoustic and optical inversions.

Theorem 2.1. Let (D,µa), (D̃, µ̃a) in OM , and ki, i = 1, 2 be two distinct inte-

gers. Let c(y) ∈W 1,∞(0, H) with 0 < cm ≤ c−2(y) and set θ =
√
‖c−2‖L∞ . Denote

uki , i = 1, 2 and ũki , i = 1, 2 the solutions to the system (9) for gi = ϕki , i = 1, 2,

with coefficients (D,µa) and (D̃, µ̃a) respectively. Assume that D(H) = D̃(H),

D′(H) = D̃′(H), µa(H) = µ̃a(H), µ′a(H) = µ̃′a(H), k1 < k2, and k1 is large enough.
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Then, for T > 2θH, there exists a constant C > 0 that only depends on
µ0, D0, k1, k2,M,L, and H, such that the following stability estimates hold.

‖u2
m(µa − µ̃a)‖C0 ≤

C

(
2∑
i=1

∫ T

0

(
CM

T − 2θH
+ β

)
‖∂tpi − ∂tp̃i‖2L2(Γm) + ‖∂xpi − ∂xp̃i‖2L2(Γm)dt

) 1
4

,

and

‖u2
m(D − D̃)‖C0 ≤

C

(
2∑
i=1

∫ T

0

(
CM

T − 2θH
+ β

)
‖∂tpi − ∂tp̃i‖2L2(Γm) + ‖∂xpi − ∂xp̃i‖2L2(Γm)dt

) 1
4

,

where

CM = He
∫H
0
c2(s)|∂y(c−2(s))|ds(c−2(H) + β2),

um(y) =
D

1
2 (H)

D
1
2 (y)

sinh(κ
1
2
my)

sinh(κ
1
2
mH)

, κm = min
0≤y≤H

(
(D

1
2 )′′

D
1
2

+
µa
D

+ λ2
k

)
> 0.

Since the function um(y) is exponentially decreasing between the value 1 on
Γm to the value 0 on Γ0, the stability estimates in Theorem 2.1 shows that the
resolution deteriorate exponentially in the depth direction far from Γm.

3. The acoustic inversion

The data obtained by the point detectors located on the surface Γm are repre-
sented by the function

p(x, t) = d(x, t) x ∈ Γm, t ≥ 0.

Thus, the first inversion in photoacoustic imaging is to find, using the data d(x, t)
measured by transducers, the initial value f0(x) at t = 0 of the solution p(x, t) of
(2). We will also recover the initial speed f1(x) inside Ω, but we will not use it in
the second inversion.

We first focus on the direct problem and prove existence and uniqueness of the
acoustic problem (2). Denote by L2

c(Ω) the Sobolev space of square integrable
functions with weight 1

c2(y) . Since the speed c2 is lower and upper bounded, the

norm corresponding to this weight is equivalent to the classical norm of L2(Ω). Let

V = {p ∈ H1(Ω); p(0, y) = p(L, y), y ∈ (0, H); p = 0 on Γ0},
and consider in V × L2

c(Ω) the unbounded linear operator A defined by

A(p, q) = (q, c2∆p), D(A) = {(p, q) ∈ V × V ; ∆p ∈ L2(Ω); ∂νp+ βq = 0 on Γm}.

We have the following existence and uniqueness result.

Proposition 3.1. For (f0, f1) ∈ D(A), the problem (2) has a unique solution
p(x, t) satisfying

(p, ∂tp) ∈ C ([0,+∞), D(A)) ∩ C1
(
[0,+∞), V × L2

c(Ω)
)
.
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Proof. There are various methods for proving well-posedness of evolution problems:
variational methods, the Laplace transform method and the semi-group method.
Here, we will consider the semi-group method [53], and prove that the operator A
is m-dissipative on the Hilbert space V × L2

c(Ω).

Denote by 〈·, ·〉 the scalar product in V ×L2
c(Ω), that is, for (pi, qi) ∈ V ×L2

c(Ω)
with i = 1, 2,

〈(p1, q1), (p2, q2)〉 =

∫
Ω

∇p1∇p2dx +

∫
Ω

q1q2

dx

c2
.

Now let (p, q) ∈ D(A). We have

〈A(p, q), (p, q)〉 =

∫
Ω

∇q∇pdx +

∫
Ω

∆pqdx.

Since ∆p ∈ L2(Ω) and ∂νp+ βq = 0 on Γm, applying Green formula leads to

〈A(p, q), (p, q)〉 =

∫
Ω

∇q∇pdx−
∫

Ω

∇q∇pdx− β
∫

Γm

|q|2dσ(x).

Consequently

<(〈A(p, q), (p, q)〉) = −β
∫

Γm

|q|2dσ(x).

Therefore the operator A is dissipative. The fact that 0 is in the resolvent of A is
straightforward. Then A is m-dissipative and hence, it is the generator of a strongly
continuous semigroup of contractions [53]. Consequently, for (f0, f1) ∈ D(A) there
exists a unique strong solution to the problem (2). �

Now, back to the inverse problem of reconstructing the initial data (f0, f1). We
further assume that the initial data is generated by a finite number of Fourier
modes, that is

fj(x, y) =
∑
|k|≤N

fjk(y)ϕk(x) (x, y) ∈ Ω j = 0, 1,(3)

with N being a fixed positive integer.

