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Abstract: This paper presents a comparison in terms of accuracy and complexity between two
approaches used for state estimation of linear systems: a classic Kalman filter and a guaranteed
set-membership state estimation technique. The main goal of this paper is to analyze the
advantages of these techniques and to combine them in the future in a new accurate and simple
extension that handles system uncertainties and chance constraints. Two academic examples
illustrate the main differences between the compared techniques.
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1. INTRODUCTION

Generally, process control requires accurate information
about the plant. However, the measured variables do not
totally describe the behavior of the system. Particularly,
the entire system state is not always accessible. This is why
it is important to get access to the unknown information
using available data/knowledge. Various methods for state
estimation are suggested in the literature and they can be
divided into two categories. Stochastic approaches such as
the Kalman Filter (see Kalman (1960)) assume the prior
knowledge of the distribution of the perturbations and
the measurement noises (in general Gaussian distribution)
taking into account certain characteristics like the mean
and the covariance. This assumption can be sometimes
unrealistic. Thus deterministic approaches (Bertsekas and
Rhodes (1971), Fogel and Huang (1982)) that considers
unknown but bounded perturbations and bounded noises
have been elaborated. There are several deterministic ap-
proaches used for state estimation, like set-membership
state estimation (Schweppe (1968)), interval observers
(Pourasghar et al. (2016)) or robust filtering methods (El
Ghaoui and Calafiore (2001)). In the implementation of
set-based deterministic estimation methods, various sets
are used: polytopes (Walter and Piet-Lahanier (1989)),
zonotopes (Combastel (2003), Alamo et al. (2005), Le et al.
(2013)), ellipsoids (Kurzhanski and Vályi (1996), Durieu
et al. (2001), Polyak et al. (2004), Daryin et al. (2006),
Daryin and Kurzhanski (2012), Chernousko (1994)). The
low complexity of ellipsoids makes them widely used com-
pared to polytopes which offer better accuracy of the
estimation. Combastel (2015) recently proposed a combi-
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nation between stochastic and deterministic approaches,
more exactly a zonotopic Kalman filter.

In the present paper, a comparison in terms of accuracy
and computation complexity is made between two estima-
tion techniques studied in the litterature: an ellipsoidal set-
membership state estimation (Ben Chabane et al. (2014a),
Ben Chabane et al. (2014b)) and a classical Kalman filter.
The results illustrated in this paper are the main moti-
vation to develop a future extension that will combine
the advantages of the two compared techniques: better
accuracy and less complexity.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the state estimation problem for lin-
ear systems. Section 3 briefly presents the ellipsoidal set-
membership state estimation technique. Section 4 reminds
the state estimation using the classical Kalman Filter. Sec-
tion 5 exposes the comparison between the two techniques.
Section 6 proposes two illustrative examples. Finally, con-
clusions and perspectives are drawn in Section 7.

Notation. An interval denoted [a, b] is the set defined by
{x ∈ R : a ≤ x ≤ b}. Thus, B = [-1,1] can be denoted as
unitary interval. A box ([a1, b1], . . . , [an, bn])> is an interval
vector. A unitary box in Rn is a box composed by n unitary
intervals. The identity matrix of size n is defined by In.
A random variable x normally distributed with mean of x̄
and with variance of σ2 is represented by x ∼ N

(
x̄, σ2

)
.

2. PRELIMINARIES AND SETUP

Consider the following discrete-time Linear Time Invariant
(LTI) system



{
xk+1 = Axk +Buk + Ewwk
yk = Cxk +Duk + Fvvk

(1)

where xk ∈ Rnx is the state vector of the system, uk ∈ Rnu

is the input vector, and yk ∈ Rny is the measured output
vector at sample time k. The matrices A, B, C, D, Ew and
Fv have the appropriate dimensions. Here, wk ∈ Rnx is a
vector containing the state perturbations, while vk ∈ Rny

contains the measurement noises.

Combining the state perturbations and the measurement

noises in one vector ωk = [wk vk]
> ∈ Rnx+ny , the system

(1) can be rewritten in an equivalent form{
xk+1 = Axk +Buk + Eωk
yk = Cxk +Duk + Fωk

(2)

with the matrices E =
[
Ew 0nx,ny

]
and F =

[
0ny,nx

Fv
]
.

In this work, we aim to compare an estimate of the state
of the system (1) provided by two approaches that are
further detailed in Sections 3 and 4.

3. GUARANTEED ELLIPSOIDAL
SET-MEMBERSHIP STATE ESTIMATION

This section briefly describes the guaranteed ellipsoidal
set-membership state estimation proposed by Ben Cha-
bane et al. (2014a) for the system (2).

In this context, consider that the initial state x0 belongs
to the ellipsoid:

E(P0, x0, ρ0) = {x ∈ Rnx : (x− x0)>P0(x− x0) ≤ ρ0}
with the shape matrix P0 = P>0 � 0, the center x0 and
the so called radius ρ0.