As it was already remarked in many works, this linear initial-to-boundary inverse
problem is strongly related to boundary observability of the source from the set Γm
(see for instance [40,51,53,57]). We will emphasize on the links between our findings
and known results in this context later. Here we will use a different approach taking
advantage of the fact that the wave speed c(y) only depends in the vertical variable
y.

Since p(x) is L-periodic in the y variable, it has the following discrete Fourier
decomposition

p(x, y) =
∑
|k|≤N

pk(y, t)ϕk(x) (x, y) ∈ Ω.

One can check that pk(y, t)ϕk(x) is exactly the solution to the problem (2) with
initial data (f0k(y)ϕk(x), f1k(y)ϕk(x)). Precisely, if λk = 2kπ

L , the functions pk(y, t)



7

satisfy the following one dimensional wave equation
1

c2(y)∂ttp(y, t) = ∂yyp(y, t)− λ2
kp(y, t), y ∈ (0, H), t ≥ 0,

∂yp(H, t) + β∂tp(H, t) = 0 t ≥ 0,
p(0, t) = 0 t ≥ 0,
p(y, 0) = f0k(y), ∂tp(y, 0) = f1k(y), y ∈ (0, H),

(4)

Next, we will focus on the boundary observability problem of the initial data fk
at the extremity y = H. Taking advantage of the fact that the equation is one di-
mensional we will derive a boundary observability inequality with a sharp constant.
Define E(t) the total energy of the system (4) by

E(t) =

∫ H

0

(
c−2(y)|∂tp(y, t)|2 + |∂yp(y, t)|2 + λ2

k|p(y, t)|2
)
dy.(5)

Multiplying the first equation in the system (4) by ∂tp(y, t) and integrating over
(0, H) leads to

E′(t) = −β|∂tp(H, t)|2 for t ≥ 0.(6)

Consequently, E(t) is a non-increasing function, and the decay is clearly related to
the magnitude of the dissipation on the boundary Γm.

It is well know that the system (4) has a unique solution. Here we establish an
estimate of the continuity constant.

Proposition 3.2. Assume that c(y) ∈ W 1,∞(0, H) with 0 < cm ≤ c−2(y). Then,
for any T > 0 we have

β2

∫ T

0

|∂tpk(H, t)|2dt ≤ ((C1
m + C2

mλk)T + C3
m)Ek(0),

for k ∈ N, where

Ek(0) =

∫ H

0

(
c−2(y)|f1k(y)|2 + |f ′0k(y)|2 + λ2

k|f0k(y)|2
)
dy,

C1
m = (1 +Hc−2(H))−1

(
1 + (1 +

H

cm
)‖c−2‖W 1,∞

)
,

C3
m = (1 +Hc−2(H))−1

(
1 + 2H‖c−2‖1/2L∞

)
,

C2
m = H(1 +Hc−2(H))−1.

Proposition 3.3. Assume that c(y) ∈ W 1,∞(0, H) with 0 < cm ≤ c−2(y). Let

θ =
√
‖c−2‖L∞ and T > 2θH. Then the following inequalities hold

λ2
k

∫ H

0

|f0k(y)|2dy ≤
(

CM
T − 2θH

+ β

)∫ T

0

|∂tpk(H, t)|2dt

+λ2
k

∫ T

0

|pk(H, t)|2dt,

for k ∈ N∗,∫ H

0

c−2(y)|f1k(y)|2 + |f ′0k(y)|2dy ≤
(

CM
T − 2θH

+ β

)∫ T

0

|∂tpk(H, t)|2dt

+λ2
k

∫ T

0

|pk(H, t)|2dt,
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for k ∈ N, with

CM = He
∫H
0
c2(s)|∂y(c−2(s))|ds(c−2(H) + β2).

The proofs of these results are given in the Appendix. The main result of this
section is the following.

Theorem 3.1. Assume that c(y) ∈ W 1,∞(0, 1) with 0 < cm ≤ c−2(y), and f0, f1

have a finite Fourier expansion (3). Let θ =
√
‖c−2‖L∞ and T > 2θH. Then∫

Ω

|∇f0(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tp(x, t)‖2L2(Γm)dt

+

∫ T

0

‖∂xp(x, t)‖2L2(Γm)dt,

and ∫
Ω

c−2(y)|f1(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tpk(x, t)‖2L2(Γm)dt

+

∫ T

0

‖∂xp(x, t)‖2L2(Γm)dt,

with

CM = He
∫H
0
c2(s)|∂y(c−2(s))|ds(c−2(H) + β2).

Proof. The estimates are direct consequences of Proposition 3.2 and Proposition 3.3.
The fact that the Fourier series of p(x, t) has a finite number of terms justifies the
regularity of the solution p(x, t), and allow interchanging the order between the
Fourier series and the integral over (0, T ). �

Using microlocal analysis techniques it is known that the boundary observability
in a rectangle holds if the set of boundary observation necessarily contains at least
two adjacent sides [21,23]. Then, we expect that the the Lipschitz stability estimate
in Theorem 3.1 will deteriorate when the number of modes N becomes larger. In
fact the series on the right side does not converge because ∂xp(x, t) does not belong
in general to L2(Γm × (0, T )). We here provide a hölder stability estimate that
corresponds to the boundary observability on only one side of the rectangle.

Theorem 3.2. Assume that c(y) ∈ W 1,∞(0, 1) with 0 < cm ≤ c−2(y), and

(f0, f1) ∈ H2(Ω) × H1(Ω) satisfying ‖f0‖H1 , ‖f1‖H2 ≤ M̃ . Let θ =
√
‖c−2‖L∞

and T > 2θH. Then∫
Ω

|∇f0(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tp(x, t)‖2L2(Γm)dt

+C
M̃

(∫ T

0

‖p(x, t)‖2
H

1
2 (Γm)

dt

) 2
3

,
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and ∫
Ω

c−2(y)|f1(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tpk(x, t)‖2L2(Γm)dt

+C
M̃
θ

2
3

(∫ T

0

‖p(x, t)‖2
H

1
2 (Γm)

dt

) 2
3

,

with

CM = He
∫H
0
c2(s)|∂y(c−2(s))|ds(c−2(H) + β2), C

M̃
= 2M̃

2
3 .

Proof. The proof is again based on the results of Proposition 3.3. We first deduce
from Proposition 3.1 that ∂tp(x, t) ∈ L2(Γm). Now, define

fNj (x) =
∑
|k|≤N

fjk(y)ϕk(x) x ∈ Ω j = 0, 1,

with fjk(y) are the Fourier coefficients of fj(x), and N being a large positive integer.

Consequently ∫
Ω

|∇f0(x)|2dx ≤
∫

Ω

|∇fN0 (x)|2dx +
M̃2

λ2
N+1

,(7) ∫
Ω

c−2(y)|f1(x)|2dx ≤
∫

Ω

c−2(y)|fN1 (x)|2dx +
θ2M̃2

λ2
N+1

,(8)

for N large. Applying now Proposition 3.3 to (fN0 , f
N
1 ), gives∫

Ω

|∇f0(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tp(x, t)‖2L2(Γm)dt

+λN

∫ T

0

‖p(x, t)‖2
H

1
2 (Γm)

dt+
M̃2

λ2
N+1

,∫
Ω

c−2(y)|f1(x)|2dx ≤
(

CM
T − 2θH

+ β

)∫ T

0

‖∂tp(x, t)‖2L2(Γm)dt

+λN

∫ T

0

‖p(x, t)‖2
H

1
2 (Γm)

dt+
θ2M̃2

λ2
N+1

.

By minimizing the right hand terms with respect to the value of λN , we obtain
the desired results.

�

4. The optical inversion

Once the initial pressure f0(x), generated by the optical wave has been recon-
structed, a second step consists of determining the optical properties in the sample.
Although this second step has not been well studied in biomedical literature due
its complexity, it is of importance in applications. In fact the optical parameters
are very sensitive to the tissue condition and their values for healthy and unhealthy
tissues are extremely different.
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The second inversion is to determine the coefficients (D(y), µa(y)) from the ini-
tial pressures recovered in the first inversion, that is, hj(x) = µa(y)uj(x), x ∈
Ω, j = 1, 2.

For simplicity, we will consider gj(x) = ϕkj (x), j = 1, 2 with k1 and k2 are
two distinct Fourier eigenvalues that are large enough. We specify how large they
should be later in the analysis.

The main result of this section is the following.

Theorem 4.1. Let (D,µa), (D̃, µ̃a) in OM , and ki, i = 1, 2 be two distinct in-
tegers. Denote uki , i = 1, 2 and ũki , i = 1, 2 the solutions to the system (9) for

gi = ϕki , i = 1, 2, with coefficients (D,µa) and (D̃, µ̃a) respectively. Assume that

D(H) = D̃(H), D′(H) = D̃′(H), µa(H) = µ̃a(H), µ′a(H) = µ̃′a(H), k1 < k2, and
k1 is large enough. Then, there exists a constant C > 0 that only depends on
(µ0, D0, k1, k2,M,L,H), such that the following stability estimates hold.

‖u2
m(D − D̃)‖C0 ≤ C

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
,

‖u2
m(µa − µ̃a)‖C0 ≤ C

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.

Classical elliptic operator theory implies the following result for the direct prob-
lem [42].

Proposition 4.1. Assume (D,µa) be in OM and g ∈ VΓm
. Then, there exists a

unique solution u ∈ V to the system (1). It verifies

‖u‖H1(Ω) ≤ C0‖g‖2
H

1
2 (Γm)

,

where C0 = C0(µ0, D0,M,L,H) > 0.

For g(x) = ϕk(x), the unique solution u has the following decomposition

u(x) = uk(y)ϕk(x) x ∈ Ω,

where uk(y) satisfies the following one dimensional elliptic equation{
− (D(y)u′(y))

′
+ (µa(y) + λ2

kD(y))u(y) = 0 y ∈ (0, H),
u(H) = 1, u(0) = 0,

(9)

Next we will derive some useful properties of the solution to the system (9).

Lemma 4.1. Let u(y) be the unique solution to the system (9). Then u(y) ∈
C2([0, H]) and there exists a constant b = b(µ0, D0,M,L,H) > 0 such that ‖u‖C2 ≤
b for all (D,µa) ∈ OM . In addition the following inequalities hold for k large
enough.

um(y) ≤ u(y) ≤ uM (y),

for 0 ≤ y ≤ H, where

um(y) =
D

1
2 (H)

D
1
2 (y)

sinh(κ
1
2
my)

sinh(κ
1
2
mH)

, uM (y) =
D

1
2 (H)

D
1
2 (y)

sinh(κ
1
2

My)

sinh(κ
1
2

MH)
,

κm = min
0≤y≤H

(
(D

1
2 )′′

D
1
2

+
µa
D

+ λ2
k

)
, κM = max

0≤y≤H

(
(D

1
2 )′′

D
1
2

+
µa
D

+ λ2
k

)
.
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Proof. We first make the Liouville change of variables and introduce the function

v(y) =
D

1
2 (y)

D
1
2 (H)

u(y).