Given an ellipsoidal estimation set for xk, with x̄k the
nominal estimated state, the objective of this technique is
to obtain an ellipsoidal set estimation for xk+1. Figure
1 illustrates the 2-step procedure (prediction and cor-
rection) to calculate the estimation set. At each sample
time k, the green set represents the predicted state set.
The yellow strip represents the set of states compatible
with the measurements yk+1. The blue ellipsoid (which
contains the state estimation set) overapproximates the
intersection of the predicted state set and the measurement
strip. Repeating the procedure at each time k leads to a
guaranteed estimation set that contains the state of the
system.

Fig. 1. State estimation using ellipsoids

More precisely, at each time k, the radius of the ellipsoidal
set is minimized by solving a Linear Matrix Inequality
(LMI) problem (see Ben Chabane et al. (2014a) for more
details)

min
β,Yk,ρk+1

ρk+1

subject to
[

βP ∗ ∗
0 ρk+1 − βρk ∗

PA− YkC (PE − YkF )ωk P

]
� 0

ρk+1 ≤ βρk + σ
0 < β < 1

(3)

for all ωk ∈ Bnx+ny , with Yk = PLk and the nominal
estimated state x̄k+1 = Ax̄k+Buk+Lk(yk−Cx̄k−Duk).
The symbol ”*” denotes symmetrical terms.

In fact, expression (3) guarantees that the system state
xk+1 belongs to the ellipsoid E(P, x̄k+1, ρk+1).

An improvement of this method in terms of accuracy
is proposed in Ben Chabane et al. (2014b), with the
advantage that it can deal with interval uncertainties
on the evolution matrix A. The main difference with
respect to Ben Chabane et al. (2014a) is the use of
the measurement yk+1 together with additional quadratic
constraints on the perturbations ωk. This improvement
allows us to reduce even more the size of the ellipsoidal
estimated state set by solving an additional optimization
problem

min
ρ′
k+1

,P ′,x̄′
k+1

,H,τ,µi

ρ′k+1

subject to


τP + C>HC ∗ ∗

η1 − τ x̄>k+1P η2 −
nx+ny∑
i=1

µi ∗

P ′ −P ′x̄′k+1 P ′

 � 0,

P ′ � 0,

F>HF <

nx+ny∑
i=1

µiTi,

τ ≥ 0,
τ < 1,
ρ′k+1 > τρk+1,
µi ≥ 0, i = 1, . . . , nx + ny

(4)

with η1 = −(yk+1 +Duk+1)>HC and η2 = ρ′k+1−τρk+1 +

τ x̄>k+1Px̄k+1 + (yk+1 +Duk+1)>H(yk+1 +Duk+1).

Supposing that xk+1 ∈ E(P, x̄k+1, ρk+1), the expression
(4) offers an improved ellipsoidal state estimation set
E ′(P ′, x̄′k+1, ρ

′
k+1).

4. KALMAN FILTER

Recall the LTI system (1) taking into consideration that
wk and vk are random, independent white Gaussian noises,
with the covariance matrices denoted by Gw and Gv,
respectively. Notice that the state is a random Gaussian
vector denoted by x ∼ N (x̄, σ) and particularly the initial
state is represented by x0 ∼ N

(
x0|−1, G0|−1

)
.

The Kalman filter design is divided into two steps:

• Prediction. A previously estimated state x̂k−1|k−1 and
the linear nominal model (without any perturbation)
are used to predict the value of the next estimated
state x̂k|k−1 as well as the state estimate covariance
Gk|k−1



x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (5)

Gk|k−1 = AGk−1|k−1A
> + EwGwE

>
w (6)

• Correction. The current output measurements and
the statistical properties of the model are used to
correct the state estimation, leading to compute the
state estimate covariance

Sk = CGk|k−1C
> + FvGvF

>
v (7)

Kk = Gk|k−1C
>S−1

k (8)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (9)

Gk|k = (I −KkC)Gk|k−1 (10)

withKk the Kalman gain and Sk the innovation covariance
at the sample time k.

5. COMPARISON

The main difference between the approaches presented
in Sections 3 and 4 can be mainly spotted in terms of
system modeling. The ellipsoidal set-membership state
estimation Ben Chabane et al. (2014a) guarantees the
state estimation bounds within an ellipsoid for any LTI
system (1) or (2), while certain requirements should be
met in order to efficiently run the classical Kalman filter.
The Kalman filter works properly when the LTI model
matrices are fixed and do not present parametric uncer-
tainties. The improved set-membership state estimation
Ben Chabane et al. (2014b) offers guaranteed bounds for
the state estimation despite the presence of possible inter-
val uncertainties on the evolution matrix A of the system
(1) or (2). However, the Kalman filter offers a reduced
computation complexity with respect to the considered
set-membership estimation method. In fact, the Kalman
equations are based on basic matrix operations and the
computational complexity can be approximated by the
number of multiplications per loop. Using the expressions
(5)-(10) and considering the worst case scenario (i.e. full
matrices) we can approximate the filter computational
complexity to O(N3), with N = max(nx, ny).