Forward calculations show that v(y) is the unique solution to the following system.{
−v′′(y) + κ(y)v(y) = 0 y ∈ (0, H),
v(H) = 1, v(0) = 0,

(10)

where

κ(y) =
(
√
D)′′√
D

+
µa
D

+ λ2
k.

Assume now that k is large enough such that κm > 0, and let vm(y) and vM (y) be
the solutions to the system (10) when we replace κ(y) by respectively the constants
κm and κM . They are explicitly given by

vm(y) =
sinh(

√
κmy)

sinh(
√
κmH)

,

vM (y) =
sinh(

√
κMy)

sinh(
√
κMH)

.

The maximum principle [42] implies that 0 < v(y), vm(y), vM (y) < 1 for 0 < y < H.

By applying again the maximum principle on the differences v− vm and v− vM
we deduce that vm(y) < v(y) < vM (y) for 0 ≤ y ≤ H, which leads to the desired
lower and upper bounds.

We deduce from the regularity of the coefficients D and µa and the classical
elliptic regularity [42] that u ∈ H3(0, H). Moreover there exist a constant b > that
only depends on (µ0, D0,M,L,H) such that

‖u‖H3 ≤ b.(11)

Consequently the uniform C2 bound of u can be obtained using the continuous
Sobolev embedding of H3(0, H) into C2([0, H]) [1].

�

Lemma 4.2. Let (D,µa) ∈ OM , and u(y) be the unique solution to the system (9).
Then, for k large enough there exists a constant % = %(D0, µ0,M, k) > 0 such that

u′(y) ≥ %,
for 0 ≤ y ≤ H.

Proof. Since 0 is the global minimum of u(y), we have u′(0) > 0. Moreover for k
large enough, Lemma 4.1 implies that

u(y) ≥
√
D(H)√
D(y)

sinh(
√
κmy)

sinh(
√
κmH)

,

for all y ∈ [0, H]. Therefore

u′(0) ≥
√
D(H)√
‖D‖L∞

√
κm

sinh(
√
κmH)
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Now integrating equation (9) over (0, y) we obtain

D(y)u′(y) = D(0)u′(0) +

∫ y

0

(µa(s) + λ2
kD(s))u(s)ds

D(y)u′(y) ≥ D(0)u′(0) +

∫ y

0

(µa(s) + λ2
kD(s))

√
D(H)√
D(s)

sinh(
√
κms)

sinh(
√
κmH)

ds

≥
√
D(H)√
‖D‖L∞

√
κmD0

sinh(
√
κmH)

+ (µ0 + λ2
kD0)

√
D(H)√
‖D‖L∞

cosh(
√
κmy)− 1

sinh(
√
κmH)

.

Taking into account the explicit expression of κm finishes the proof. �

Since the illumination are chosen to coincide with the Fourier basis functions
ϕkj , j = 1, 2, the data hj(x), j = 1, 2, can be rewritten as hj(x) = hj(y)ϕkj (x), j =
1, 2, where hj(y) = µa(y)ukj (y).

Therefore the optical inversion is reduced to the problem of identifying the op-
tical pair (D,µa) from the knowledge of the pair (h1(y), h2(y)) over (0, H).

Let (D,µa), (D̃, µ̃a) be two different pairs in OM , and denote uk and ũk the

solutions to the system (9), with coefficients (D,µa) and (D̃, µ̃a) respectively.

We deduce from Lemma 4.1 that 1
uk

and 1
ũk

lie in Lp(0, H) for 0 < p < 1.

Unfortunately for or 0 < p < 1 the usual ‖·‖Lp is not anymore a norm on the vector
space Lp(0, H) because it does not satisfy the triangle inequality (see for instance [1].
In contrast with triangle inequality Hölder inequality holds for 0 < p < 1, and we
have

‖ v
uk
‖Lr ≤ ‖ 1

uk
‖Lp‖v‖Lq ,(12)

for all v ∈ Lq(0, H) with 1
r = 1

p + 1
q .

Consequently h = h2

h1
=

uk2

uk1
can be considered as a distribution that coincides

with a C2 function over (0, H). A forward calculation shows that h satisfies the
equation

−
(
Du2

k1h
′)′ +Du2

k1h(λ2
2 − λ2

1) = 0,(13)

over (0, H).

Since ukj , j = 1, 2 are in C2([0, H]), an asymptotic analysis of D(y)u2
k1

(y)h′(y)
at 0 and the results of Lemma 4.1, gives

lim
y→0

Du2
k1h
′ = 0.

Similarly, we have

lim
y→1

h = 1.
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Integrating the equation (13) over (0, y), we get

D(y)u2
k1(y)h′(y) = (λ2

2 − λ2
1)

∫ y

0

D(s)uk1(s)uk2(s)ds.

Dividing both sides by D(y)u2
k1

(y), and using again Lemma 4.1, imply

h′(y) ≥ (λ2
2 − λ2

1)D−1(y)u−2
M (y)

∫ y

0

D(s)u2
m(s)ds,

which leads to

h′(y) ≥ (λ2
2 − λ2

1) min
y∈(0,H)

D−1(y)u−2
M (y)

∫ y

0

D(s)u2
m(s)ds > 0.(14)

The right hand constant is strictly positive and only depends on D0, µ0,M,H,L
and k.

Now back to the optical inversion. The equation (13) can be written as

−(Du2
k1)′h′ +

(
h(λ2

2 − λ2
1)− h′′

)
Du2

k1 = 0,

over (0, H). Dividing both sides by Du2
k1
h′, and integrating over (0, y), we obtain

D(y)u2
k1(y) = h(0)− h(y) + e(λ2

2−λ
2
1)
∫ y
0

h
h′ ds.(15)

This allows us to show the following result.

Lemma 4.3. Under the assumptions of Theorem 4.1, there exists a constant C =
C(µ0, D0, k1, k2,M,L,H) > 0 such that the following inequality holds.

‖Du2
k1 − D̃ũ

2
k1‖C0 ≤ C

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.

Proof. Recall that the relation (15) is also valid for the pair (D̃, µ̃a), that is

D̃(y)ũ2
k1(y) = h̃(0)− h̃(y) + e(λ2

2−λ
2
1)
∫ y
0

h̃

h̃′
ds,

where h̃ =
ũk2

ũk1
. Taking the difference between the last equation and the equation

(15) we find

‖Du2
k1 − D̃ũ

2
k1‖C0 ≤ ‖h− h̃‖C0 + (λ2

2 − λ2
1)H

∥∥∥∥∥ hh′ − h̃

h̃′

∥∥∥∥∥
C0

e
(λ2

2−λ
2
1)H

(
‖ h

h′ ‖C0+
∥∥∥ h̃

h̃′

∥∥∥
C0

)
.

We then deduce the result from Lemma 4.1 and inequality (14).

�

Now, we are ready to prove the main stability result of this section. We remark
as in [18], that 1

uk1
is a solution to the following equation.

−
(
Du2

k1

1

uk1

′)′
+ λ2

k1Du
2
k1

1

uk1
= h1, y ∈ (0, H).
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Since 1
ũk1

solves the same type of equation, we obtain that w = 1
uk1
− 1

ũk1
, is the

solution to the following system{
−
(
Du2

k1
w′
)′

+ λ2
k1
Du2

k1
w = e, y ∈ (0, H),

w(H) = 0, w′(H) = 1
µa(H) (h̃′1(H)− h′1(H)), yw(y) ∈ L2(0, H),

(16)

where

e = −
(

(Du2
k1 − D̃ũ

2
k1)

1

ũk1

′)′
+ λ2

k1(Du2
k1 − D̃ũ

2
k1)

1

ũk1
+ h1 − h̃1.

We remark that to solve this system we have to deal with two main difficulties, the
first is that the operator is elliptic degenerate, and the second is that the solution
w(y) may be unbounded at y = 0.

Multiplying by sign(w), and integrating over (s,H) the first equation of the
system leads to

D(s)u2
k1(s)|w|′(s) =

sign(w)

(
D(H)

µa(H)
(h̃′1(H)− h′1(H)) +

∫ H

s

e(y)dy − λ2
k1

∫ H

s

D(y)u2
k1(y)w(y)dy

)
.

Integrating again over (t,H) gives ∫ H

t

D(s)u2
k1(s)|w|′(s)ds ≤

MH

µ0
‖h1 − h̃1‖C1 +

∫ H

0

∣∣∣∣∣
∫ H

s

e(y)dy

∣∣∣∣∣ ds+ λ2
k1H

∫ H

0

D(y)u2
k1(y)|w|(y)dy.

Since u′k1 > 0 over (0, H) (Lemma 4.2), uk1 is increasing, and we have

D(t)u2
k1(t)|w|(t) ≤

MH

µ0
‖h1 − h̃1‖C1 +

∫ H

0

∣∣∣∣∣
∫ H

s

e(y)dy

∣∣∣∣∣ ds+ λ2
k1H

∫ H

0

D(y)u2
k1(y)|w|(y)dy.

Now, we focus on the second term on the right hand side.∫ H

0

∣∣∣∣∣
∫ H

s

e(y)dy

∣∣∣∣∣ ds ≤(17)

∫ H

0

|Du2
k1 − D̃ũ

2
k1 |
|ũ′k1 |
|ũ2
k1
|
ds+ λ2

k1H

∫ H

0

|Du2
k1 − D̃ũ

2
k1 |

1

|ũk1 |
dy +H‖h1 − h̃1‖C0 .

Using the estimates in Lemma 4.3, we find

∫ H

0

∣∣∣∣∣
∫ H

s

e(y)dy

∣∣∣∣∣ ds ≤ C (‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.(18)
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Combining inequalities (17) and (18), leads to

D(t)u2
k1(t)|w|(t) ≤(19)

C1

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
+ C2

∫ H

t

D(y)u2
k1(y)|w|(y)dy,

for 0 ≤ t ≤ H.

Using Gronwall’s inequality we get

D(t)u2
k1(t)|w|(t) ≤ C1e

C2

∫H
0
D(y)u2

k1
(y)dy

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
,

for 0 ≤ t ≤ H.
Finally, we obtain the following estimate.

u2
k1(t)|w|(t) ≤ D−1

0 C1e
C2

∫H
0
D(y)u2

k1
(y)dy

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
,(20)

The following Lemma is a direct consequence of the previous inequality.

Lemma 4.4. Under the assumptions of Theorem 4.1, there exists a constant C =
C(θ, µ0, D0, k1, k2,M,L,H) > 0 such that the following inequality holds.

‖uk1(uk1 − ũk1)‖C0 ≤ C
(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.