The computational complexity of the ellipsoidal state
estimation method relies on solving a LMI optimization
problem. The mincx solver of the Matlab Robust Control
Toolbox is based on the interior point method Nesterov
and Nemirovski (1994) which is an iterative technique
solving a least square problem at each iteration. The
complexity of the method in the worst case scenario can
be approximated to O(m2.75l1.5) with m the number
of decision variables and l the number of constraints
Vandenberghe and Boyd (1994). Notice that m = (nx +
ny)2 + nxny + 2 and l = 2nx+ny + 3 for the optimization
problem (3) and m = 0.5(n2

x+n2
y) + 2.5nx+ 1.5ny + 2 and

l = nx + ny + 6 for the optimization problem (4).

The comparison allows us to conclude that the Kalman
filter offers us a better result in terms of complexity, thus
faster computations. In terms of accuracy, and for each
iteration, the ellipsoidal method computes an ellipsoidal
set to which the real state is guaranteed to belong.

The set-membership estimation setup (Section 3) offers
the possibility to use correlated/uncorrelated perturba-
tions and measurement noises, however the choice of the

perturbation bounds needs good knowledge of the plant.
The Kalman filter uses the assumption of Gaussian noises,
which can be difficult to verify for some real plants.

Starting from this results, the aim of our future research
work is to combine the advantages of the two presented
techniques in order to propose an extented method that
handles systems uncertainties (i.e. interval uncertainties in
the system matrices) and chance constraints.

6. ILLUSTRATIVE EXAMPLES

Two numerical examples are considered in this section to
illustrate the comparison of the presented state estimation
techniques.

Example 1. Consider the following stable LTI system xk+1 =

[
−0.8 0.2
−0.3 0.1

]
xk +

[
−0.12
0.02

]
wk

yk = [−2 1]xk + 0.2vk

(11)

In this example, we present the results obtained by the
improved guaranteeed elipsoidal set-membership state es-
timation (4) compared to the results obtained by Kalman
filter.

In order to make a valid comparison between these two
techniques, appropriate assumptions should be taken re-
garding the initial state, and noises. In fact, we con-
sider that x0 ∼ N

(
x0|−1, G0|−1

)
and wk ∼ N (0, 1),

vk ∼ N (0, 1) for the Kalman filter. For the ellipsoidal
set-membership approach, the initial state x0 belongs to
E(P0, x0|−1, ρ0), and the perturbations and measurement
noises are bounded, i.e. |wk| ≤ 1 and |vk| ≤ 1. Notice

that x0|−1 = [5 5]
>

, G0|−1 = I2 , P0 = 10−9I2 and

ρ0 = 2 · 10−8.

Figure 2 and 3 show the bounds of x1 and x2 respec-
tively after 10 iterations obtained by the ellipsoidal set-
membership state estimation method (4) and the Kalman
filter. The real state x (red asterix) is always inside the
guaranteed bounds (in dashed blue) calculated by the
ellipsoidal set-membership method (4). It can be noticed
that, in this example, the state estimated with the Kalman
filter (black asterix) has a slower convergence and it is
not always inside the guaranteed bounds obtained with
the improved set-membership method Ben Chabane et al.
(2014b).

Concerning the computational complexity, the classic
Kalman filter takes around 0.21ms per iteration, while the
set-membership estimation technique (LMIs (3) and (4))
spends around 9ms to determine the estimation bounds.

Example 2. The aim of using an unstable system, in
which the states do not converge to 0 is to prove the
efficiency of the ellipsoidal method. In this context, we
consider the previous example with a different evolution
matrix A, while keeping the same perturbations, noises
and initial conditions

 xk+1 =

[
−1.5 0.2
−0.3 0.1

]
xk +

[
−0.12
0.02

]
ωk

yk = [−2 1]xk + 0.2vk

(12)
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Fig. 2. Bounds of x1
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Fig. 3. Bounds of x2

Figure 4 and its zoom (Fig. 6) show the bounds of x1

(in dashed blue) obtained with the ellipsoidal estimation
method. The bounds of x2 are illustrated in Fig. 5 and its
zoom (Fig. 7). It can be noticed that the real state (red
asterix) is guaranteed to be inside these bounds, while it is
not the case for the classical Kalman filter (black asterix).

7. CONCLUSION

In this paper, a brief comparison has been made between
two methodogies used for the state estimation of discrete-
time linear time invariant systems, subject to perturba-
tions and measurement noises. The guaranteed ellipsoidal
set-membership estimation method Ben Chabane et al.
(2014b) is compared to the classic Kalman Filter, in terms
of accuracy and complexity. The best estimation results
(i.e. guaranteed bounds) are obtained with the improved
estimation method Ben Chabane et al. (2014b). The main
advantage of the Kalman filter is its lower computational
complexity. In order to take advantage of the benefits of
the two proposed methodologies, future work will consist
on finding a new estimation technique that guarantees high
accuracy, with a small computational charge. Additionally,
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Fig. 6. Zoom on the bounds of x1

parametric uncertainties and chance constraints will be
considered in future developments.
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