Proof. (Theorem 4.1) Recall that h1 = µauk1 and h̃1 = µ̃aũk1 over (0, H).

Therefore

u2
k1 |µa − µ̃a| ≤ uk1 |h1 − h̃1|+ µ̃auk1 |uk1 − ũk1 |.

Lemma 4.4 implies

‖u2
k1(µa − µ̃a)‖C0 ≤ C

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.(21)

A simple calculation yields

u2
k1 |D − D̃| ≤ D̃|u

2
k1 − ũ

2
k1 |+ |Du

2
k1 − D̃ũ

2
k1 |,

over (0, H).

Lemma 4.3 and 4.4 leads to

‖u2
k1(D − D̃)‖C0 ≤ C

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)
.(22)

Applying the bounds in Lemma 4.1, we obtain the wanted results. �
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5. Proof of Theorem 2.1

The main idea here is to combine the stability results of the acoustic and optic
inversions in a result that shows how the reconstruction of the optical coefficients
is sensitive to the noise in the measurements of the acoustic waves.

The principal difficulty is that the vector spaces used in both stability estimates
are not the same due to the difference in the techniques used to derive them. We
will use interpolation inequality between Sobolev spaces to overcome this difficulty.

We deduce from the uniform bound on the solutions ui, i = 1, 2 (see for instance
(11) in the proof of Lemma 4.1) that

‖hi‖H3 , ‖h̃i‖H3 ≤Mb, i = 1, 2,(23)

for all pairs (D,µa)and (D̃, µa) in OM .

The Sobolev interpolation inequalities and embedding theorems [1] imply

‖hi − h̃i‖C1 ≤ C‖hi − h̃i‖H2 ≤ C̃‖hi − h̃i‖
1
2

H1‖hi − h̃i‖
1
2

H3 , i = 1, 2,

which combined with (23) gives

‖hi − h̃i‖C1 ≤ ˜̃C‖hi − h̃i‖ 1
2

H1 , i = 1, 2.(24)

Since the acoustic inversion is linear we obtain from Theorem 3.1 (or Proposi-
tion 3.3) that,

λ2
ki

∫ H

0

|hi − h̃i|2dy ≤
(

CM
T − 2θH

+ β

)∫ T

0

|∂tpi(H, t)− ∂tp̃i(H, t)|2dt

+λ2
ki

∫ T

0

|pi(H, t)− p̃i(H, t)|2dt,

for i = 1, 2, and∫ H

0

c−2(y)|h′i − h̃′i|2dy ≤
(

CM
T − 2θH

+ β

)∫ T

0

|∂tpi(H, t)− ∂tp̃i(H, t)|2dt

+λ2
ki

∫ T

0

|pi(H, t)− p̃i(H, t)|2dt,

for i = 1, 2.

Consequently,

‖hi − h̃i‖C1 ≤

C̃

(∫ T

0

(
CM

T − 2θH
+ β

)
|∂tpi(H, t)− ∂tp̃i(H, t)|2 + λ2

ki |pi(H, t)− p̃i(H, t)|
2dt

) 1
4

,

for i = 1, 2.



17

Using the optical stability estimates in Theorem 4.1, we obtain

‖u2
m(µa − µ̃a)‖C0 ≤

˜̃
C

(
2∑
i=1

∫ T

0

(
CM

T − 2θH
+ β

)
|∂tpi(H, t)− ∂tp̃i(H, t)|2 + λ2

ki |pi(H, t)− p̃i(H, t)|
2dt

) 1
4

,

and

‖u2
m(D − D̃)‖C0 ≤

˜̃
C

(
2∑
i=1

∫ T

0

(
CM

T − 2θH
+ β

)
|∂tpi(H, t)− ∂tp̃i(H, t)|2 + λ2

ki |pi(H, t)− p̃i(H, t)|
2dt

) 1
4

,

which ends the proof.

6. Proof of Proposition 3.2

Multiplying the first equation of the system (4) by y∂yp(y, t) and integrating by
part one time over (0, T ), we obtain∫ T

0

|∂yp(H, t)|2dt =

∫ T

0

∫ H

0

|∂yp(y, t)|2dydt− 2

∫ T

0

∫ H

0

c−2∂ttp(y, t)y∂yp(y, t)dydt

−2λ2
k

∫ T

0

∫ H

0

p(y, t)y∂yp(y, t)dydt = A1 +A2 +A3.

In the rest of the proof we shall derive bounds of each of the constants Ai, i = 1, 2, 3,
in terms of the energy E(0). Due to the energy decay (6), we have

|A1| ≤ TE(0).

Integrating by part again over (0, T ) in the integral A2, we get

A2 = −
∫ T

0

∫ H

0

yc−2∂y|∂tp(y, t)|2dydt

+2

∫ H

0

yc−2∂tp(y, T )∂yp(y, T )dy − 2

∫ H

0

yc−2∂tp(y, 0)∂yp(y, 0)dy.

Integrating by part now over (0, H), we find

A2 +Hc−2(H)

∫ T

0

|∂tp(H, t)|2dt =

∫ T

0

∫ H

0

∂y(yc−2)|∂tp(y, t)|2dydt

+2

∫ H

0

yc−2∂tp(y, T )∂yp(y, T )dy − 2

∫ H

0

yc−2∂tp(y, 0)∂yp(y, 0)dy,

which leads to the following inequality∣∣∣∣∣A2 +Hc−2(H)

∫ T

0

|∂tp(H, t)|2dt

∣∣∣∣∣ ≤∥∥c2∂y(yc−2(y))
∥∥
L∞

TE(0) +H‖c−1(y)‖(E(T ) + E(0)).
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Using the energy decay (6), we finally obtain∣∣∣∣∣A2 +Hc−2(H)

∫ T

0

|∂tp(H, t)|2dt

∣∣∣∣∣ ≤(
(1 + (1 +

H

cm
)‖c−2‖W 1,∞)T + 2H‖c−2‖1/2L∞

)
E(0).

Similar arguments dealing with the integral A3 show that

|A3| ≤ HλkTE(0).

Combining all the previous estimates on the constants Ai, i = 1, 2, 3, achieve the
proof.

7. Proof of Proposition 3.3

Let θ =
√
‖c−2‖L∞ and T > 2θH, and introduce the following function

Φ(y) =

∫ T−θy

θy

(
c−2(H − y)|∂tp(H − y, t)|2 + |∂yp(H − y, t)|2 + λ2

k|p(H − y, t)|2
)
dt,

=

∫ T−θy

θy

ϕ(y, t)dt,

for 0 ≤ y ≤ H. We remark that

Φ(0) = (c−2(H) + β2)

∫ T

0

|∂tp(H, t)|2dt+ λ2
k

∫ T

0

|p(H, t)|2dt.(25)

On the other hand a forward calculation of the derivative of Φ(y) gives

Φ′(y) =

∫ T−θy

θy

∂yϕ(y, t)dt− θϕ(y, T − θy)− θϕ(y, θy).

Integrating by parts in the integral we deduce that

Φ′(y) = Bθ(y) + ∂y(c−2(H − y))

∫ T−θy

θy

|∂tp(H − y, t)|2dt,

where

Bθ(y) =
(
−2c−2(H − y)∂tp(H − y, t)∂yp(H − y, t)

) ∣∣∣t=T−θy
t=θy

−θ
(
c−2(H − y)|∂tp(H − y, t)|2 + |∂yp(H − y, t)|2 + λ2

k|p(H − y, t)|2
) ∣∣∣t=T−θy
t=θy

.

The choice of θ implies Bθ(y) < 0 for 0 ≤ y ≤ H. Hence, we obtain

Φ′(y) ≤ c2(H − y)|∂y(c−2(H − y))|
∫ T−θy

θy

c−2(H − y)|∂tp(H − y, t)|2dt

≤ c2(H − y)|∂y(c−2(H − y))|Φ(y).

Using Gronwall’s inequality we get

Φ(y) ≤ e
∫H
0
c2(s)|∂y(c−2(s))|dsΦ(0),(26)

for 0 ≤ y ≤ H.
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We deduce from the energy decay (6) that

(T − 2θH)E(T ) ≤ (T − 2θH)E(T − θH) ≤
∫ T−θH

θH

E(t)dt.(27)

Rewriting now the right hand side in terms of the function ϕ we found∫ T−θH

θH

E(t)dt =

∫ H

0

∫ T−θH

θH

ϕ(y, t)dtdy.

Since (θH, T − θH) ⊂ (θy, T − θy) for all 0 ≤ y ≤ H, we have∫ T−θH

θH

E(t)dt ≤
∫ H

0

Φ(y)dy.(28)

Combining inequalities (26)-(27)-(28), we find

(T − 2θH)E(T ) ≤ He
∫H
0
c2(s)|∂y(c−2(s))|dsΦ(0).(29)

Back again to the energy derivative (6), and integrating the equality over (0, T ) we
obtain

E(0) = E(T ) + β

∫ T

0

|∂tp(H, t)|2dt.

The last equality and energy estimate (29) give

E(0) ≤ (T − 2θH)−1He
∫H
0
c2(s)|∂y(c−2(s))|dsΦ(0) + β

∫ T

0

|∂tp(H, t)|2dt.

Substituting Φ(0) by its expression in (25) we finally find

E(0) ≤(
(T − 2θH)−1He

∫H
0
c2(s)|∂y(c−2(s))|ds(c−2(H) + β2) + β

)∫ T

0

|∂tp(H, t)|2dt

+λ2
k

∫ T

0

|p(H, t)|2dt,

which combined with the fact that

E(0) =

∫ H

0

(
c−2(y)|f1(y)|2 + |f ′0(y)|2 + λ2

k|f0(y)|2
)
dy,

finishes the proof.

8. Acknowledgments

The work of KR is partially supported by the US National Science Founda-
tion through grant DMS-1620473. The research of FT was supported in part by
the LabEx PERSYVAL-Lab (ANR-11-LABX- 0025-01). FT would like to thank
the Institute of Computational Engineering and Sciences (ICES) for the provided
support during his visit.



20 KUI REN AND FAOUZI TRIKI

References

[1] Adams, R. A., Fournier, J. F. Sobolev Spaces (Second ed.), Academic Press (2003).
[2] M. Agranovsky, P. Kuchment, and L. Kunyansky, On reconstruction formulas and

algorithms for the thermoacoustic tomography, in Photoacoustic Imaging and Spectroscopy,

L. V. Wang, ed., CRC Press, 2009, pp. 89–101.
[3] M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles

and complete systems of radial functions, J. Funct. Anal., 139 (1996), pp. 383–414.

[4] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, M. Fink, Electrical impedance
tomography by elastic deformation. SIAM J. Appl. Math. 68, 1557? 1573

[5] H. Ammari, E. Bossy, V. Jugnon, and H. Kang, Mathematical modelling in photo-
acoustic imaging of small absorbers, SIAM Rev., 52 (2010), pp. 677–695.

[6] H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, Photo-acoustic imaging for attenuat-

ing acoustic media, in Mathematical Modeling in Biomedical Imaging II, H. Ammari, ed.,
vol. 2035 of Lecture Notes in Mathematics, Springer-Verlag, 2012, pp. 53–80.

[7] H. Ammari, E. Bretin, J. Garnier, and V. Jugnon. Coherent interferometry algorithms

for photoacoustic imaging. SIAM Journal on Numerical Analysis, 50 (2012), 2259-2280.
[8] H. Ammari, H. Kang and S. Kim. Sharp estimates for Neumann functions and applications

to quantitative photo-acoustic imaging in inhomogeneous media. Journal of Differential

Equations, 253 (2012), 41-72.
[9] K. Ammari and M. Choulli, Logarithmic stability in determining a boundary coefficient

in an ibvp for the wave equation, arXiv:1505.07248.

[10] K. Ammari, M. Choulli and F. Triki. Hölder stability in determining the potential and
the damping coefficient in a wave equation. arXiv preprint arXiv:1609.06102, (2016).

[11] K. Ammari, M. Choulli and F. Triki. Determining the potential in a wave equation
without a geometric condition. Extension to the heat equation, Proc. Amer. Math. Soc. 144

(10) (2016), 4381-4392.

[12] S. R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999), pp. R41–
R93.

[13] G. Bal, Hybrid inverse problems and internal functionals, in Inside Out: Inverse Problems

and Applications, G. Uhlmann, ed., vol. 60 of Mathematical Sciences Research Institute
Publications, Cambridge University Press, 2012, pp. 325–368.

[14] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26

(2010). 085010.
[15] G. Bal and G. Uhlmann, Reconstructions of coefficients in scalar second-order elliptic

equations from knowledge of their solutions, Comm. Pure Appl. Math., 66 (2013), pp. 1629–

1652.
[16] G. Bal, and K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive

regime. Inverse Problems, 27(7), 075003 (2011).

[17] G. Bal and K. Ren, Non-uniqueness result for a hybrid inverse problem, Contemporary
Mathematics, 559 (2011), 29-38.

[18] G. Bal and G. Uhlmann, Reconstruction of Coefficients in Scalar Second-Order Elliptic
Equations from Knowledge of Their Solutions, Commun. Pure and Appl. Math., 66 (10)

(2013), 1629-1652.
[19] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics. Inverse Problems,

26(8), 085010 (2010).

[20] G. Bal and J. C. Schotland, Inverse Scattering and Acousto-Optics Imaging, Phys. Rev.

Letters, 104 (2010), p. 043902.
[21] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation,

control and stabilization of waves from the boundary, SIAM J. Cont. Optim., 30 (1992),
1024-1065.

[22] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, Exact and approximative

imaging methods for photoacoustic tomography using an arbitrary detection surface, Phys.

Rev. E, 75 (2007). 046706.
[23] N. Burq. Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bulletin

de la S.M.F., 126:601-637, 1998.
[24] Cox, B. T., Arridge, S. R. and Beard, P. C. Photoacoustic tomography with a limited-

aperture planar sensor and a reverberant cavity. Inverse Problems 23: S95-S112, (2007).



21

[25] B. T. Cox, S. R. Arridge, and P. C. Beard, Photoacoustic tomography with a limited-

aperture planar sensor and a reverberant cavity, Inverse Problems, 23 (2007), pp. S95–S112.

[26] M. Fink and M. Tanter. Multiwave imaging and super resolution. Phys. Today, 63 (2010),
28-33.

[27] Y. Hristova. Time reversal in thermoacoustic tomography - an error estimate. Inverse

Problems, 25: 055008, 2009.
[28] Y. Hristova, P. Kuchment, and L. Nguyen.Reconstruction and time reversal in ther-

moacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse

Problems, 24: 055006, (2008).
[29] D. Finch, M. Haltmeier, and Rakesh, Inversion of spherical means and the wave equation

in even dimensions, SIAM J. Appl. Math., 68 (2007), pp. 392–412.

[30] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing Inc., (1985).
[31] M. Haltmeier, A mollification approach for inverting the spherical mean Radon transform,

SIAM J. Appl. Math., 71 (2011), pp. 1637–1652.
[32] M. Haltmeier, T. Schuster, and O. Scherzer, Filtered backprojection for thermoacoustic

computed tomography in spherical geometry, Math. Methods Appl. Sci., 28 (2005), pp. 1919–

1937.
[33] Y. Hristova, Time reversal in thermoacoustic tomography - an error estimate, Inverse

Problems, 25 (2009). 055008.

[34] V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical
Sciences, vol. 127, Springer, New York, 1998.

[35] A. Kirsch and O. Scherzer, Simultaneous reconstructions of absorption density and wave

speed with photoacoustic measurements, SIAM J. Appl. Math., 72 (2013), pp. 1508–1523.
[36] P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, Euro. J.

Appl. Math., 19 (2008), pp. 191–224.

[37] P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic and photoacoustic to-
mography, in Handbook of Mathematical Methods in Imaging, O. Scherzer, ed., Springer-

Verlag, 2010, pp. 817–866.
[38] L. Kunyansky, Thermoacoustic tomography with detectors on an open curve: an efficient

reconstruction algorithm, Inverse Problems, 24 (2008). 055021.
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